
12 Solutions to Exercises

1.1 Beam Emittance in terms of Action Angle Variables

From (1.12) at a fixed location s we can write x =
√
2Ixβx cosφx, where

φx includes the initial phase φ0. We then have

εx =
〈x2(s)〉

βx(s)

=

∫
dφxdIx2Ix cos

2 φxρ(Ix, φx)

=

∫
dφxdIx2Ix cos

2 φxρ(Ix)
1

2π

=

∫
dIxIxρ(Ix) = 〈Ix〉 . (12.1)

1.2 Projected Beam Emittances

a) The beam matrix after the skew quadrupole is

Σxybeam =

⎛
⎜⎜⎝
βxεx0 0 0 Ksβxεx0
0 εx0/βx +K

2
s εy0βy Ksβyεy0 0

0 Ksβyεy0 βyεy0 0
Ksβxεx0 0 0 εy0/βy +K

2
s εx0βx

⎞
⎟⎟⎠ .
(12.2)

b) The projected emittances are

εx = εx0

√
1 + βxβyK2s

εy0
εx0
, (12.3)

εy = εy0

√
1 + βxβyK2s

εx0
εy0
. (12.4)

2.1 Schottky Signals

a) The spectrum corresponds to lines of equal amplitude spaced either by
2π/ωrev, in time domain, or by ωrev/(2π) in frequency domain.

b) Since 〈cosnωrev,kt〉t = 0, the average current is given by e
∑N
k=1 frev,k

≈ eNfrev, where frev is the average revolution frequency of the particles.
c) The time average of the mixed terms cos(nωrev,kt+φk) cos(nωrev,lt+φl)

with k �= l is zero. The only terms with nonzero average in (
∑
k ik)

2 are
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k=1〈cos

2(nωrev,kt + φk)〉t = N/2. After taking the square root, we obtain
the desired result.

2.2 Betatron Tunes

a) The synchrotron tune is about Qs = 0.125. (This is much higher than
typical for lower-energy storage rings.)
b) The horizontal betatron tune is about Qx = 0.266. The fact that the

tune moves to the right by increasing the horizontally focusing quadrupoles
shows that the tune lies between 0 and 0.5.
c) A particles would return to the same place in longitudinal phase space

after 1/Qs ≈ 8 turns, and to the same place in horizontal phase space after
about 4/Qx ≈ 15 turns.

2.3 Application of Multipole Field Expansion

a) For b2 �= 0 and an = 0 we have By = B0b2(x2−y2) and Bx = 2B0b2xy.
Assuming that the particle is relativistic and moves longitudinally at the
speed of light, the Lorentz force is Fx = −cqBy and Fy = cqBx, where q is
the particle charge.
b) Inserting a horizontal and vertical orbit offset, we find the aditional field

components ΔBy = 2B0b2(xcoxβ−ycoyβ) and ΔBx = 2B0b2(ycoxβ+xcoyβ).
It is easily verified that the field components proportional to xco have the
same dependence on xβ and yβ as one obtains for a normal quadrupole b1,
while those proportional to yco �= 0 equal those for a skew quadrupole a1.
c) If the dispersive contributions to the horizontal and vertical orbit (xδ =

Dxδ and yδ = Dyδ) are also included, the sextupole b2 produces additional
coupling terms Fy ∝ (xβDyδ + yβDxδ), and Fx ∝ (xβDxδ + yβDyδ).

2.4 Beta-Beat

a) The trace of the matrix product R = RQRRq is TrR = 2 cosφ0 −
β
f
sinφ0. This must also be equal to 2 cosφ, from which follows that

cosφ = cosφ0 −
β0
2f
sinφ0 . (12.5)

b) In Fig. 2.9, the maximum phase advance error ±Δφ is about ±5◦ or
±0.087 rad. The beta beat oscillates at twice the betatron frequency. The
design phase advance per arc cell is π/2. Thus, the length of an arc cell
corresponds to the distance between a location at which the phase equals
the (local) average value and the next maximum in Δφ. If the optics error is
not introduced in this region of the ring, the perturbed R12 optical transport

matrix element

√
β̂β0 sin(π/2 +Δφ) between these two locations is equal to

the design matrix element R12,0 = β0 sinπ/2 = β0. From this equality, we
can infer that

β̂

β0
=

sin2 π/2

sin2(π/2 +Δφ)
, (12.6)

or (β̂ − β0)/β0 ≈ 0.8%.
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2.5 Quadrupole with a Shorted Coil

a) The upper inboard coil is suspected of a short.
b) The faulted coil gives rise to an additional dipole-like deflection of

angle Δθ ≈ ΔBlq/(Bρ) = (ΔB/B)aK, where ΔB is proportional to the
field change ΔI through this coil. The deflection is measured a distance l
downstream at a BPM with resolution Δx. The relative change in the coil
current I can then be determined with a resolution of ΔI/I ∝ ΔB/B =
Δx/(Kla) ≈ 10−3.

2.6 Quadrupole Gradient Errors

a) The π bump is made from two correctors separated by a total betatron
phase advance of π. The first corrector applies a deflection of angle θ1. This
results in an offset Δx =

√
β1βq sinφ1q at the quadrupole, where β1 is the

beta function at the corrector, βq that at the quadrupole and φ1q the phase
advance from the corrector to the quadrupole. The second corrector at a lo-
cation with beta function β2 and a phase advance φq2 behind the quadrupole
gives rise to a deflection angle θ2:

θ2 = −θ1

√
β1
β2
(cosφ12 − α2 sinφ12) = θ1

√
β1
β2
. (12.7)

Since the two correctors are located exactly π apart there is no residual
oscillation.
b) The gradient error ΔK gives rise to an additional deflection Δθ =

ΔKΔx = ΔK
√
β1βq sinφ1qθ1, at the quadrupole, which translates into an

offset

Δx2 = Δθ
√
β2βq sinφq2 = ΔKβq

√
β2β1 sinφq2 sinφ1qθ1 (12.8)

at the location of the second corrector. Denoting the normalized residual
amplitude by A = Δx2/(

√
β2 sinφq2) and find

A = ΔK(βq
√
β1 sinφ1q)θ1 , (12.9)

which relates the measured leakage A to the gradient error ΔK.

2.7 Multiknobs

We compute or measure the 2 × 2 sensitivity matrix S relating the
strengths of the two quadrupole families (ΔK1 and ΔK2) and the changes
in the two tunes: (

ΔQx
ΔQy

)
=

(
S11 S12
S21 S22

)(
ΔK1
ΔK2

)
. (12.10)

Next, we invert the matrix S,(
ΔK1
ΔK2

)
=
1

detS

(
S22 −S12
−S21 S11

)(
ΔQx
ΔQy

)
. (12.11)

From this equation, we obtain the linear combinations of ΔK1 and ΔK2 for
which ΔQx �= 0 and ΔQy = 0, or vice versa.
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3.1 Design of an Orbit Feedback Loop

a) The two correctors are placed at two different locations upstream of
the BPMs. We design a feedback loop which adjusts the strength of the two
correctors so that the beam position is zero. Denoting the beam positions
measured at the two BPMs without feedback correction by x1 and x2, the
equations for the feedback loop are

x1 + Ck1,1θ1 + Ck2,1θ2 = 0 , (12.12)

x2 + Ck1,2θ1 + Ck2,2θ2 = 0 , (12.13)

where θ1 and θ2 are the deflection angles applied by the two correctors, and
the coefficients

Cki,j =
√
βkiβj sinφki,j for i, j = 1, 2 , (12.14)

are the (1,2) transfer matrix elements between the ith corrector and the jth
BPM, and φki,j the associated betatron phase advance. Combining (12.12)
and (12.13) and solving for either θ1 or θ2, we obtain

θ2 =
Ck1,2x1 − Ck1,1x2

Ck2,1,Ck1,2 − Ck2,2Ck1,1
(12.15)

=
1
√
βk2

x1 sinφk1,2/
√
β1 − x2 sinφk1,1/

√
β2

sinφk2,1 sinφk1,2 − sinφk2,2 sinφk1,1
, (12.16)

θ1 =
Ck2,2x1 − Ck2,1x2

Ck1,1,Ck2,2 − Ck1,2Ck2,1
(12.17)

=
1
√
βk1

x1 sinφk2,2/
√
β1 − x2 sinφk2,1/

√
β2

sinφk1,1 sinφk2,2 − sinφk1,2 sinφk2,1
. (12.18)

The phase advances between the correctors and the BPMs should not be all
equal to 0 or π. In particular, sinφki,1 and sinφki,2 should not be both equal
to 0, for i = 1 or 2, and sinφk1,j and sinφk2,j shoud not be both equal to
zero, as otherwise neither corrector would affect the orbit reading at BPM j.
Moreover, the ratios of coefficients Ck1,2/Ck1,1 and Ck2,2/Ck2,1 should not be
equal, to avoid a degeneracy and an identical effect of the two correctors. Note
that in the extreme case of Ck1,2 = 0 and Ck2,1 = 0, corrector 1 only interacts
with BPM 1 and corrector 2 only with BPM 2. The beta functions should be
large at the correctors, which minimizes the corrector strength required, and
they should also large at the BPMs, which maximizes the sensitivity to orbit
changes.
b) In the case of a storage ring, (12.15) and (12.17) still apply, but the

coefficients Cki,j now follow from the formula for the closed-orbit distortion
(2.34):

Cki,j =

√
βkiβj cos(|φki,j | − πQx)

2 sinπQx
for i, j = 1, 2 , (12.19)
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where Q is the betatron tune, and φki,j as before denotes the betatron phase
advance from corrector i to BPM j. The dependence on the beta functions is
the same as for a transport line, but the optimum phase advance between the
correctors and BPMs now depends on the betatron tune. Again, the ratios
of the coefficients Ck1,2/Ck1,1 and Ck2,2/Ck2,1 should be different, to avoid
degeneracy.

3.2 Linac Dispersion and Orbit Correction

a) Equation (3.48) describes a harmonic oscillator. The solution is [1]

x1(s) =
θ

kβ
√
1 + δ1

sin
kβs√
1 + δ1

≈
θ

kβ
√
1 + δ1

[
sin kβs−

1

2
kβsδ1 cos kβs

]
(12.20)

or

x1(s) ≈
θ

kβ
sin kβs−

1

2

[
θs cos kβs+

θ

kβ
sin kβs

]
δ1 +O(δ

2
1) . (12.21)

From the term linear in δ1 we infer the dispersion at the bunch head,

D1(s) = −
1

2

[
θs cos kβs+

θ

kβ
sin kβs

]
. (12.22)

The solution is illustrated in Fig. 12.1. The linear increase with s reflects that
the dispersion is resonantly driven [1].

Fig. 12.1. Trajectory oscillation, x1kβ/θ for δ1 = 0, and resonantly growing dis-
persion at the bunch head, D1kβ/θ, induced by a deflection at s = 0, according to
(12.21) and (12.22)

b) The dispersion generated by a single kick at s = 0, D1(s), was com-
puted in (12.22). The dispersion generated by the second kick is obtained by
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simply shifting the argument by s2, i.e., it is given by D1(s − π/kβ). The
dispersion arising from the π bump is then the sum of the terms generated
by the two kicks [1]:

Dπ = D1(s) +D1(s− π/kβ) = −
θπ

2kβ
cos kβs . (12.23)

The solution is illustrated in Fig. 12.2. While the orbit after the π bump is
zero, the dispersion propagates at a constant amplitude. A perfectly centered
orbit in the downstream linac section does not imply that the dispersion is
zero as well.

Fig. 12.2. Trajectory perturbation, xπkβ/θ, and subsequent constant dispersion,
Dπkβ/θ, induced by a π bump, according to (12.23)

4.1 Beta Mismatch

From (1.15), the action variable of a particle with respect to the matched
design optics (subindex ‘D’) is

I =
x2 + (βDx

′ + αDx)
2

2βD
. (12.24)

After filamentation and phase randomization the average action is equal to
the rms emittance (see (1.14)), i.e., ε = 〈I〉f = 〈x2〉f/βD where the subindex f
refers to averaging after filamentation. In a linear system I is conserved, and,
hence, its initial average value 〈I〉 does not change, or 〈I〉 = 〈I〉f . Averaging
I over the initial distribution and using the relations 〈x2〉 = βε0, 〈x′

2〉 = γε0,
and 〈xx′〉 = −αε0, we then obtain the final emittance

ε = 〈I〉 =
γDβ − 2αDα+ βDγ

2
ε0 = Bmagε0 . (12.25)
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4.2 Propagation of Twiss Parameters

Let the initial phase-space ellipse be

γ0x(0)
2 + 2α0x(0)x

′(0) + β0x
′(0)

2
= ε . (12.26)

In this case ε is not the rms beam emittance, but it describes the phase-space
area enclosed by the ellipse. Except for a factor 2 this area is equal to the
action variable of a particle located on the ellipse, and, in particular, it is a
conserved quantity under linear beam transport.
We can evaluate the phase space ellipse at a later location s, namely

γsx(s)
2 + 2αsx(s)x

′(s) + βsx
′(s)

2
= ε . (12.27)

Now the trick is to express the initial parameters x(0)2, x(0)x′(0), and x′(0)2

in terms of the final quantities x(s)2, x(s)x′(s), and x′(s)2 using the inverse
transport matrix between the two locations:

x(0)2 = S′
2
x(s)2 − 2S′Sx(s)x′(s) + S2x′(s)2

x(0)x′(0) = −S′C′x(s)2 − SCx′(s)2 − (SC + S′C′)x(s)x′(s)

x′(0)2 = C′
2
x(s)2 − 2C′Cx′(s)x′(s) + S2x′(s)2 .

Inserting the last expressions into (12.26), expanding the products, and com-
paring coefficients of x20, x0x

′(0), and x′(0)2 with those in (12.27), we arrive
at the desired result:⎛

⎝ γsαs
βs

⎞
⎠ =

⎛
⎝ S2 −2S′C′ C′

2

−SS′ SC′ + S′C −CC′

S2 −2SC C2

⎞
⎠
⎛
⎝ γ0α0
β0

⎞
⎠ . (12.28)

4.3 Static and Dynamic change of Partition Numbers

a) We apply (4.82)

ΔD ≈ −

(∑
q

k2qDx,qLq

)
2ρ2

C
Δxmag , (12.29)

which gives ΔD = −0.16 (16% change) for Δxmag = 1.5 mm.
b) From (4.83) we estimate the equivalent change in the rf frequency as

Δfrf ≈ frf
2πΔxmag

C
, (12.30)

and obtain Δfrf ≈ 192 kHz.
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4.4 Effect of Wiggler on Equilibrium Emittance

Rewriting (4.103) und using θw = λp/(ρw2π), we have

γεx,w ≈
16

30π

Cqβx
ρw
γ3θ2w (12.31)

=
16

30π

Cqβx
ρ3w
γ3
λ2p
(2π)2

≈ 3.3× 10−16 m4
γ3B3w
(Bρ)3

≈ 4.2 μm ,

where (Bρ) is the magnetic rigidity. The normalized emittance is independent
of the beam energy. Applying (4.105),

τx,w ≈
2ρ2w
CdJxE3

, (12.32)

with Cd ≈ 2.1 × 103 m2GeV−3s−1 and Jx = 1, yields a damping time of
670 μs at 1 GeV and about 130 μs at 5 GeV.
The normalized emittance is about the same as in a typical damping ring

design for a future linear collider, but the damping time is 5–20 times shorter.

4.5 BNS Damping at the SLC

From (4.112), we have ξ ≈ −1.27. Combining the generalization of (4.110)
to accelerated beams and (4.111) yields

δBNS =
Nbreβ

2W1(z)

4Lξ

ln(γf/γi)

γf
, (12.33)

where γf and γi refer to the final and initial beam energy, respectively. In-
serting numbers, we find δBNS ≈ −0.1, or a 10% energy spread across the
bunch.

5.1 Solenoidal Focusing

The phase-space coordinates after the distance zf are

r′(zf ) = Λzf (12.34)

r(zf ) =
1

2
Λz2f + r0 , (12.35)

where, for simplicitiy, we have dropped the arguments ρ and ξ of r, r′ and Λ.
After passing through the lens of focal length f and traversing a further
distance zd, we have

r′(zf + zd) = Λzf −
1

f

(
1

2
Λz2f + r0

)
+ Λzd (12.36)

r(zf ) =
1

2
Λz2f + r0 + zdzfΛ

−
1

f
zd

(
1

2
Λz2f + r0

)
+
1

2
Λz2d . (12.37)
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Inserting f = z2d/(2(zf + zd)) and rearranging terms gives

r′(zf + zd) =
2(zf + zd)

z2d

[
−
1

2
Λzf

(
zf −

z2d
zf

)
− r0

]
(12.38)

r(zf + zd) =

(
1 + 2

zf
zd

)[
−
1

2
Λzf

(
zf −

z2d
zf

)
− r0

]
. (12.39)

Dividing (12.38) by (12.39) yields the desired result.

5.2 Flat-Beam Transformer

a) For μ = 2π, Δ = −π/2, and α = 0, the matrices A and B are

A = I cos 2π + J sin 2π = I (12.40)

B = I cos(3π/2) + J sin(3π/2) = −J (12.41)

The matrix M in (5.18) becomes

M =
1

2

⎛
⎜⎜⎝
1 −β 1 β
1/β 1 −1/β 1
1 β 1 −β
−1/β 1 1/β 1

⎞
⎟⎟⎠ =M = 12

⎛
⎜⎜⎝
1 −1/k 1 1/k
k 1 −k 1
1 1/k 1 −1/k
−k 1 k 1

⎞
⎟⎟⎠ ,
(12.42)

where we have used β = 1/k.
b) Multiplying the matrix M and the vector (5.24), we obtain the final

coordinates⎛
⎜⎜⎝
x
x′

y
y′

⎞
⎟⎟⎠
1

=
1

2

⎛
⎜⎜⎝
1 −1/k 1 1/k
k 1 −k 1
1 1/k 1 −1/k
−k 1 k 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x0
−ky0 + x′0
y0

kx0 + y
′
0

⎞
⎟⎟⎠ . (12.43)

The equations for y1 and y
′
1 are

y1 =
1

2k
(x′0 − y

′
0) (12.44)

y′1 =
1

2
(x′0 + y

′
0) , (12.45)

from which we obtain the second moments

〈y21〉 =
1

4k2

(
σ′
2
x0 + σ

′2
y0

)
(12.46)

〈y1y
′
1〉 =

1

4

(
σ′
2
x0 − σ

′2
y0

)
= 0 (12.47)

〈y′
2
1〉 =

1

4

(
σ′
2
x0 + σ

′2
y0

)
. (12.48)
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The final vertical rms emittance is

εy,1 =

√
〈y21〉〈y

′2
1〉 − 〈y1y

′
1〉
2 =
σ′
2
y0

2k
, (12.49)

which demonstrates (5.25). The equations for x1 and x
′
1 are

x1 = x0 + y0 −
x′0
2k
+
y′0
2k

(12.50)

x′1 = k(x0 − y0) +
1

2
(x′0 + y

′
0) . (12.51)

In this case, the second moments are

〈x21〉 = 2σ2x0 +
σ′
2
x0

2k2
(12.52)

〈x1x
′
1〉 = 0 (12.53)

〈x′
2
1〉 = 2k

2σ2x0 +
1

2
σ′
2
x0 . (12.54)

The final horizontal rms emittance is

εx,1 =

√
〈x21〉〈x

′2
1〉 − 〈x1x

′
1〉2

=

√
4k2σ2x0 + 2σ

2
x0σ

′2
x0 +

1

4
σ′4x0

1

k2

=
√
4k2σx04 + 4kεy,1σ2x + ε

2
y,1

= 2kσ2x0 + εy,1 . (12.55)

The last equation can also be written as

εx,1
εy,1
= 1 +

4k2σ2x0
σ′2x0

, (12.56)

which confirms (5.26).

6.1 Scattering off Thermal Photons

a) The beam lifetime due to scattering off thermal photons is

τ ≈
1

ργcσT
, (12.57)

where ργ ≈ 5× 1014 m−3 denotes the photon density at 300 K, c the speed
of light, and σT ≈ 0.67 barn the Thomson cross section. This yields a beam
lifetime of 28 hr.
b) The photon density varies with the third power of the temperature. If

the vacuum chamber is cooled to 4 K, the beam lifetime increases to about
1400 years.
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c) The number of particles lost per train is

ΔN = LσTργN , (12.58)

where L is the length of the linac, ργ the photon density, and N the total
number of particles. Inserting numbers, for a chamber temperature of 300 K
we find ΔN ≈ 335 lost particles.

7.1 Review of Fourier Transformations and an Application

a) For simplicity we initially set Δt = 0. The Fourier spectrum of the
current signal is

I(ω) =
1

2π

∫ ∞
−∞
i(t)e−iωtdt (12.59)

=
Q

2π

∫ ∞
−∞

∞∑
n=−∞

[
δ [t− nT − τa cos(ωsnT )] e

−iωt

+ δ

[
t− nT −

T

2
− τa cos(ωsnT + φ)

]
e−iωtdt.

Application of the given property of Delta-functions yields

I(ω) =
Q

2π

∞∑
n=−∞

e−iω[nT+τa cos(ωsnT )]

+
Q

2π

∞∑
n=−∞

e−iω[nT+
T
2 +τa cos(ωsnT+φ)] . (12.60)

Using the Bessel function sum rule,

I(ω) =
Q

2π

∞∑
n,k=−∞

e−iωnT (−i)kJk(τaω)e
ikωsnT

+
Q

2π

∞∑
n,k=−∞

e−iω(nT+
T
2 )(−i)kJk(τaω)e

ik(ωsnT+φ) . (12.61)

With ωrT = 2π, this becomes

I(ω) =
Q

2π

∞∑
n,k=−∞

e−i2πn(
ω−kωs
ωr
)(−i)kJk(τaω)

[
1 + e−i(

πω
ωr
−kφ)
]
, (12.62)

and using the Poisson sum rule, it further simplifies to

I(ω) = Qωr

∞∑
n,k=−∞

(−i)kJk(τaω)
[
1 + e−i(π

ω
ωr
−kφ)
]
δ(ω − nωr − kωs) .

(12.63)
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This expression shows that the spectrum contains the usual rotation har-
monics (k = 0), and synchrotron sidebands (k �= 0) where the height of the
sidebands is given by the Bessel function of appropriate order k.
b) Dipole-mode oscillations correspond to k = ±1. Consider the phase

factor, given in square brackets in (12.63), and the spectrum of sidebands
with k = 1, [

1 + e−i(π
ω
ωr
−φ)
]
, (12.64)

which is to be evaluated at ω = nωr ± ωs. Assuming that Tωs  1, we can
neglect the imaginary part of this expression, and for the in-phase oscillations
(φ = 0) the real part of the phase factor approximately becomes

1 + cosnπ ≈

{
2 for even n
0 for odd n

, (12.65)

while for the out-of-phase oscillations (φ = π),

1 + cosnπ ≈

{
0 for even n
2 for odd n

. (12.66)

Therefore, one can determine experimentally which of the two normal modes
dominates by determining whether the sidebands are located around the even
or odd revolution harmonics. The same results apply for k = −1.
c) Considering now unequal bunch spacings (Δt �= 0), the phase factors

become

1 + cosnπ cosnωrΔt for φ = 0 (12.67)

1 − cosnπ cosnωrΔt for φ = π . (12.68)

The location of a π-mode sideband for unequally spaced bunches may coincide
with the location of a 0-mode sideband for equally spaced bunches, namely
if

1− cosnπ cosnωrΔt = 1 + cosnπ . (12.69)

This condition is satisfied for

Δt =
T

2n
. (12.70)

The SLC had two damping rings one with equally spaced bunches and the
other with unequally spaced bunches (the bunches in this case were sepa-
rated by 40 buckets and 44 buckets with harmonic number 84). To achieve
a common design of “π-mode” cavity for both rings a compromise was made
in selecting the cavity resonance frequency such that each ring had partial
(though not fully efficient) damping of the π-modes.

7.2 Adjusting the Incoming Beam Energy

If the energy of the injected beam is not correct, it will undergo syn-
chrotron oscillations. Let us assume that the initial relative momentum de-
viation is δ. The maximum change in the beam energy with respect to the
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incoming energy occurs after half a synchrotron period, when the relative
momentum error is −δ. The orbit difference at a location with dispersion Dx
is Δx = −2Dxδ. Minimizing the difference orbit measured at this time with
respect to the first turn corrects the energy of the injected beam.
If the ‘matched’ energy around which the injected beam oscillates does

not coincide with a centered closed orbit, one may first have to adjust the
ring rf frequency and, for protons or ions, the bending field, such that the
equilibrium orbit in the ring is centered and corresponds to the correct energy.
Afterwards one can then apply the procedure described above in order to
adjust the injected beam energy.
If a longitudinal ‘phase’ monitor is available, another solution, for any type

of beam, is to minimize the phase error measured after a quarter synchrotron
period.

7.3 Resonant Depolarization

We can express the relative energy error as

ΔE

E
= β2

Δp

p
= β2

1

αc

ΔC

C
, (12.71)

where β is the beam velocity in units of the speed of light (and not the beta
function), αc the momentum compaction factor, and C the ring circumfer-
ence.

7.4 Approximate Expression for the Momentum Compaction
Factor

a) We insert the approximate formula for the average dispersion into the
definition of the momentum compaction factor, (7.22), and get

αc =
1

C

∮
Dx(s)

ρ(s)
ds ≈

1

C

∮
〈βx〉

Qxρ(s)
ds

≈
1

C

〈βx〉

Qx

C

ρ
=
〈βx〉

ρ

1

Qx
≈
1

Q2x
, (12.72)

where in the last step we have used Qx =
∮
ds/β/(2π) ≈ ρ/〈βx〉. As an

example, assuming Qx = 50, we estimate that αc ≈ 1/Q2x ≈ 4× 10
−4.

b) A corresponding expression for the transition energy γt is easily ob-
tained:

γt =
1
√
αc
= Qx . (12.73)

7.5 Achieving Design Parameters in the Presence of Unknowns

A possible set up is the following. The rf frequency ωrf is known, and
first set so as to horizontally center the beam at the beam position monitors
in the steady state after a few radiation damping times. The rf frequency
determines the revolution time. Since the electron beam moves at the speed
of light, also the ring circumference is now determined.
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The energy of the injected beam is set to the design value, and the mag-
netic field of the ring is adjusted until one observes no horizontal orbit vari-
ation at dispersive locations, or no longitudinal phase motion, due to syn-
chrotron oscillations after injection. This might also require an adjustment
of the rf phase, in order to avoid synchrotron oscillations due to injection
phase errors, in addition to those from magnetic field errors. (The two types
of errors can also be distinguished from the phase of the oscillation.)
Note that one possibility of measuring the energy of the injected beam is

to monitor the orbit in a dispersive region of the injection transfer line, and
its dependence on known step changes in the beam energy, e.g., generated by
phasing a klystron.
The problem could be simplified, if additional information on the beam

energy in the ring is available, e.g., by resonant depolarization or by a reaction
with a target for which the cross section is sensitive to the energy.

7.6 Chromatic Phase Advance1

a) Keeping only terms up to order δ, with x = xβ+Dxη and y = yβ+Dyη
with Dy = 0, (7.45) gives

xβ
′′ + kxβ = kxβδ −mDxxβδ −

m

2
(xβ

2 − yβ
2) ,

yβ
′′ − kyβ = −kyβδ +mDxyβδ +mxβyβ . (12.74)

Keeping only the energy-dependent terms,

xβ
′′ + kxβ = (k −mDx)xβδ

yβ
′′ − kyβ = −(k −mDx)yβδ . (12.75)

b) In the present case, the horizontal focusing error for an off-energy
particle is

Δkx(s) = −(k −mDx)δ . (12.76)

In the vertical plane, the focusing error is of opposite sign, Δky(s) =
−Δkx(s). Inserting this into

ΔQ =
1

4π

∫ s+C
s

β(s)Δk(s)ds , (12.77)

and noting that Δφ = ΔQ2π, we immediately have

Δφx = −
δ

2

s+C∫
s

βx(k −mDx)ds ,

Δφy =
δ

2

s+C∫
s

βy(k −mDx)ds . (12.78)

1 adapted from [31]
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c) Using the definition of the chromaticity

Q′x,y =
ΔQ

δ
=
Δφx,y
2πδ

, (12.79)

and the expressions for Δφx,y derived in b), we obtain

Q′x = −
1

4π

∫
βx(k −mDx)ds ,

Q′y =
1

4π

∫
βy(k −mDx)ds . (12.80)

8.1 Phase Tolerances in a Bunch Compressor

From (8.8) we have

∂φ3
∂φ1

= 1 +R56
ωrf
c

eV

E
. (12.81)

The error in the final phase ∂φ3 as a function of error in the injection phase
∂φ1 therefore depends linearly on the compressor voltage. Minimum sensi-
tivity is achieved for ∂φ3

∂φ1
= 0 or V = 33.4 MV.

8.2 Bunch Precompression

a) We assume that the bunch length is small compared to the wavelength
of the accelerating rf. The bunch centroid is initially (t < t0) at the center
of phase space (δ = 0, φ = 0) and the phase space trajectories are elliptical
centered about the bunch centroid with amplitude given by the voltage V0.
During the time t0 < t < t1 =

τs,l
8 the cavity voltage is lowered to 0.75 V0.

This introduces a shift in synchronous phase and the bunch centroid executes
1/8 of a synchrotron oscillation centered about the new synchronous phase.
After the voltage is restored to V0, during the time (t1 < t < t2 =

τs,h
4 ), the

bunch executes oscillations about the original synchronous phase angle. If no
other changes were made, then both the first and second moments (mean
phase and bunch length) of the particle distribution would subsequently vary
in time. Application of a second step change in voltage to 0.75 V0 for a time
t2 < t < t3 =

τs,l
8 shifts again the rf bucket and the bunch oscillates again

around the new synchronous phase for 1/8 of a synchrotron period. With a
perfectly linear rf system as assumed, the bunch centroid would return to
δ = 0 and φ = 0 as initially, and would remain there indefinitely.
b) With a finite bunch length, the distribution of particles at t3 is mis-

matched in the original phase space. The different particles have therefore
different trajectories in longitudinal phase space. Since the synchrotron tune
is approximately the same for all particles, by waiting an appropriate time,
eventually (within a fraction of a synchrotron period) the particles will be
aligned vertically in phase space with a significantly smaller bunch length,
but with an increase in energy variation between particles. In this example
with a two step changes in the applied voltage, the first moment is restored
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while the second moment varies in time; the bunch rotates in phase space
with the centroid position at δ = 0 and φ = 0.
Bunch precompression was used in the SLC damping rings to decrease

the particle losses in the extraction line prior to injection into the main linac.
By decreasing the bunch length at extraction, the energy variation along the
bunch introduced by a downstream compressor was reduced. This in turn
translated to a smaller dispersive beam size in the transport line which had
a restricted horizontal aperture. A slightly different type of bunch precom-
pression is also used at DESY in the PETRA accelerator, in order to reduce
the bunch length at extraction for injection into the HERA accelerator for
better capture efficiency. Here, two step changes are applied to the rf phase.
The first shifts the rf phase by π, which places the beam distribution next
to the unstable fixed point. The ensuing slow motion of particles along the
separatrices translates into a mismatch, when the second step change moves
the phase back to the original position.

8.3 Harmonic Cavities

a) From eV (0) = U , dV (t)/dt|t=0 = 0, and d2V (t)/dt2|t=0 = 0, we
obtain

sinφ1 + k cosnφn =
U

eV̂
(12.82)

cosφ1 + kn cosnφn = 0 (12.83)

sinφ1 + kn
2 cosnφn = 0 . (12.84)

Combining the last two equations yields

tannφn =
tanφ1
n
, (12.85)

or

sinnφn =
tanφ1√
n2 + tan2 φ1

, (12.86)

and

k = −
cosφ1
n cosnφn

. (12.87)

Inserting these relations into (12.82), we get

sinφ1 =
n2

n2 − 1

U

eV̂
, (12.88)
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so that (12.86) becomes

tannφn =
nU/(eV̂ )√

(n2 − 1)2 − (n2U/(eV̂ ))2
. (12.89)

Finally, using this result in (12.87) we obtain for the square of the relative
voltage amplitude

k2 =
1

n2
−

n2

(n2 − 1)2

(
U

eV̂

)2
. (12.90)

b) As the ratio of radiative losses to primary rf voltage varies from zero
(proton beam limit) to slightly less than one, the phase φ1 changes from 0
to almost π/2, whereas the optimum phase φn much more slowly increases
from −π towards −π/2.

8.4 Minimum Voltage Required for Beam Storage

a) The total radiated power for 1011 particles is 16.9 kW.
b) The energy lost per turn is 44.3 keV. Thus, at 44.3 kV voltage the

beam could no longer be captured. The synchronous phase at this voltage is
π/2 measured with respect to the zero crossing.
c) Lowering the cavity voltage limits the maximum beam energy and may

also reduce the number of particles that can be captured. Note that a large
change in voltage is required in order to significantly vary the bunch length.
On the other hand, the use of harmonic cavities does not affect the available
capture voltage.

8.5 Phase Shift along a Bunch Train

During the passage of the bunch train, the additional voltage Vbeam = ZIb
is applied to the cavity, where Z is the impedance, and Ib = 2Idc is the beam
current at the rf frequency. The cavity response is

ΔV = Vbeam

(
1− e

−
ttrain
τf

)
≈ Vbeamttrain/τf , (12.91)

where the cavity fill time is 2 μs. The beam induced voltage is Vbeam = 5 MV.
The change in the cavity voltage along the bunch train amounts to ΔV =
775 kV. The synchronous phase shift along the train can be estimated as

Δφ ≈
ΔV

V
≈ 0.0775 rad = 4.4 deg . (12.92)

9.1 Septum Fields for Injection and Extraction

The beam separation at the septum can be written as

xsep =
√
βkicβsep sinμ θkic , (12.93)
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where the kick angle is

θkic =
BkicLkic
(Bρ)

, (12.94)

with (Bρ) the magnetic rigidity, Lkic the length of the kicker, and Bkic the
kicker field. We should fulfill

xsep > nsσx = nsep

√
βsep
εx,N
γ

(12.95)

Inserting (12.93) and solving for Bkic we find

Bkic =
ns(Bρ)

√
εx,N/γ

√
βkicLkic sinμ

. (12.96)

Finally using (Bρ) ≈ 3.356Tm E/GeV and γ ≈ E/GeV we estimate

Bkic ≈ 3.356Tm
ns
√
εx,N

√
βkicLkic sinμ

√
E

GeV
. (12.97)

Assuming ns = 10, βkic = 100 m, μ = π/2, Lkic = 5 m, and εx,N = 4 μm,
the magnetic field Bkic required at a beam energy of 10 GeV and at 10 TeV
is 4.3 mT and 0.134 T, respectively.

9.2 Emittance Dilutions due to Injection Errors

a) We estimate the emittance resulting from an injection error x0 after
filamentation as

εx ≈
x20
2βx
. (12.98)

For x0 = 1 mm and βx = 100 m, this gives εx ≈ 5 nm. The corresponding
normalized emittances for various particles and energies are listed in the
following table, along with the typical design emittances.

10 GeV 1 TeV Design norm. emittance
p 55 nm 5.5 μm 3.75 μm
μ 473 nm 47 μm 50 μm
e 98 μm 9.8 mm 3 nm

Obviously, the emittance dilution becomes more severe at higher energies.
b) The rms beam size at βx = 100 m is 224 μm for a 7-TeV proton beam

(LHC), 554 nm for a 500-GeV electron beam (NLC), and 514 μm for a 2-TeV
muon beam (MC).

9.3 Filamentation

The filamented ‘point bunch’ occupies a circle in phase space. Using x =
r cosφ and φ = arccos(x/r) the projected density is

dN

dx
=
dN

dφ

dφ

dx
. (12.99)
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Now dN/dφ = 2/(2π) = 1/π, and dφ/dx = 1/
√
r2 − x2, so that the pro-

jected density becomes
dN

dx
=

1

π
√
r2 − x2

. (12.100)

9.4 Particle Impact for Slow Extraction

The change in the action variable over three turns is

ΔI =
∂H

∂ψ
6π =

3

8
(2I)3/2|K̃s| cos(3ψ + θ0)2π . (12.101)

On the resonance near the unstable fixed point, but with an asymptotic
angle for large amplitudes of ψ ≈ ±π/6 instead of 0, the cosine factor is
approximately constant, equal to 1.
Considering only every 3rd turn, the amplitude at the septum is

xsep =
√
2βsepI cosψ ≈

√
2βsepI , (12.102)

where we have roughly approximated cosπ/6 ≈ 1. The change in amplitude
at the septum over three turns becomes

Δxsep ≈

√
βsep
2I
ΔIsep , (12.103)

which, after inserting (12.101) and (12.102), becomes

Δxsep =
3π

4
(2I)|K̃s|

√
βsep =

3π

4

x2sep

β
1/2
sep

|K̃s| . (12.104)

9.5 Crystal Channeling

From (9.23), the critical radius is

Rc ≈ 0.4m p[TeV/c] . (12.105)

This translates into a maximum bending angle over the length l of

θ ≤
l

Rc
, (12.106)

which for l = 3 cm at 7 TeV/c amounts to θ ≤ 11 mrad.

10.1 Electrostatic Lenses and Muon Storage Rings

If γ =
√
1 + 1

aμ
, we have (γ2− 1) = 1/aμ, and the coefficient multiplying

the electric field in the equation for the spin precession is zero:(
aμγ −

γ

γ2 − 1

)
= (aμγ − aμγ) = 0 . (12.107)
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10.2 Spinors

a) Letting

Ψ =

(
a
b

)
Ψ† = (a∗, b∗) , (12.108)

where a and b are to be determined,

Ψ†σxΨ = a
∗b+ b∗a

Ψ†σsΨ = −ia
∗b+ ib∗a

Ψ†σyΨ = |a|
2 − |b|2 . (12.109)

Setting these equal to the spin basis vector of interest and using the normal-
ization |Ψ |2 = 1,

Ψx =
1
√
2

(
1
1

)

Ψs =
1
√
2

(
1
i

)

Ψy =

(
1
0

)
. (12.110)

b) For example,

σsσ
†
s =

(
0 −i
i 0

)(
0 i
−i 0

)t
=

(
1 0
0 1

)
= I , (12.111)

where σ†s = σs is obvious.
c) For example, with equal indices,

σsσs = δssI + iΣmεssmσm = I , (12.112)

since δss = 1 and εssm = 0 for all m. Squaring σs gives the same result.
With unequal indices, for example,

σyσs = δysI + iΣmεysmσm
= i(εysxσx + εyssσs + εysyσy)
= iεysxσx = −iσx , (12.113)

and εysx = −1. Direct multiplication of σyσs gives the same result.

10.3 Spin Precession in Solenoidal Fields

a) From (10.2) and (10.7),

Ω = −
e

γm
(1 +G)Bz , (12.114)
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With B = Bz ŝ, β = βŝ, and E = 0, and a solenoidal field of length l,

φ = Ωt = −
e

γmc

l

β
(1 +G)Bz . (12.115)

b) The Lorentz force acting on the particle is FL = eβcB and the cen-
trifugal force Fc = mγc

2β2/ρ. The combination gives

Bρ =
βE

ec
=
βγmc

e
. (12.116)

Direct substitution in (12.115) yields

φ = −
Bzl

Bρ
(1 +G) . (12.117)

c) With T = 100 MeV, we obtain p = 444 MeV/c and Bρ = 444/299.8 =
1.48 T-m. So the required integrated field strength is Bzl = 1.66 T-m.

10.4 Periodic Spin Motion

From (10.24) and the definition of the directional cosines,

M = e−iπνs(σ·n̂0) = I2 cosπνs − i(σ · n̂0) sinπνs
= I2 cosπνs − i(σx cosαx+σs cosαs+σy cosαy) sinπνs. (12.118)

Substituting the Pauli matrices gives the result directly.

10.5 SLC ‘3-state experiment’

Since the spin transport through the arcs is a pure precession, the po-
larization vector is simply rotated. In particular, using the inverse transfor-
mation we can back-propagate the direction of longitudinal polarization at
the collision point to the coordinate system of the incoming beam. Using
spherical coordinates, we may express the orientation of the back-propagated
polarization vector at the injection point as

P = PIP(sinφ sin θ, cosφ sin θ, cos θ) . (12.119)

Now, measuring the longitudinal polarization at the IP for the three initial
states

P 1 = (1, 0, 0)

P 2 = (0, 1, 0)

P 3 = (0, 0, 1) (12.120)

determines the three components of S in (12.119). Now the magnitude of the
polarization vector at the IP is simply the sum in quadrature of the three
values measured:

||PIP|| =
√
(P 1 · P IP)2 + (P 2 · P IP)2 + (P 3 · P IP)2 . (12.121)
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At the SLC, this 3-state experiment was applied regularly, e.g., every few
months, in order to monitor the IP polarization and to optimize the orien-
tation of the spin vector at the collision point. The initial direction of the
polarization was varied by means of solenoidal spin rotators located in the
transfer line between the electron damping ring and the SLC linac.

10.6 Type-3 Snakes

a) With regard to the orbit, the sum of the horizontal and vertical de-
flections is zero. With the beam momentum purely longitudinal, there is no
deflection due to the longitudinal fields. The type-3 snake is therefore opti-
cally transparent with respect to the angle (though in this example, a net
offset is introduced). The spin matrices, however, do not commute. The ma-
trix product is(

ei
φ
4 σxe−i

χ
4 σse−i

φ
4 σx
)
ei
χ
4 σs
(
ei
φ
4 σxe−i

χ
4 σse−i

φ
4 σx
)
, (12.122)

where σx and σy are the Pauli matrices. This product can be evaluated using
the expansion (12.118) and matrix multiplication. For the given case, the
product of the spin matrices is different from unity, if neither χ nor φ equal
0 or 2π.
b) The horizontal orbit and the spin orientations for the case φ = χ = π

are shown in Fig. 12.3.

Fig. 12.3. Horizontal orbit and spin
orientation along the beam line of
Ex. 10.6 with φ = χ = π

This example is derived from experience at the IUCF cooler ring. There,
the longitudinal fields were provided by the main cooling solenoid together
with the compensating solenoids (1 on each side of the cooling region). The
orbital displacements and dipolar deflections arose from the bending fields
used to align the proton beam with the cooling electrons.

11.1 Longitudinal Damping Rate with Beam Cooling

The centroid motion is characterized by the centroid momentum P =
(p1 + p2)/2, which fulfills the equation

dP

dt
=
1

2

d(p1 + p2)

dt
= −λ(p1 + p2) = −2λP . (12.123)

From this we obtain the damping rate

1

τP
=
1

P

dP

dt
= −2λ . (12.124)
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Since there are only two particles, we can define the momentum spread as
the difference between the two particle momenta: pspr = p1 − p2. The time
derivative of pspr is

dpspr
dt
=
d(p1 − p2)

dt
= −λ(p1 − p2) = 0 . (12.125)

Hence, the momentum spread is unchanged by the cooling.

11.2 Temperature of a Cooled Beam

a) We have

Tx =
〈p2x〉

kBm
=
(mcβγx′)2

kBm

=
c2mεx,Nβγ

kBβx
(12.126)

T|| =
〈Δp2||〉

kBm
=

mc2
〈
Δp2||
(mc)2

〉
kB

=
mc2β2

〈
Δp2lab
(γβmc)2

〉
kB

=
mc2β2

〈
Δp2lab
p2
lab

〉
kB

=
mc2β2σ2p
kB

, (12.127)

where we have related the momentum deviation in the beam frame and in
the laboratory frame via Δplab = γΔp||.
b) The velocity and energy of the proton beam follow from βγ = 0.7 or

β = 0.57. The horizontal temperature is kBTx = 32.8 eV (Tx = 404 kK); the
longitudinal temperature kBT|| = 309 eV (T|| = 3.8 MK).
The transverse temperature of the electron beam is Tx = 1230 K (kBTx =

0.1 eV). For the longitudinal plane, we use the relationΔp/p = (1/β2)ΔE/E;
The energy difference ΔE between particles is unchanged by the acceleration,
so that 〈ΔE〉 = kBT c/2. Further assuming a Gaussian distributions for the
momenta, one can show that 〈(ΔE)2〉 = 4〈ΔE〉2 = (kBT c)2. Combining
these relations and the definition of T||, we find

T‖ =
(kBT

c)2

β2γ2mc2
. (12.128)

For 100 kV accelerating voltage, we have γ ≈ 1.2, β ≈ 0.55, and T‖ ≈
4 × 10−8 eV. Thus, after acceleration the longitudinal temperature of the
electron beam is much smaller than its transverse temperature.
c) For Tx = 1230 K, the transverse Debye shielding length (11.22) is

rD ≈ 136 μm.
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d) For a field B of 500 Gauss the electron cyclotron period is Tcycl =
2πme/(eB) ≈ 0.7 ns. The transverse velocity of the proton beam is

v2x ≈
kBTx
m
, (12.129)

which yields vx ≈ 2.4 × 106 m/s. Then the typical impact time is timpact ∼
rD/u⊥ ∼ rD/vx ≈ 6 × 10−11 s. For these parameters, the impact time is
about 10 shorter than the cyclotron period. For a field of 5 kG the two times
would be equal.

11.3 Recombination of Ion Beams during Electron Cooling

According to (11.27)
1

τ
∝
Z2

A
. (12.130)

Thus the cooling time for fully stripped lead ions is 822/207 times that for
protons, or τPb ≈ 308 μm. The electron capture rate scales as (11.28)

1

τr
∝ Z2 . (12.131)

Hence, for the Pb ions it is 15 s.
The fraction of lead ions that would be lost by recombination during one

cooling time is
ΔN

N
≈
308 μs

15 s
≈ 2× 10−5 . (12.132)

11.4 Electron-Beam Energy for Electron Cooling

The relativistic Lorentz factor γ should be the same for both beams.
Hence, the electron-beam energy required to cool the 7-TeV LHC proton
beam is about 3.8 GeV.

11.5 Derivation of the Debye Length

We denote the change in potential experienced by electrons near a single
ion charge by φ(r), where r is the distance from the ion. In thermal equilib-
rium the electron density is described by

n(r) = n0e
− eφ(r)kBT ≈ n0

(
1−
eφ(r)

kBT

)
, (12.133)

so that the deviation from the unperturbed density n0 is

Δn(r) ≈ −n0
eφ(r)

kBT
. (12.134)

Noting that the electron charge is −e, the Laplace equation for the perturbed
potential, φ, in the vicinity of the ion is

∂2φ(r)

∂r2
=
Δne

ε0
= −

(
n0

e2

kBTε0

)
φ , (12.135)
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with the solution

φ = φ0e
−

√
n0e

2

kBTε0
r
= φ0e

− r
rD , (12.136)

where the Debye shielding length rD equals

rD =

(
kBT

4πn0mc2re

)1/2
. (12.137)

11.6 Interaction Probability with Electron Cooling

The ion velocity u follows from

u2 =
kBT

m
= c2βγ

εN
βx
≈
(
4× 105 m/s

√
βγ
)2
, (12.138)

where β and γ = 1/(1− β2) are the relativistic factors. Using the minimum
impact parameter ρmin from (11.23), we obtain an interaction time of

tint ≈
ρmin
u
=
rec
2

u3
= (βγ)

−3/2 × 4× 10−15 s . (12.139)

Denoting the length of the cooling section by l, the travel time is

ttrav ≈
l

βc
= 3× 10−8/β s . (12.140)

For the parameters chosen, the two times will only be equal for an extremely
small value of β (about 2×10−14), which will not occur in practice. However,
the interaction time increases with decreasing ion-beam emittance.

11.7 Beam Temperature with Ion-Beam Laser Cooling

(a) From (11.47) we have

Δβ ≈
Δω′

ω′
, (12.141)

which, for a laser tuning range of Δf = 20 GHz and a laser wavelength
of λ = 280 nm, gives Δβ ≈ 1.9 × 10−5. The velocity of the ion beam is
β ≈ (100 kV/(12mpAc

2))1/2 ≈ 3× 10−3, so that Δβ/β ≈ 6× 10−3.
(b) The minimum temperature according to (11.49) is 120 μK which

corresponds to 10−8 eV. The temperature is also limited by the recoil en-
ergy acquired in the beam frame when absorbing a single photon, which is
(1/2)mionv

2
r . Inserting vr from (11.48), this amounts to only 5 μK or 4

10 eV.
The larger of these two limits applies, namely 120 μK.

11.8 Damping Times with Electron-Beam Laser Cooling

From (11.55) we get nd ≈ 1600 turns. The equivalent damping time for
an average ring radius ρ of 1 m is

τd = nd

(
c

2πρ

)
≈ 34 μs . (12.142)

This is two orders of magnitude smaller than in conventional storage rings.
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11.9 Equilibrium Emittances with Electron-Beam Laser Cooling

The equilibrium emittance is given by (11.61)

εx,y,N =
3

10

λc
λL
β∗x,y ≈ 7× 10

−9 m , (12.143)

and the relative energy spread by

σδ =

√
7

5

λc
λL
γ ≈ 2.6% . (12.144)

11.10 Damping Rates and Equilibrium Emittances
with Ionization Cooling

(a) From (γ − 1)mμc2 = 150 MeV we deduce γ ≈ 2.42. The first term on
the right hand side of (11.113) describes the damping. Its average rate is

λ =
1

εN

dεN
ds
= −

lH2
lcool

1

β2
dEμ
ds

1

Eμ
≈ −0.074 m−1 , (12.145)

where lH2 and lcool denote the length of the hydrogen cell and the length of
the entire cooling stage, respectively. The emittance reduction in a section of
length lcool = 10 m is a factor exp(λlcool) ≈ 0.48.
(b) The total length required for a factor 10 emittance reduction is

ltot = −
1

λ
ln(10) ≈ 31 m , (12.146)

or about three 10-m long stages. The muon lifetime in the laboratory sys-
tem is τlab = γτμ,0 ≈ 5.2 μs, where τμ,0 denotes the muon lifetime at
rest. The fraction of muons left after traversing l = 500 m at 150 MeV is
exp(−l/(βcτlab)) ≈ 0.7, or 70%.
(c) The minimum normalized emittance is reached when the time deriva-

tive on the left-hand side of (11.113) approaches zero. We can solve the right-
hand side for the final emittance and obtain

εN =
1

β

β⊥
2

(14 MeV)2

(dEμ/ds)mμc2LR
≈ 4× 10−4 m . (12.147)

(d) We first discuss the damping term. The trajectory slope x′ is related
to the horizontal and longitudinal momenta px and p0 via

x′ =
px
p0
, (12.148)

and due to the ionization energy loss in the direction of the trajectory and
re-acceleration in the longitudinal direction over a distance Δs it changes as

Δx′ = −
px
p20

Δp0
Δs
Δs . (12.149)
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Now, Δp0/Δs = (dEμ/ds)/(βc), so that

Δx′

Δs
= −x′

1

β2γmμc2
dEμ
ds
. (12.150)

The analogous equation applies in the vertical plane. From (1.15), the change
in transverse (horizontal or vertical) action is

ΔI⊥
Δs

= −β⊥x
′2 1

β2γmμc2
dEμ
ds
. (12.151)

Since ΔεN = βγ〈ΔI⊥〉, and εN = βγ〈β⊥x′
2〉 the damping term in (11.113)

follows.
To derive the heating term we start from (1.15) and compute the change

in action due to multiple scattering at an angle θ:

ΔI⊥ =
2β⊥θ(α⊥x+ β⊥x

′) + β2⊥θ
2

2β⊥
. (12.152)

After averaging over the distribution (assuming random betatron phases)
only the term quadratic in θ remains, or

〈ΔI⊥〉 =
β⊥〈θ2〉

2
, (12.153)

where 〈θ2〉 is the squared rms scattering angle after a distance s. Inserting
(11.114) for this angle, differentiating with respect to s, and noticing again
that εN = βγ〈ΔI⊥〉, the previous equation is rewritten as

dεN
ds
=
β⊥
2

βγ (14 MeV)
2

(βcp)2
1

LR

=
β⊥
2β3
(14 MeV)2

Eμmμc2LR
, (12.154)

which equals the expression for the heating in (11.113).




