
5 Beam Manipulations in Photoinjectors

The design of an electron source is a challenging task. The designer must
reconcile the contradictory requirements for a small emittances, a high charge,
a high repetition rate, and, possibly, a high degree of beam polarization.
Electron beams can be generated in a variety of ways. Accordingly a

number of different devices exist which can serve as electron sources for linear
colliders: thermionic guns, dc guns with laser photocathodes (used at the
SLC), or rf guns. In the future, also polarized rf guns may become available.
In this chapter, we first outline the general principle of an rf photoinjector,

emphasizing the limits on the minimum emittance that it can produce. We
then discuss two approaches for manipulating, shaping and preserving the
transverse emittance of the beam generated by such a photoinjector, namely
the compensation of space-charge induced emittance growth using a solenoid,
and the flattening of the beam by the combined action of a solenoid and
subsequent skew quadrupoles.

5.1 RF Photoinjector

In a laser-driven rf gun, or rf photoinjector, a high-power pulsed laser illu-
minates a photocathode placed on the end wall of an rf cavity. The emitted
electrons are accelerated immediately in the rf field. The time structure of
the electron beam is controlled by the laser pulse, and the rapid acceleration
minimizes the effect of space-charge repulsion.
Several effects contribute to the normalized emittance attainable by such

an rf gun [1]:

• The thermal emittance is determined by the initial transverse momenta of
the electrons at the moment of their emission. It can be estimated as

γεthx,y [mm mrad] ≈
1

4

√
kBT⊥
mec2

σx,y [mm] , (5.1)

where kBTe ≈ 0.1 eV represents the thermal emission temperature.
• An rf emittance arises from the time-dependent transverse focusing in the
rf field. At the exit of the rf structure, it is approximately given by
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γεrfx,y [mm mrad] ≈
eErf√
8mEc4

σ2x,yσ
2
zω
2
rf , (5.2)

where Erf denotes the peak accelerating field.
• The space-charge emittance arises from the repelling force between the
equally charged beam particles. Taking into account the focusing compo-
nent of the rf field, the residual space-charge emittance is [2]

γεscx,y [mm mrad] ≈
2Nbre
7σx,yW

exp
(
−3
√
Wσy

) √σy
σz
, (5.3)

where W = eErf sinφ0/(2mec
2) and φ0 is the rf phase at the beam center.

Since the transverse space-charge force depends on the local charge den-
sity of the bunch, it disorients in phase space the transverse slices located
at different longitudinal positions along the bunch. For round beams this
dilution can be almost fully inverted by properly placed solenoids [3], as
described in the following section.

5.2 Space-Charge Compensation

Nowadays, photoinjectors, rather than thermionic injectors, are used for all
applications requiring the combination of high-peak current and low emit-
tance [3]. After the electron emission from the cathode, at low energies, space
charge forces are very important. Here we follow closely the work of B. Carl-
sten [3].
We first consider the case without compensation and also neglect rf focus-

ing effects. In this case, scaling arguments, supported by simulations, show
that the transverse emittance of a ‘slug’ beam of length L and radius a with
peak current I grows to a value [3, 4]

εxN ≈
eIs

16πε0m0c3γ2β2
G , (5.4)

provided that the bunch does not strongly deform over the drift distance s.
The geometric factor G depends on the beam aspect ratio in the beam frame,(
γL
a

)
, and on the longitudinal distribution. In the long-bunch limit and as-

suming that the radial distribution is uniform, G can be calculated to be
0.556 for a Gaussian longitudinal distribution and 0.214 for a parabolic dis-
tribution.
The radial space-charge force is a function of position within the bunch.

Following [3] we introduce cylindrical coordinates ρ and ξ within the bunch,
ρ = 1 defining the radial edge, and ξ = ±1 the longitudinal ends. There is no
emittance growth if the radial force is linear in ρ and independent of ξ [3],
or, equivalently, if
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Λ(ρ, ξ, t) ≡
eEr(ρ, ξ, t)

m0γ3β2c2
= ρ0Λ0(t) , (5.5)

where we have introduced the normalized force Λ, and Er is the radial electric
field in the laboratory frame.
If the longitudinal bunch density is not a constant, this condition is not

fulfilled, and there will be a growth in the transverse emittance because dif-
ferent slices of the beam experience different radial space-charge forces. It
is the projected emittance that increases, while the emittance of each short
slice remains constant. In phase space the slices rotate against each other.
Now there exists an elegant method by use of a focusing solenoid to realign

the different slices in the same phase space direction, and thus to recover the
original emittance.
We consider again a slug beam. For simplicity, we assume that the space-

charge force does not vary in time. If initially the beam at location z = 0 is
non-divergent and has a radius r0, a point in the slug at coordinates (ρ, ξ)
will execute a non-relativistic transverse motion, so that after a distance z
its radial coordinates will be

r(ρ, ξ, z) = ρr0 + Λ(ρ, ξ)
z2

2
(5.6)

and
r′(ρ, ξ, z) = Λ(ρ, ξ)z (5.7)

after a distance z. We now place a lens (in practice, this lens is a solenoid)
at the position z = zl, and choose its focal length equal to [3]

f =
z2d

2(zl + zd)
, (5.8)

where zd denotes the distance from the lens to a point downstream. At this
point, the ratio of the beam divergence to its radius becomes

r′(ρ, ξ)

r(ρ, ξ)
=
2(zl + zd)

zd(zd + 2zl)
, (5.9)

which is independent of the particle’s motion within the bunch. Thus the
effect of the lens was to back-rotate the slices along the bunch with respect
to each other so that they are again re-aligned after the total distance (zl+zd).
The normalized emittance can be written as [3]

εx,y =
1

2
βγ
√
〈Λ2〉〈ρ2〉 − 〈Λρ〉2

(
2r0(zl + zd)−

z2dr0
f

)
, (5.10)

where r0 is the initial beam radius and the angular brackets indicate an aver-
age over the beam distribution. Equation (5.10) confirms that the emittance
vanishes with the proper choice of lens (focal length f). The compensation
recipe is illustrated schematically in Fig. 5.1.
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Fig. 5.1. Space charge compensation in photoinjectors. The two arrows illustrate
the particle motion at the center (C) and at the end (E) of the bunch: (1) after
initial drift, (2) after solenoid focusing, (3) after final drift until slice emittances
are realigned [3]

In reality the physics is not quite so simple. In particular, the space-charge
force is not constant in time. This complication results in a residual nonzero
emittance. Nevertheless, already in the first beam experiments performed at
Los Alamos [3] the above compensation scheme was shown to reduce the
normalized rms emittance by up to an order of magnitude.
Let us assume the beam is focused to a beam-radius minimum. If the

space-charge forces are weak compared with the external focusing, all par-
ticles cross through the beam’s center. This can be called a crossover [3]. On
the other hand, for strong space-charge forces, the particles will be deflected
away from the center. This may be called a waist [3], but be careful not to
confuse this with the notion of beam waist used to describe a generic position
of minimum beam radius. In general, parts of the bunch will have a high den-
sity and particles there will experience a waist, while particles in the other
parts will crossover. Indeed there exist particles at the border between these
two regions, which are initially extremely close together and later on will be
a finite distance apart. This is called a phase-space bifurcation [3].
The space-charge induced emittance growth can only be compensated for

those particles which do not cross over, and only for those do the above
approximations apply. Therefore, one of the most important design criteria
for photoinjectors is to minimize the fraction of the beam crossing over.
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The technique described here may be generalized to other situations where
one wants to correct a correlated growth in the projected emittances that is
induced by a nonlinear force.

5.3 Flat-Beam Transformation

Linear colliders require flat electron beams at the collision point, in order to
maximize the luminosity while limiting the amount of synchrotron radiation
emitted during the collision in the field of the opposing beam (this radiation
is called beamstrahlung). Unfortunately, electron guns usually produce round
beams.
A scheme by which one can transform a round beam (εx = εy) into a

flat beam (εx � εy) was proposed by Y. Derbenev, R. Brinkmann, and
K. Flottmann in 1999 [5, 6, 7]. We describe the idea following Edwards [8].
The basic scheme consists of two parts:

• the beam from a cathode immersed in a solenoidal field develops an angular
momentum at exit from the solenoid;
• subsequently this beam is passed through a quadrupole (or skew quadru-
pole) channel with 90◦ phase advance difference between the two planes,
and length scale defined by the solenoid field.

Consider electrons moving parallel to a solenoid field whose axis is oriented
in the z direction. Maxwell’s equations imply the presence of a radial magnetic
field at the exit of the solenoid. This radial field gives rise to a transverse
deflection, which depends on the distance from the solenoid axis. For example,
the vertical deflection at the solenoid exit is

Δy′ =
1

Bρ

∫
Bxdz =

1

Bρ

x0
2
Bz , (5.11)

where Bz is the longitudinal field inside the solenoid and x0 the horizontal
offset. A similar expression holds for Δx′. Abbreviating, we write Δy′ = kx0,
Δx′ = −ky0 with k = Bz/(2Bρ). After leaving the solenoid, the beam takes
on a clock-wise rotation ⎛

⎜⎜⎝
x
x′

y
y′

⎞
⎟⎟⎠
0

=

⎛
⎜⎜⎝
x0
−ky0
y0
kx0

⎞
⎟⎟⎠ . (5.12)

We have neglected any initial uncorrelated momenta, assuming that these are
much smaller than kx0 or ky0. However, actually these terms are important,
as they determine the final flat-beam emittance. We will see this below.
Suppose now that the quadrupole channel behind the solenoid produces

an I matrix in x and an additional 90◦ phase advance in y:
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⎜⎜⎝
x
x′

y
y′

⎞
⎟⎟⎠
1

=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 β
0 0 −1/β 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x0
−ky0
y0
kx0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x0
−ky0
kβx0
− 1
β
y0

⎞
⎟⎟⎠ . (5.13)

If we choose β = 1/k, the final phase-space vector becomes⎛
⎜⎜⎝
x
x′

y
y′

⎞
⎟⎟⎠
1

=

⎛
⎜⎜⎝
x0
−ky0
x0
−ky0

⎞
⎟⎟⎠ . (5.14)

This is a flat beam inclined at 45◦. If one uses a skew quadrupole channel
instead of quadrupole channel, the beam can be made flat in the vertical
plane, as shown next.
The general 4×4 transport matrix from the end of the solenoid through

the skew quadrupole channel can be written as

M = R−1TR (5.15)

with

R =
1
√
2

(
I2 I2
−I2 I2

)
, (5.16)

where I2 is 2× 2 identity, and the matrix T represents a normal quadrupole
channel:

T =

(
A 0
0 B

)
. (5.17)

Combining the above, we write M as

M =
1

2

(
A+B A−B
A−B A+B

)
. (5.18)

The initial state after the solenoid exit is

X ≡

(
x0
−ky0

)
and Y ≡

(
y0
kx0

)
, (5.19)

which we write more elegantly as

Y = SX using S ≡

(
0 −1/k
k 0

)
. (5.20)

The final state is then(
X
Y

)
1

=
1

2

(
{A+B + (A−B)S}X
{A−B + (A+B)S}X

)
, (5.21)

and the condition for a flat beam is Y1 = 0, or I = −(A−B)−1(A+B)S.
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Using the Courant–Snyder parametrization [9] A = exp(Jμ), B =
exp(J(μ+Δ)), where J denotes the matrix

J =

(
α β
−γ −α

)
, (5.22)

the flat-beam condition becomes

I = −
cos(Δ/2)

sin(Δ/2)

(
kβ α/k
−kα γ/k

)
. (5.23)

This is fulfilled for Δ = −π/2, α = 0 and β = 1/k.
Finally, adding a random component to the slope of the initial vector, so

that (5.12) is replaced by⎛
⎜⎜⎝
x
x′

y
y′

⎞
⎟⎟⎠
0

=

⎛
⎜⎜⎝

x0
−ky0 + x′0
y0

kx0 + y
′
0

⎞
⎟⎟⎠ , (5.24)

we can apply the same transformation M as above, (5.18), and, assuming
that the beam at the source is round with σx0 = σy0, σ

′
x0 = σ

′
y0, and no

initial correlation between the two transverse planes (e.g., 〈x′0y
′
0〉 = 0), we

find [6]

εy,1 =
1

2

σ′y0
2

k
(5.25)

and

εx,1/εy,1 = 1 + 4k
2 σ
2
x0

σ′x0
2 . (5.26)

The larger the value of k, i.e., the stronger the solenoid field, the flatter the
beam becomes.
First experimental tests of a flat beam electron source at Fermilab have

demonstrated the viability of this scheme [10]. A similar application, which
employs the inverse (flat-to-round) transformation, is the matching of a flat
electron beam to a round proton beam, e.g., for electron cooling [5].

Exercises

5.1 Solenoidal Focusing

Verify that the ratio of the beam divergence to its radius in an rf pho-
toinjector is given by (5.9).

5.2 Flat-Beam Transformer

a) Calculate the explicit form of the matrix M , (5.18), for μ = 2π, Δ =
−π/2, α = 0 and β = 1/k. See also the definition of A and B above (5.22).
b) Using the result, verify (5.25) and (5.26).




