
10 Polarization Issues

The study of spin dynamics in synchrotrons has evolved over the years as
has the desire for achieving polarized particle beams of the highest possible
beam energies. A selection of reviews of the dynamics of polarized beams
may be found in [1]–[9]. In this chapter, we focus on experimental data and
describe spin transport in circular accelerators and transport lines. Except
where explicitly mentioned, radiative effects in electron accelerators or very
high energy proton accelerators are not treated here. We begin with a review
of the Thomas-BMT equation for spin motion. This will be given in terms
of the SU(2) spinor representation. Spinor algebra will be introduced and
applied in the description of techniques used for preserving the beam po-
larization during acceleration through depolarizing resonances at moderate
beam energies.

10.1 Equation of Spin Motion

The concept of particle spin was first introduced by Uhlenbeck and Goudsmit
in 1926 to explain certain features of atomic spectra. They presupposed that
the (in this case) electron of mass m and charge e, possessed both a magnetic
moment μ and the spin angular momentum s, related to one another by

μ =
ge

2m
s , (10.1)

where g is the gyromagnetic ratio whose value was empirically taken to
be 2 for electrons to explain certain experimental observations. In 1927
Thomas [10] showed that once a relativistic kinematic effect was taken into
account, the value of g = 2 was consistent with the atomic spectra measure-
ments.
The equation of motion for the spin angular momentum in an external

magnetic field [5] is given, in the particle rest frame, by

ds

dt
= μ×B

= Ω × s , (10.2)
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where the angular velocity of the spin precession is

Ω = −
ge

2m
B. (10.3)

In the above equations, the spin angular momentum s of a single particle
takes on discrete values of magnitude |s| = h̄/2 for spin-12 particles (i.e.
electrons and protons). It is convenient to normalize s and work with the
spin vector S, with |S| = 1, defined as the normalized spin expectation value
in the rest frame.

10.2 Thomas-BMT Equation

In the laboratory frame, the spin precession for a relativistic particle in ex-
ternal electromagnetic fields is given by the Thomas-BMT equation [10]–[13]:

dS

dt
= −

e

γm

[
(1 + aγ) B⊥ + (1 + a) B‖ +

(
aγ +

γ

γ + 1

)
E × v

c2

]
× S ,

(10.4)
where B⊥ and B‖ represent the magnetic fields perpendicular and parallel
to the particle velocity respectively, β = v/c with v the particle velocity, and

γ = 1/
√
1− β2 the Lorentz factor or ratio of the particle energy to mass.

The factor a in (10.4) is the gyromagnetic anomaly of the electron. It is

a =
g − 2

2
= 0.00115966 , (10.5)

and deviates from zero due to radiative corrections. For protons, which are
composite, we replace a with the symbol G, where

G =
g − 2

2
= 1.792846 . (10.6)

For many practical applications there are no significant electric fields1,
and the Thomas-BMT equation is simply

dS

dt
= −

e

γm

[
(1 + aγ)B⊥ + (1 + a)B‖

]
× S . (10.7)

From this equation applied to protons, the spin precession due to transverse
magnetic fields depends on the particle energy through the factor 1/γ + G
while the amount of precession due to a longitudinal magnetic field scales as
(1+G)/γ. We will see later that this has implications for spin rotator design.

1 More precisely, the term β × E is nearly zero since the electric fields in an
accelerator are usually parallel to the particle velocity.
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10.3 Beam Polarization

The polarization P of a bunch is defined as the ensemble average over the
spin vectors S of the individual particles:

P = 〈S〉 =

∣∣∣∣∣ 1N
N∑
p=1

Sp

∣∣∣∣∣ , (10.8)

where N denotes the number of particles in the bunch.
As an illustration of the formulae presented so far, we calculate the beam

depolarization due to spin precession and energy spread in a transport line
neglecting radiation effects. We suppose a transverse magnetic field bends an
electron orbit by the angle θ. Then, according to (10.4) one finds that the
electron spin direction precesses by φ = (aγ)θ relative to the orbit in the
laboratory frame. Considering a relativistic electron beam of many particles
with a finite energy spread, the spin vectors of different electrons in the
beam precess by different angles, since φ depends on the particle energy. If
the initial beam polarization is longitudinal with magnitude P0 and the beam
is bent horizontally by an angle θ, not only is the final polarization vector Pf
rotated by an angle aγ0θ, but also its magnitude is reduced as

Pf = P0e
−(aγ0σδθ)

2/2 , (10.9)

where γ0 is the Lorentz factor corresponding to the mean energy of the beam,
and σδ the rms relative momentum spread assuming a Gaussian momentum
distribution. Equation (10.9) is strictly valid, if the orbit is bent in one plane.
The same formula was also used to model the spin transport and the depolar-
ization in the SLC North Collider Arc [14, 15], which constituted a nonplanar
transport line with horizontal and vertical bends used to follow the terrain
of the SLAC site. In this application, an ‘effective’ bending angle θ, entering
in (10.9), was determined by measuring the final direction of the polarization
vector as a function of the beam energy [15].

10.4 Spinor Algebra Using SU(2)

We can use methods of quantum mechanics [5] to describe spin transport.
It is mathematically advantageous to do so since transporting 2 component
spinors (Ψ) is simpler than transporting the 3-dimensional spin vector S. The
relationship between the two is given by

Si = Ψ
†σiΨ , (10.10)

with the Pauli matrices defined2 as
2 Caution. Different authors adopt different conventions; here we adopt the con-
vention (specified in the introduction; c.f. Fig. 1.1) that x is radial, s is longitu-
dinal, and y is vertical. A cyclic permutation may be used to transform between
conventions.
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σx =

(
0 1
1 0

)
, σs =

(
0 −i
i 0

)
, σy =

(
1 0
0 −1

)
. (10.11)

Together with the 2 × 2 identity matrix I2, these 4 matrices generate an
irreducible representation of the SU(2) group.

10.5 Equation of Spin Motion

For generality we can reexpress [1] the equation of spin motion (10.2) in terms
of a time-like variable θ defined as

θ =

∫ s
0

ds′

ρ(s′)
, (10.12)

which is equal to the accumulated bending angle or so-called orbital angle.
Then, as we will show below, the equation of spin motion (10.2) is equivalent
to

dΨ

dθ
=
i

2
HΨ , (10.13)

where H = Ω̃ ·σ denotes the effective spin Hamiltonian, which is represented
here as a matrix [5] with

Ω̃ = Ω/
dθ

dt
. (10.14)

In the absence of depolarizing resonances (see Sect. 10.7), for a particle circu-
lating in the horizontal plane under the influence of vertical magnetic fields
only, H may be expressed as

H =

(
−κ 0
0 κ

)
, (10.15)

with κ = Gγ for protons and κ = aγ for electrons.
Equation (10.13) may be expressed as

dΨ

dθ
= −i

λ

2
(σ · b̂)Ψ , (10.16)

where λ = |Ω̃| denotes the amplitude of the precession frequency and depends
in general on the particle coordinates (to concentrate on the underlying prin-

ciples, we defer the explicit expressions until needed in Sect. 10.12) and b̂ = Ω̂
is a unit vector aligned with the precession axis. The vector b̂ and λ depend
on the longitudinal coordinate and on the position of the particle in the six-
dimensional phase space [7]. Therefore b̂ may have different orientations at
fixed orbital angle θ on subsequent turns.
The solution of (10.16), which defines the spinor transformation ma-

trix M , is
Ψ(θ) =MΨ(0) . (10.17)
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If λb̂ is constant along a section of the orbit, then

M = e−i(
λ
2 )(σ·b̂)θ . (10.18)

Using the algebra of the σ matrices, after expanding the exponential, the
solution for the spinor is

Ψ(θ) =

[
cos

(
λθ

2

)
− i(σ · b̂) sin

(
λθ

2

)]
Ψ(0) . (10.19)

To complete this section we use the Pauli algebra to confirm that the
equation of motion for the spinor Ψ (10.13) indeed leads to the equation of
motion for the spin vector S. Since the components of the spin are given by
the expectation value of the Pauli spin matrices (S = Ψ†σΨ), the equation of
spin motion for the polarization vector is obtained by taking the derivative
of the latter expression

dS

dθ
=
dΨ†

dθ
σΨ + Ψ†σ

dΨ

dθ
. (10.20)

Using (10.16) and its Hermitian conjugate, dΨ
†

dθ = i
λ
2Ψ
†(σ · b̂), one finds

dS

dθ
= i
λ

2
Ψ†[(σ · b̂)σ − σ(σ · b̂))]Ψ . (10.21)

Making use of the Pauli algebra σiσj = 1 for i = j and σiσj = iεijkσk for
i �= j, one can show that

[σ · b̂,σ] = 2i(b̂× σ) . (10.22)

Therefore, we may write

dS

dθ
= −λΨ†(b̂× σ)Ψ = −λb̂× (Ψ†σΨ) = −λ(b̂× S) , (10.23)

which may be compared with (10.4).

10.6 Periodic Solution to the Equation of Spin Motion

The first step for studying spin motion in a circular accelerator is to find the
periodic solution to the equation of spin motion on the closed orbit. Here
we write a spin transfer matrix M as a product of n precession matrices,
each of which characterizes a section of constant magnetic field causing spin
precession; i.e., M =M1M2 · · ·Mn.
The transfer matrix corresponding to one turn around the accelerator is

refered to as the one turn spin transfer map denoted by M0. For the closed
orbit M0 is periodic: M0(θ + 2π) = M0(θ). Because the norm of the vector
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in the precession equation is an invariant, M0 is unitary so that it may be
expressed as

M0 = e
−iπν0(σ·n̂0) = I2 cosπν0 − i(σ · n̂0) sinπν0 , (10.24)

or

M0 =

(
cosπν0 − i sinπν0 cosαy − sinπν0 cosαs − i sinπν0 cosαx

sinπν0 cosαs − i sinπν0 cosαx cosπν0 + i sinπν0 cosαy

)
,

(10.25)

The unit vector n̂0 is the precession axis for the one turn map M0. It is
periodic and fulfills the Thomas-BMT equation [5]; a spin set parallel to n̂0
at orbital location θ will, after one turn (θ+2π), also be parallel to n̂0. Thus
n̂0 is refered to as the ‘stable spin direction’ on the closed orbit and may be
described by direction cosines:

n̂0 = (cosαx, cosαs, cosαy) (10.26)

with normalization cos2 αx + cos
2 αs + cos

2 αy = 1.
The parameter ν0, called the spin tune, represents the number of times

the spin of a particle on the closed orbit precesses about the stable spin
direction in one turn around the ring. The fractional part of the spin tune
may be obtained from the trace of the (periodic) spin precession matrix:

Tr M0 = 2 cosπν0 or

ν0 =
1

π
cos−1

(
Tr M0
2

)
. (10.27)

For the spin motion of particles not on the closed orbit, M is in practice
not periodic since accelerators are not typically operated on resonance (for
which the particle returns to the same point in phase space after an integer
number of turns). The unit vector b̂ in the equation of spin motion (10.16)
may therefore have different orientations at fixed orbital coordinate θ on
subsequent turns (θ, θ + 2π, θ + 4π,...).

10.7 Depolarizing Resonances

The spin of a particle executing synchro-betatron motion around the closed
orbit is perturbed by magnetic fields sampled at the betatron and synchrotron
frequencies which are characteristic of the particle motion. Since the particles
within a bunch have generally different amplitudes and phases, the pertur-
bation to the spin is different for different particles resulting in a spread of
the particle spins and thus a lower polarization.
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Depolarizing resonances occur whenever the spin tune beats with any of
the natural oscillation frequencies of the orbital motion; that is when the spin
tune, ν0, equals a resonance tune, νres, by satisfying

ν0 = νres ≡ m+ qQx + rQy + sQs , (10.28)

where Qx and Qy are the horizontal and vertical betatron tunes, Qs is the
synchrotron tune, while m, q, r,and s are integers3. Here m is the product of
an integer times the periodicity of the lattice. The quantity |q| + |r| + |s| is
called the order of the resonance.
The general resonance condition specifies the criteria for many different

types of resonances. Imperfection depolarizing resonances, for which

ν0 = νres = m = integer , (10.29)

arise, for example, from horizontal magnetic fields experienced by the or-
biting particle due to magnet imperfections, dipole magnet rotations about
the beam direction, and to vertical quadrupole magnet misalignments. Low-
est order intrinsic resonances, which result from the horizontal fields of
quadrupoles, occur if

ν0 = νres = m+ rQy . (10.30)

In practice, the above two types of resonances have proven the most signifi-
cant in the energy regimes of existing accelerators with polarized beams.
Other higher order spin depolarizing resonances may occur for any combi-

nation of integers which satisfy (10.28). Studies have shown that higher-order
intrinsic resonances of the form

ν0 = νres = m+ rQy + sQs . (10.31)

become increasingly important at higher beam energies. Due to the inter-
action with the particle longitudinal momentum, such resonances are also
refered to as synchrotron sideband depolarizing resonances.
Resonant spin motion has been observed in many accelerators. Interest-

ingly, it was observed in the SLC collider arcs [14], through which bunches
pass only once. The 1 mile arcs were used to transport 45.6 GeV polarized
electrons from the linac to the interaction point where they collided head-on
with positrons. The arc consists of 23 achromatic sections with a 108◦ phase
advance per cell. The vertical beam trajectory and the components of a spin
vector are shown in Fig. 10.1 assuming an initial vertical offset of 0.5 mm and
random quadrupole misalignments. For the nominal SLC operating energy,
the phase advances of (betatron) orbit and spin in the SLC arcs were almost
identical. In Fig. 10.1 this equality is seen to contribute to a net tilt of the
spin vector as evidenced by the increase in the vertical component of a spin
along the arc. In practice, vertical bumps were used to optimally align the
polarization to be longitudinal at the interaction point.

3 For particles in the bunch with large orbital amplitudes, ν0 in (10.28) should be
replaced by spin tune of the individual particle ν [7]–[9].
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Fig. 10.1. Beam orbit (solid line) and spin transport in the SLC collider arc
(Courtesy P. Emma, 1999)

10.8 Polarization Preservation in Storage Rings

For proton and deuteron accelerators, for which the polarization of the beam
is produced at the particle source, the first requirement of maintaining a
beam’s polarization is preserving this polarization at injection into down-
stream accelerators. Ignoring synchro-betatron motion, this is easily achieved
by orienting (using upstream spin rotators) the beam polarization so that it
is aligned with the stable spin direction of the downstream transport line or
storage ring.
A mismatch at injection results in a cosine-like reduction of the time-

averaged beam polarization. Letting (cosαx, cosαs, cosαy) denote the orien-
tation of the injected polarization Pinj and (cosβx, cosβs, cosβy) the orien-
tation of the stable spin direction n̂0 in the laboratory reference frame, then
the projection of the injected polarization vector Pinj onto n̂0 is

‖P‖ = Pinj · n̂0
= Pinj(cosβx cosαx + cosβs cosαs + cosβy cosαy) . (10.32)

The components of the time-average polarization one would measure at the
injection point are then obtained by projecting the polarization onto the three
coordinate axes:

Py = ‖P‖ cosβy, Px = ‖P‖ cosβx, Ps = ‖P‖ cosβs . (10.33)

A conceptual illustration is given in Fig. 10.2. At other locations in the ring,
the measurable polarization components are obtained by performing a second
projection using ‖P‖n̂0(s) where n̂0(s) is the stable spin direction at the
point of interest.
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Fig. 10.2. Graphical representation show-
ing the projection of the injected polariza-
tion Pinj onto the stable spin direction n̂0 at
the injection point. The time-averaged ver-
tical polarization one would measure at that
point in denoted by Py

Once the beam is successfully injected without loss of polarization, it
must be ramped to high energy thereby encountering numerous depolarizing
resonances along the energy ramp. With considerable effort, polarized proton
beams were accelerated through many intrinsic and imperfection depolariz-
ing resonances to GeV energies at the ZGS [16], Saturne [17], the AGS [18],
and KEK [19]. The methods employed were based on overcoming each depo-
larizing resonance individually. In this section we review techniques used to
overcome these resonances. In the next section we describe ‘siberian snakes’
which are used for preserving the beam polarization during the energy ramp.
Proof of principle experiments with snakes were initially carried out at the
Indiana University Cyclotron Facility (IUCF) [20]–[22]. Siberian snakes are
now used in routine operation during acceleration of polarized protons at
RHIC [23] and constitute the preferred method of polarization preservation
for future high energy hadron accelerators.

10.8.1 Harmonic Correction

Harmonic correction of imperfection depolarizing resonances was used at the
AGS [18] to ramp vertically polarized proton beams to about 22 GeV. There
96 correction dipoles were employed whose currents were programmed dur-
ing the acceleration process such that the Fourier harmonics of the radially
outward and longitudinal fields in the measured particle trajectories for the
most nearby resonances were minimized. The Fourier harmonics are given
by an cosnθ+ bn sinnθ, where n denotes the resonance harmonic of interest.
As will be shown later, the resonance strength depends on the vertical beam
displacement (in quadrupoles, for example, the nominally vertical polariza-
tion experiences a radial precession field with an off-axis beam). To eliminate
depolarization, the coefficients an and bn were experimentally adjusted to
minimize the horizontal magnetic fields causing each imperfection resonance.
Shown in Fig. 10.3 are traces on an oscilloscope from the AGS [18] showing
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Fig. 10.3. Oscilloscope traces showing the currents in pulsed magnets during the
energy ramp to 16.5 GeV/c at the AGS. Shown are the pulsed dipole currents (top),
the pulsed quadrupoles currents (middle), and the main dipole current (bottom)
(Courtesy A. Krisch, 1999)

the corrector dipole currents (top trace) and the main dipole current (bottom
trace), which is proportional to the beam energy.
Harmonic correction methods [24]–[26] were also applied in the case of

high energy electron beams at both HERA [27]–[29] and, deterministically,
at LEP [30]. In electron accelerators, an initially unpolarized beam may after
some time become polarized due to the emission of synchrotron radiation.
This is known as the Sokolov–Ternov effect [31] which also predicts a maxi-
mum possible beam polarization of 92.4% for electrons. In practice however
this level of polarization is not reached due to spin-orbit coupling caused by
the trajectory oscillations which result from photon emission [3]. Minimizing
the strength of the harmonics nearest the beam energy thus minimizes the

Fig. 10.4.Measured transverse beam polarization at HERA showing improvements
gained using harmonic correction (Courtesy of the HERMES experiment, 2002)
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influence of the depolarizing effects due to synchrotron radiation. At HERA
and LEP, instead of empirically varying the whole closed orbit, closed orbit
bumps were used to minimize the strength of the nearest imperfection reson-
ances. A recent result from HERA is shown [29] in Fig. 10.4 obtained after
implementing a new optic as intended for the HERA upgrade.

10.8.2 Adiabatic Spin Flip

The method of adiabatic spin flip, which was also used at the AGS, is based
on the results of Froissart and Stora [32]. The Froissart–Stora formula, which
describes the spin transport through a single, isolated imperfection or lowest-
order intrinsic resonance, is

Py(∞) =

(
2e−

π|ε|2

2α − 1

)
Py(−∞) , (10.34)

where ε is the resonance strength (see Sect. 10.12 and [1]), α = dν0/dθ, and
Py(−∞) or Py(∞) refer to the initial and final polarizations, respectively.

Fig. 10.5. Spin flip of a vertically polarized beam at the IUCF with kinetic energy
105.4 MeV and a frequency sweep range of 2 kHz. The estimated resonance strength
at 15 kV applied voltage is 1.9×10−4 (Courtesy A. Krisch, 1999)

The Froissart–Stora formula mandates that the spin of the orbiting par-
ticle will flip if the passage is slow and the resonance is strong (the argument
in the exponent of (10.34) is large). This behavior has been verified by ex-
periment [17, 33, 34]. An example taken from the IUCF cooler ring [34] is
shown in Fig. 10.5. Here a solenoid was used to produce a sinusoidally vary-
ing longitudinal magnetic field of frequency frf and peak amplitude Vsol. This
served to create a depolarizing resonance such that
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ν0 ≈ c1 ±
frf
frev

= c2 ±

(
frev − frf
frev

)
, (10.35)

where c1 and c2 are integers. In these measurements a frequency sweep of
span 2 kHz centered about the revolution frequency was used. After each
data point, the beam was dumped and a new beam was injected. The curves
in Fig. 10.5 show the prediction by the Froissart–Stora equation computed
for the measured resonance strength for two different ramp rates.

10.8.3 Tune Jump

Intrinsic depolarizing resonances were overcome at the AGS using the method
of tune jump [18]. From the Froissart–Stora relation, if the resonance is
crossed sufficiently quickly (the exponent approaches zero), then the polariza-
tion will be preserved. Therefore, as the spin tune ν0 = Gγ increases during
acceleration, the resonance can be traversed without loss of polarization by
rapidly shifting the vertical betatron tune, νy. A classic example [18] from the
AGS was shown in Fig. 10.3 in which the current of the pulsed quadrupoles
(middle trace) is depicted. To achieve this, strong pulsed quadrupoles and
special ceramic beam pipes (to allow passage of the field) were required.

10.9 Siberian Snakes

The above mentioned correction schemes were anticipated to be of limited
applicability when accelerating polarized beams to very high energies. The
harmonic correction employed at the AGS was complicated and time con-
suming; the empirically found corrections also depended on the closed orbit
of the accelerator, which was observed to drift with time and change between
running periods. At very high energies, where the resonances will be over-
lapping due to an increase in the resonance strength with increasing energy
(see (10.49) below), the method of adiabatic spin flip fails [35]. The method
of tune jump is stopband limited since, for a very strong intrinsic resonance,
the vertical betatron tune shift required to overcome the resonance may ex-
ceed the separation between the machine betatron resonances. Finally, the
number of resonances to be crossed increases with energy. At the SSC, where
there would have been more than 104 imperfection and first-order intrinsic
resonances, overcoming each resonance individually clearly would have been
impractical.
An ingenious arrangement of magnets was proposed [36, 37] by Derbenev

and Kondratenko in 1976 (see also [13]). Use of this technique4 would simul-
taneously overcome all imperfection and lowest-order intrinsic resonances by
making the spin tune energy independent. A so-called type-1 snake rotates

4 This scheme was dubbed ‘siberian snake’ by E. Courant.
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the spin of each proton by 180 degrees about the longitudinal axis on each
turn around the ring without changing the closed orbit outside of the snake.
This forces the spin tune to be 1/2 and the stable spin direction n̂0 to lie
in the horizontal plane. The resonance condition of (10.29) and (10.30) can
therefore never be satisfied regardless of the beam energy: the condition for
imperfection resonances with integer spin tune (10.29) is never satisfied and,
for betatron tunes not equal to 1/2 (corresponding to half integer orbit res-
onances), intrinisic resonances (10.30) are also avoided. A type-2 siberian
snake precesses the spin about the radial direction. A type-3 siberian snake
precesses the spin about the vertical direction.
The most cost-effective construction of a siberian snake depends upon the

energy range of interest. A siberian snake consisting of a solenoidal field (and
skew quadrupoles for coupling correction) requires a field strength (given here
for protons) of ∫

B‖ dl =
mcβγ

(1 +G)e
ψ , (10.36)

in which ψ (= π for a full siberian snake) is the angle through which the spin
is precessed. In this case, the required field integral depends linearly on γ.
Due to technical constraints the field strength and magnet length cannot
be increased indefinitely. Therefore siberian snakes made with solenoids are
better suited for low energy operation.
Alternatively a ‘conventional’ siberian snake consisting of eight transverse

field dipoles each of which precesses the spin by π2 requires a field strength of∫
B⊥ dl =

mcβ

Ge
ψ (transverse snake) , (10.37)

which is independent of γ. This type of siberian snake therefore has the
advantage that a single set of dipole operating currents suffices for all beam
energies once the relativistic factor β is close to 1. However, in a dipole
magnet, the orbit deflection angle is ψ/Gγ and so depends on the energy.
For low beam energies (γ < 10), a siberian snake consisting of dipoles would
thus require the construction of large and costly dipoles. Siberian snakes
consisting of dipole magnets are therefore more suitable for operation at high
beam energies.
With a single type-1 siberian snake, the one-turn spin transfer matrix

evaluated at the orbital angle θ is

M = e−iπν0(n̂0·σ) =
[
e−i

Gγ
2 (π−θ)σye−i

η
2 σs
] [
e−i

Gγ
2 (π+θ)σy

]
, (10.38)

where η gives the spin precession about the longitudinal in radians. Taking
the trace of (10.38), the particle spin tune is

cosπν0 = cos (πGγ) cos
(η
2

)
. (10.39)
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If the siberian snake is off (η = 0), then ν0 = Gγ as expected. With the snake
fully turned on (η = π), then cosπν0 = 0 and ν0 = 1/2 (modulo 2π).
For a siberian snake design optimum for high beam energies, the use of

transverse magnetic fields for spin precession has the unfortunate consequence
of also deflecting the particle orbit. The design of a siberian snake therefore
uses closed horizontal and vertical bumps so that the orbit outside of the
snake region is unchanged (optical transparency). However this is achieved
only at the expense of increased snake length which may become costly.
Many different snake designs have been proposed. Some of the earlier designs
by Steffen are given in [38]–[40] and the design currently used at RHIC is
described in [41, 42] have been proposed. Shown in Fig. 10.6 is one such
design consisting of alternating horizontal and vertical dipoles. This design
is conveniently expressed as

V
(π
2

)
V
(
−
π

2

)
H
(π
2

)
V
(
−
π

2

)
H(−π)V

(π
2

)
H
(π
2

)
, (10.40)

where H and V represent horizontal and vertical dipoles rotating the spin
through the angle of the argument.

Fig. 10.6. A design of a type-1 siberian snake showing the geometry (top) and
the design orbit in the vertical (middle) and horizontal (bottom) planes. The beam
moves from the left to the right (Courtesy A. Chao, 1999)

In addition to preserving the polarization, it is often desirable to rotate
the spin from vertical to longitudinal [4] at one of possibly many interaction
points in a storage ring as is done at HERA [43], for example. An optically
transparant spin rotator which does that was proposed by Montague [5, 44].
The spin rotation matrix R is given by

R = V (α)V (−α)V
(
−
π

4

)
H(−π)V

(π
4

)
XV
(
−
π

4

)
H(π)V

(π
4

)
, (10.41)

where α is an arbitrary precession angle and ‘X’ indicates the location of the
interaction point. For transverse magnetic fields, the orbital bending angles
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are obtained by the precession angle divided by Gγ. In contrast to spin trans-
formations for which the transfer matrices of each magnet do not commute,
the small orbital deflections do essentially commute and are seen to sum to
zero.
Radiation in strong vertical bending magnets, used in spin rotators for

example, in an electron storage ring can cause excitation of vertical betatron
motion which may then lead to depolarization due to the radial component
of quadrupole fields [5]. In addition, when rotators are used to precess the
polarization into the longitudinal direction, the horizontal motion excited
by radiation in the arcs can cause depolarization in the vertical fields of
the quadrupoles in the interaction regions. These depolarization mechanisms
may be avoided by invoking spin matching conditions to obtain spin trans-
parency [4, 26, 45].

Fig. 10.7. Measurements of time-averaged radial polarization at the IUCF near a
Gγ = 2 imperfection resonance (at about 106.4 GeV) at 5 different beam kinetic
energies with a 100% siberian snake on (left) and off (right)
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Fig. 10.8. Measurements of time-averaged vertical polarization at the IUCF near
a Gγ = 2 imperfection resonance (at about 106.4 GeV) at 5 different beam kinetic
energies with a 100% siberian snake on (left) and off (right)

Interestingly, it was not until 1989 that the siberian snake concept was
tested experimentally [20, 21]. Shown in Figs. 10.7 and 10.8 are measure-
ments which demonstrated the use of siberian snakes for control of the beam
polarization. Plotted are the time-averaged vertical and radial polarization
measured at different beam kinetic energies in the vicinity5 of the Gγ = 2
imperfection resonance. The horizontal axis shows the strength of an error
field introduced diametrically opposite to the siberian snake. In these meas-
urements, the error field was set, the beam was injected, the polarization was
measured, and then the beam was dumped. The polarization of the injected
beam was always oriented to match the stable spin direction at the injection
point; i.e. in the horizontal plane with the snake turned on or vertically with

5 From the figures, the resonance was found to lie between 105.9 MeV and
107.8 MeV rather than at kinetic energy (2 − G)/mG = 108.4 MeV one might
expect using Gγ = 2. This was later explained by the presence of an uninten-
tional type-3 snake in the accelerator.
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no snake. From Fig. 10.7, with the snake turned on, the radial polarization
was not affected by the nearby resonance. From Fig. 10.8, with the snake
turned off, the measured time-averaged vertical polarization was observed to
be less near the resonance. The curves in Figs. 10.7 and 10.8 were obtained
using the periodic solution to the equatio of spin motion taking into account
the presence of the type-3 snake.
It is worth mentioning that the presence of a siberian snake in an acceler-

ator may introduce a new kind of resonance dubbed a snake resonance [46].
The snake resonance condition is given by uνres = ν0 + n in which ν0 (=

1
2 )

is the spin tune determined by the snake and u and n are integers. These
are relevant when the fractional betatron tune Q is 1/integer, which is not a
condition under which an accelerator is typically operated. Nonetheless, the
presence of snake resonances has been both predicted and verified experimen-
tally [47].

10.10 Partial Siberian Snakes

In 1989 Roser [48] proposed an elegant and intuitive variant of the siberian
snake called a partial siberian snake. These are magnetic devices which enable
the polarization to be maintained when accelerating through imperfection
resonances. They rotate the spin by a small fraction of π around a horizon-
tal axis and have the advantage of reduced cost and less required space. At
low beam energies, a partial snake consisting of dipoles does not induce too
large an orbit excursion, while a solenoidal partial snake requires significantly
less magnetic field than a full snake. As mentioned above the disturbance to
the polarization at imperfection resonances can be minimized by minimizing
certain harmonics in the fields on the closed orbit. Partial snakes imply the
opposite approach, namely the snake induces a large predetermined imper-
fection onto the spin motion which dominates all other imperfections. Then
during normal acceleration with the large resonance strength, the Froissart–
Stora formula guarantees a full spin flip without loss of polarization. The
polarization will flip again after passage through the next imperfection res-
onance.
The expression for the dependence of the spin tune on energy and the

precession per turn was given in (10.39) and is shown in Fig. 10.9 for different
percentages of applied longitudinal field (η = π denotes a full snake which is
designated in the figure by 100%). The diagonal line shows the spin tune with
no snake. As can be seen, even a relatively weak (∼ few %) snake can cause a
significant deviation of the spin tune from Gγ during acceleration and a large
spin tune gap thus avoiding the imperfection resonance at ν0 = n = integer.
An example showing the first demonstration of the ability of partial

siberian snakes to avoid imperfection depolarizing resonances, in this case
at fixed beam energy, is shown in Fig. 10.10. With a 10% snake full polar-
ization was maintained despite the applied error field. At the AGS a 5%
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Fig. 10.9. The dependence of the spin tune on Gγ for various snake strengths
(indicated by percentage of full 180 degree spin precession)

Fig. 10.10. Demonstration from the IUCF of polarization preservation in the vicin-
ity of an imperfection resonance using a 10% partial siberian snake (left) and loss
of polarization without the partial snake (right). In these measurements the kinetic
energy of the beam was fixed at 105.9 MeV

partial siberian snake has been installed and is used routinely to ramp po-
larized protrons through numerous imperfection resonances to the required
transfer energy (∼ 25 GeV) for injection into RHIC [49, 50]. Note that for
fixed beam energy, once the betatron tunes are known, the strength of the
partial siberian snake could be set such that a nearby intrinsic resonance is
also avoided.
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10.11 RF Dipole

At the AGS, the many intrinisic resonances not avoidable the energy ramp
are now overcome using an rf dipole magnet [51] (see also Sect. 3.10). From
the Froissart–Stora equation (10.34), full spin flip may be expected if the res-
onance strength is large. The resonance strength may be artificially increased
(see (10.48) below) by exciting a coherent vertical betatron oscillation thus
inducing a complete spin flip [52]. If the location of externally induced reson-
ance is placed close to an intrinsic resonance, then depending on the relative
tune separation, phase, and strength, the induced resonance can be made to
dominate the spin motion and full spin flip can be achieved [51]. At the AGS,
the rf dipole is adiabatically turned on and off to avoid the emittance growth
that would be observed with a pure impulse excitation [51].

10.12 Single Resonance Model

Until now we have avoided the use of complicated formulas and have pre-
sented basic concepts useful for practical applications of spin transport and
preservation. In this section we define the resonance strength parameter ε
used previously and show explicitly, for the case of an isolated resonance in
the absence of siberian snakes, its effect on the beam polarization.
We rely on the work of Courant and Ruth [1], who expressed the magnetic

fields in the Thomas-BMT equation in terms of the particle coordinates. They
found that the equation of spin motion reduces to

dSx
dθ
= −κSs − rSy;

dSs
dθ
= +κSx − tSy;

dSy
dθ
= +rSx + tSs , (10.42)

where κ, r, and t are functions of the transverse coordinates of the particle
orbit. In the cartesian coordinate system (with x̂ radially outward, ŝ along
the beam direction, and ŷ vertical) and ρ the local radius of curvature of the
reference orbit, these variables are given by [1]

κ = Gγ − (1 +Gγ)ρx′′ ≈ Gγ

r = (1 +Gγ)y′ − ρ(1 +G)

(
y

ρ

)′
t = (1 +Gγ)ρy′′ , (10.43)

where the derivatives are with respect to the longitudinal coordinate s.
Equation (10.42) can then be transformed [1] into an equivalent spinor

representation, for which
dΨ

dθ
=
i

2
HΨ . (10.44)
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Here H is the spinor precession matrix given by

H =

(
−κ −t− ir
−t+ ir κ

)
, (10.45)

and Ψ is a two component complex spinor. In first approximation the func-
tion H is uniquely determined by the properties of the synchrotron. In the
preceding analyses we have assumed that the function H is piecewise con-
stant. As before the spin components are obtained by taking the expectation
value of the Pauli matrix vector, σ, i.e.,

Si = Ψ
†σiΨ . (10.46)

Due to the periodic nature of a synchrotron, the coupling term of (10.45)
may be expanded in terms of the Fourier components, i.e.,

t+ ir =
∑
k

εke
−iν±res,kθ , (10.47)

in which θ is the particle’s orbital angle, ν±res,k = k for imperfection reson-
ances, ν±res,k = k ±Qy for the first order intrinsic resonances, and εk is the
resonance strength which is given by the Fourier amplitude

εk =
1

2π

∫
(t+ ir)eiν

±
res,kθ dθ . (10.48)

For the case of an imperfection resonance, the resonance strength is given ap-
proximately by summing over the radial error fields encountered by a particle
on the closed orbit in one turn around the ring:

εk ≈
1 +Gγ

2π

∑
l

Δsl
∂Bx/∂y

Bρ
yeiνres,kθ , (10.49)

where y is the transverse amplitude with respect to the magnet center, and
Δsl is the length of the lth integration step around the ring.
As an illustration of the previous results, we now show that a transverse

imperfection resonance can also shift the spin tune ν0. In the single resonance
approximation [46, 53], the spin equation in the laboratory frame is given by

dΨ

dθ
= −

i

2

(
Gγ −ζ
−ζ∗ −Gγ

)
Ψ, with ζ = ε · e−iνresθ , (10.50)

in which ε is the resonance strength, νres is the resonance tune, and θ is
the particle orbital angle around the accelerator. The spin motion near the
imperfection resonance can be visualized by transforming the spin equation
to the resonance precession frame (i.e., the reference frame in which the
polarization vector does not precess if the spin tune is exactly equal to the
resonant tune). Thus, considering

Ψk = e
i νresθ2 σyΨ , (10.51)
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we obtain an expression for the effect of the imperfections,

dΨk
dθ
= −

i

2

(
−δ ε
ε∗ δ

)
Ψ1 , (10.52)

with δ ≡ (νres −Gγ). This can also be written as

dΨk
dθ
=
i

2
(δσy + εRσx − εIσs)Ψk , (10.53)

where σi are the Pauli matrices and ε = εR + iεI the complex resonance
strength. Equation (10.53) can be integrated easily to yield

Ψk(θf ) = e
i
2 (δσy+εRσx−εIσs)(θf−θi)Ψk(θi) . (10.54)

Then transforming back to the laboratory frame, we obtain

Ψ(θf ) = e
−i
νresθf
2 σye

i
2 (δσy+εRσx−εIσs)(θf−θi)ei

νresθi
2 σyΨ(θi)

= T (θf , θi)Ψ(θi) . (10.55)

By expanding the exponential, the spin transfer matrix T (θf , θi) for a single
resonance may be calculated [46, 53]:

T (θf , θi) =

⎛
⎜⎝ aei

(
c−

νres(θf−θi)

2

)
ibe
−i

(
d+

νres(θf+θi)

2

)

ibe
i

(
d+

νres(θf+θi)

2

)
ae
−i

(
c−

νres(θf−θi)

2

)
⎞
⎟⎠ , (10.56)

with

b =
|ε|

λ
sin
λ(θf − θi)

2
, a =

√
1− b2,

c = arctan

[
δ

λ
tan
λ(θf − θi)

2

]
, d = arg(ε∗),

δ = νres −Gγ, λ =
√
δ2 + |ε|2 . (10.57)

The spin tune on the closed orbit can be obtained from the trace of the
one turn transfer map, T (θ + 2π, θ) of (10.56), i.e.,

cosπν0 = a cos(c− ν0π) . (10.58)

Figure 10.11 shows the spin tune shift, δν = Gγ−ν0, as a function of Gγ−2
for the special cases where |ε| =

√
ε2R + ε

2
I = 0.0008 and |ε| = 0.0015. In

both cases, for Gγ far away from the resonance tune, νres, one has δ � |ε|
and a ≈ 1, so that ν0 ≈ Gγ. As Gγ approaches the resonance tune, the spin
tune is shifted from Gγ by Δν0 = −|ε| below the resonance and by Δν0 = |ε|
above the resonance, i.e., the spin tune is always shifted away from the res-
onance tune. Therefore at a given energy, the observed width of the vertical
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Fig. 10.11. Spin tune shift (ν0 −Gγ) versus (Gγ − 2) near an imperfection reson-
ance, according to (10.58). The dashed curve corresponds to a resonance strength
of magnitude 0.0008. The solid curve results for a resonance strength of 0.0015

polarization (in Fig. 10.8, for example) would always be increased when the
effect of the imperfection resonance is included. The observed slope of the
radial polarization at the fully compensated field value would also be less-
ened in magnitude. Figure 10.11 indicates that the effect of the imperfection
resonance becomes important only in very close proximity to the resonance.
The solution of (10.52), decomposed into two eigenmodes, is

Ψ± = e
±iλθ2

⎛
⎝ ε
|ε|

√
λ±δ
2λ

∓
√
λ∓δ
2λ

⎞
⎠ , (10.59)

where λ =

√
δ2 + |ε|2. The particle spin is given by a linear combination of

the eigensolutions,
Ψ1(θ) = C+Ψ+ + C−Ψ− , (10.60)

normalized such that |C+|
2
+ |C−|

2
= 1. The component along the y axis is

Sy = Ψ
†σyΨ

= Ψ1
†σyΨ1

=
δ

λ

(
|C+|

2 − |C−|
2
)
+
2|ε|

λ
Re[C+C−

∗eiλθ] . (10.61)

For an initially vertically polarized particle, the time-averaged vertical
polarization is found to be

〈Sy〉 =
δ

λ
(|C+|

2 − |C−|
2
) =
δ2

λ2
=

δ2

δ2 + |ε|2
, (10.62)

which is less than the initial polarization by an amount that depends on the
resonance strength ε.
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Exercises

10.1 Electrostatic Lenses and Muon Storage Rings

The muon anomolous magnetic moment, aμ, now recognized to be about
0.001166, can be measured very accurately using electrostatic lenses with a
transverse electric field. In the rotating reference frame, the spin precession
is given by

Ω = −
e

mγ

(
aμB⊥γ + (1 + aμ)B‖ +

(
aμγ −

γ

γ2 − 1

)
E × v

c2

)
. (10.63)

Show that even the transverse electric field E does not contribute to spin
precession when the Lorentz factor is6

γ =

√
1 +

1

aμ
. (10.64)

10.2 Spinors

This exercise provides practice with spinor-matrix algebra.
a) Using (10.10) find the spinor wave function for the spin basis S =

[Sx,Ss,Sy] with Sx = [1 0 0], Ss = [0 1 0], and Ss = [0 0 1].
b) Show that the Pauli matrices are unitary (σjσ

†
j = I) and Hermitian

(σ†j = σj) with σ
† · σ = 3I.

c) Verify the compact form of the commutation relations:

σjσk = δjkI + iΣmεjkmσm, (10.65)

where

δjk = 1 if j = k
= 0 if j �= k (10.66)

and εjkm is the Levi-Civita tensor defined by

εjkm = 0 if any two indices are equal
= +1 for even permutation of indices
= −1 for odd permutation of indices . (10.67)

10.3 Spin Precession in Solenoidal Fields

Consider a vertically polarized beam traversing (β = βŝ) a longitudinal
solenoid of field B = Bz ŝ of length l in the absence of any electric fields.

6 Adapted from lecture notes of A. Chao (1999)
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a) Show that the spin precession φ after traversal of the solenoid is given
by

φ = −
e

γmc2
l

β
(1 +G)Bz . (10.68)

b) Suppose this solenoid is in a circular accelerator. By equating the
centrifugal and Lorentz forces on the particle show that the magnetic rigidity
is

Bρ =
βE

ec
, (10.69)

where B is the vertical magnetic dipole field, and reexpress (10.68) in terms
of the rigidity.
c) For spin polarization in a storage ring we have seen that spin preces-

sion by π per turn helps cancel various spin resonances. For the case of a
proton beam with 100 MeV kinetic energy specify the required integrated
field strength to achieve this.

10.4 Periodic Spin Motion

Using the expansion of the exponential

eiασj = cosα+ iσj sinα where j = x, s, y , (10.70)

verify (10.25).

10.5 SLC ‘3-state experiment’

Assuming no resonant depolarization (that is pure spin precession) in the
SLC arcs, show that the magnitude of the polarization at the interaction point
(IP) can be obtained from three successive measurements of the longitudinal
polarization at the IP by proper orientation of the incoming polarization with
each measurement.

10.6 Type-3 Snakes

Let L represent a precession about the longitudinal axis.
a) Show that the configuration[
V

(
−
φ

2

)
L
(
+
χ

4

)
V

(
+
φ

2

)]
L
(
−
χ

2

) [
V

(
−
φ

2

)
L
(
+
χ

4

)
V

(
+
φ

2

)]
(10.71)

is does not introduce a net deflection, but produces a net spin precession
about the vertical axis.
b) Draw the spin orientation and the particle orbit for the given magnet

configuration.


