
9 Experimental Methodology 

This chapter describes all the data sets used in the results chapter and the parameter settings for 
the various methods. In the final section, brief overviews of the Gene Ontology (GO) database 
and overrepresentation analysis (ORA) are provided. For general distribution analyses, the 
CRAN R package AdaptGauss [Thrun/Ultsch, 2015; Ultsch et al., 2015] was used. For the 
topographic map and island visualization the CRAN R package GeneralizedUmatrix was used 
[Thrun/Ultsch, 2017b]. For the ABC analysis the CRAN R package ABCanalysis was used 
[Thrun et al. 2015]. For DBS clustering and Pswarm projection the CRAN R package Data-
bionic swarm was used [Thrun, 2017]. 

9.1 Data Sets 

For the comparison of Pswarm as a projection method with the swarm-organized projection 
(SOP) algorithm, the original data sets of [Herrmann, 2011] were used. The artificial data sets 
of the Fundamental Clustering Problems Suite (FCPS) [Ultsch, 2005a] are summarized in Tab. 
1 with regard to the cluster structures discussed in chapter 2. 

 “The FCPS comprises a collection of intentionally simple data sets with known classifications offering a variety 
of problems on which the performance of clustering algorithms can be tested. The data sets in the FCPS are spe-
cially designed such that the performance of clustering algorithms on particular challenges, for example, outliers 
or density- vs. distance-defined clusters, can be tested” [Ultsch/Lötsch, 2016, p. 4].  

All FCPS data sets have uniquely unambiguously defined class labels. For the error rate is de-
fined as 1-Accuracy (Eq. 3.1 on p. 29) was is used as a sum over all true positive labeled data 
points by the clustering algorithm. The best of all permutation of labels of the clustering algo-
rithm regarding the accuracy was chosen in every trial, because the labels are arbitrarily defined 
by the algorithms.  
Additional data sets that are used in later chapters are also described below in alphabetical 
order. If these data sets are not discussed directly in chapter 10 and 11 than please see to 
Supplement C and D where the clusterings and the visualizations of DBS are shown. The hy-
drology data set and the pain genes data set are separately introduced in chapter 12. 

9.1.1 Atom 

“The Atom data set [Ultsch, 2005c] consists of two clusters in Թଷ. The first cluster is completely enclosed by the 
second one and, therefore, cannot be separated by linear decision boundaries. Additionally, both clusters have 
different densities and variances. The Atom data set consists of a dense core of 400 points surrounded by a well 
separated, but sparse hull of 400 points. Both clusters are not linearly separable and many algorithms cannot 
construct a cohesive projection. The core is located in the center of the hull, which, for some methods based on 
averaging, makes it hard to solve it. The density of the core is much higher than the density in the hull. For data in 
the hull, some of the inner-cluster distances are bigger than the distance to the other clusters. The data set was not 
preprocessed“ [Herrmann, 2011, pp. 99-100]. 

9.1.2 Chainlink 

The Chainlink data set [Ultsch, 1995; Ultsch et al., 1994] consists of two clusters in Թଷ. To-
gether, the two clusters form intricate links of a chain, and therefore, they cannot be separated 
by linear decision boundaries [Herrmann, 2011, pp. 99-100]. The rings are cohesive in Թଷ; 
however, many projections are not. This data set serves as an excellent demonstration of several 
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challenges facing projection methods: The data lie on two well-separated manifolds such that 
the global proximities contradict the local ones in the sense that the center of each ring is closer 
to some elements of the other cluster than to elements of its own cluster [Herrmann, 2011, pp. 
99-100]. The two rings are intertwined in Թଷ  and have the same average distances and densi-
ties. The data set was not preprocessed [Herrmann, 2011, pp. 99-100]. Every cluster contains 
500 points. 

9.1.3 EngyTime 

The EngyTime data set [Baggenstoss, 2002] contains 4,096 points belonging to two clusters in 
Թଶ; the data set is typical for sonar applications with the variables “Engy” and “Time” as a two-
dimensional mixture of Gaussians. The clusters overlap, and cluster borders can be defined only 
by using density information. There is no empty space between the clusters. The data set was 
not preprocessed [Herrmann, 2011, pp. 99-100]. 

9.1.4 Golf Ball 

The Golf Ball data set “consists of an artificial data set with 4,002 points, resembling a 3-D 
view of a golf ball” [Ultsch/Lötsch, 2016, p. 3]. “The points are located on the surface of a 
sphere at equal distances from each of the six nearest neighbors” [Ultsch/Lötsch, 2016, p. 4]. 
This data set does not contain any natural clusters. The data set was not preprocessed. 

9.1.5 Hepta 

The Hepta data set [Ultsch, 2003a] is used to illustrate the general problems with quality 
measures (QMs) and projections from the perspective of structure preservation. The three-di-
mensional Hepta data set consists of seven clusters that are clearly separated by distance, one 
of which has a much higher density. The data set consists of 212 points, comprising seven 
clusters of thirty points each plus two additional points in the center cluster. The centroids of 
the clusters span the coordinate axes of Թଷ. The density of the central cluster is almost twice as 
high as the density of the other six clusters. The structure of the data set is clearly defined by 
distances and is compact. The data set was not preprocessed. 

9.1.6 Iris 

“Anderson’s [Anderson, 1935] Iris data set was made famous by Fisher [Fisher, 1936], who used it to exemplify 
his linear discriminant analysis. It has since served to demonstrate the performance of many clustering algorithms” 
[G. Ritter, 2014, p. 220].  

The Iris data set consists of data points in Թସ with a prior classification and describes the geo-
graphic variation of Iris flowers. The data set consists of 50 samples from each of three species 
of Iris flowers, namely, Iris setosa, Iris virginica and Iris versicolor. Four features were meas-
ured for each sample: the lengths and widths of the sepals and petals (see [Herrmann, 2011, pp. 
99-100]). The observations have “only two digits of precision preventing general position of 
the data” [G. Ritter, 2014, p. 220] and “observations 102 and 142 are even equal” [G. Ritter, 
2014, p. 220]. The I. setosa cluster is well separated, whereas the I. virginica and I. versicolor 
clusters slightly overlap (see [Herrmann, 2011, pp. 99-100]). This presents “a challenge for any 
sensitive classifier” [G. Ritter, 2014, p. 220]. The data set was not preprocessed (see [Herrmann, 
2011, pp. 99-100]). 
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9.1.7 Leukemia 

The anonymized leukemia data set consists of 12,692 gene expressions66 from 554 subjects and 
is available from a previous publication [Haferlach et al., 2010]. Each gene expression is a 
logarithmic luminance intensity (presence call), which was measured using Affymetrix tech-
nology. The presence calls are related to the number of specific RNAs in a cell, which signals 
how active a specific gene is. Of the subjects, 109 were healthy, 15 were diagnosed with acute 
promyelocytic leukemia (APL), 266 had chronic lymphocytic leukemia (CLL), and 164 had 
acute myeloid leukemia (AML). “The study design adhered to the tenets of the Declaration of 
Helsinki and was approved by the ethics committees of the participating institutions before its 
initiation” [Haferlach et al., 2010, p. 2530]. The leukemia data set was preprocessed, resulting 
in a high-dimensional data set with 7.747 variables and 554 data points separated into natural 
clusters, as determined by the illness status and defined by discontinuities (see chapter 2). Ad-
ditionally, patient consent was obtained for the data set, in accordance with the Declaration of 
Helsinki, and the Marburg local ethics board approved the study (No. 138/16) [Brendel, 2016]. 

9.1.8 Lsun3D 

The Lsun3D data set consists of three well-separated clusters and four outliers in Թଷ; it is based 
on the two-dimensional Lsun data set of Moutarde and Ultsch [Moutarde/Ultsch, 2005]. Two 
of the clusters contain 100 points each, and the third contains 200 points. “The inter-cluster 
minimum distances, however, are in the same range as or even smaller than the inner-cluster 
mean distances” [Moutarde/Ultsch, 2005, p. 28]. The data set consists of 404 data points and 
was not preprocessed. 

9.1.9 S-shape 

“The plain s-curve data set is an artificial set sampled from an S-shaped two-dimensional sur-
face embedded in three-dimensional space” [Venna et al., 2010, p. 462]. The authors claim that 
“an almost perfect two-dimensional representation should be possible for a non-linear dimen-
sionality reduction method, so this data set works as a sanity check” [Venna et al., 2010, p. 462]. 
Here, it is more important that the data set does not possess any natural clusters. The data set 
consist of 2000 data points in Թଷ and was not preprocessed. 

9.1.10 Swiss Banknotes 

“The idea is to produce bills at a cost substantially lower than the imprinted number. This calls for a compromise 
and forgeries are not perfect” [G. Ritter, 2014, pp. 223-224]. “If a bank note is suspect but refined, then it is sent 
to a money-printing company, where it is carefully examined with regard to printing process, type of paper, water 
mark, colors, composition of inks, and more. Flury and Riedwyl [Flury/Riedwyl, 1988] had the idea to replace the 
features obtained from the sophisticated equipment needed for the analysis with simple linear dimensions” [G. 
Ritter, 2014, p. 224].  

The Swiss Banknotes data set consists of six variables measured on 100 genuine and 100 coun-
terfeit old Swiss 1000-franc bank notes. The variables are the length of the bank note, the height 
of the bank note (measured on the left side), the height of the bank note (measured on the right 
side), the distance from the inner frame to the lower border, the distance from the inner frame 
to the upper border and the length on the diagonal. The robust normalization of Milligan and 

                                                      
66 Process with which information from a gene is used in the synthesis of functional RNA or protein. 
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Cooper [Milligan/Cooper, 1988] is applied to prevent a few features from dominating the ob-
tained distances [Herrmann, 2011, pp. 99-100]. 

9.1.11 Target 

The Target data set [Ultsch, 2005c] consists of two main clusters and four groups of four outli-
ers each. The first main cluster is a sphere of 363 points, and the second cluster is a ring around 
the sphere and consists of 395 points. The data set as a whole consists of 770 points in Թଶ. The 
main challenge of this data set is the four groups of outliers in the four corners. The data set 
was not preprocessed. 

9.1.12 Tetra 

The Tetra data set, which is part of the FCPS, consists of 400 data points in four clusters in Թଷ 
that have large intracluster distances [Ultsch, 2005c]. The clusters are nearly touching each 
other, resulting in low intercluster distances. 

9.1.13 Tetragonula 

The Tetragonula data set was published in [Franck et al., 2004] and is available to the public in 
the R package prabclus:  

“It contains the genetic data of 236 Tetragonula (Apidae) bees from Australia and Southeast Asia. The data give 
pairs of alleles (codominant markers) for 13 microsatellite loci. The 13 string variables consist of six digits each” 
[Hennig, 2014]. The format is derived from the data format used by the GENEPOP 4.0 software implemented by 
Rousset in 2010. “Alleles have a three digit code, so a value of “258260” on variable V10 means that on locus 10, 
the two alleles have codes 258 and 260. “000” refers to missing values” [Hennig, 2014]. 

9.1.14 Cuboid 

The uniform Cuboid data set “was constructed by filling a cuboid with uniformly distributed 
random numbers in the x, y and z directions” [Ultsch/Lötsch, 2016, p. 5]. It was introduced in 
this publication. “A group structure [is] clearly absent by construction” [Ultsch/Lötsch, 2016, 
p. 5]; thus, the data set does not possess any natural clusters. The data set consists of 1000 data 
points in Թଷ and was not preprocessed. Additionally, another data set was generated by filling 
the same cuboid with Gaussian-distributed random numbers in the x, y and z directions. 

9.1.15 Two Diamonds 

“The data consists of two clusters of two-dimensional points. Inside each “diamond” the values 
for each data point were drawn independently from uniform distributions” [Ultsch, 2003c, p. 8]. 
The clusters contain 300 points each. “[In] [e]ach cluster[, the] points are uniformly distributed 
within a square, and at one point the two squares almost touch. This data set is critical for 
clustering algorithms using only distances” [Moutarde/Ultsch, 2005, p. 28]. The data set was 
not preprocessed. 

9.1.16 Wine 

The Wine data set [Aeberhard et al., 1992] is a 13-dimensional, real-valued data set. It consists 
of chemical measurements of wines grown in the same region in Italy but derived from three 
different cultivars. The robust normalization of Milligan and Cooper [Milligan/Cooper, 1988] 
is applied to prevent a few features from dominating the obtained distances [Herrmann, 2011, 
pp. 99-100]. 
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9.1.17 Wing Nut 

“The Wing Nut dataset […] consists [of] two symmetric data subsets of 500 points each. Each of these subsets is 
an overlay of equal[ly] spaced points with a lattice distance of 0.2 and random points with a growing density in 
one corner. The data sets are mirrored and shifted such that the gap between the subsets is larger than 0.3. Although 
there is a bigger distance in between the subsets than within the data of a subset, clustering algorithms like K-
means parameterized with the right number of clusters (k=2) produce classification errors” [Moutarde/Ultsch, 
2005, pp. 27-28].  

The data set was not preprocessed. 

9.1.18 World Gross Domestic Product (World GDP) 

The World GDP data set of [Leister, 2016] was constructed by selecting the purchasing power 
parity (PPP)-converted gross domestic product (GDP) per capita for the years from 1970 to 
2010 from the data published in [Heston et al., 2012] of 190 countries. The data were logarith-
mized, and countries with missing values were not considered. In the resulting data set, 160 
countries remain. 

Table 9.1:  Structures of the clusters in the artificial benchmark sets of the FCPS [Ultsch, 2005a] as defined in 
Chapter 2. 

Data Set Cluster Structure 

Atom Connected, direction-based, varying density, non-linear separable 

Chainlink Connected, direction-based, non-linear separable 

EngyTime Connected, unidirectional, varying density 

Hepta Compact, spherical, high intercluster distance 

Lsun3D Compact, ellipsoidal, outliers 

Target Connected, direction-based, outliers 

Tetra Compact, spherical, low intercluster distance 

Two Diamonds Compact, spherical, borders defined by discontinuity 

Wing Nut Connected, direction-based, linear separable 

Golf Ball No natural clustering tendency 

  

9.2 Parameter Settings 

The parameter settings for the clustering algorithms, the projection methods and the QMs used 
in this thesis are as follows. 

9.2.1 Quality Measures (QMs) 

Freely available implementations of the trustworthiness and discontinuity (T&D) measures and 
the precision and recall (P&R) measures (see chapter 6.1) in C++ code were used [Nybo/ 
Venna, 2015]. For all other measures, self-developed implementations were used. Every QM is 
available in our R package, projections, which also includes R wrappers for the C++ code for 
the T&D and P&R measures. Our density-based version of the Shepard diagram is also availa-
ble in the R package projections. This package can be downloaded from CRAN. 



112 Experimental Methodology 
 

9.2.2 Projection Methods 

For the projection methods considered here (see chapter 4), we used freely available code which 
is summarized in the ProjectionBasedClustering CRAN package [Thrun et al., 2017]: for prin-
cipal component analysis (PCA) [Pearson, 1901], we used the PCA software available in the R 
package stats [R Development Core Team, 2008]; due to technical limitations ICA was omitted 
in the analysis; for curvilinear component analysis (CCA) [Demartines/Hérault, 1995], the CCA 
source code [Alhoniemi, et al., 2005] was ported from MATLAB to R and for t-distributed 
stochastic neighbor embedding (t-SNE) [Van der Maaten/Hinton, 2008], we used Donaldson’s 
t-SNE implementation. Also included in the evaluation of various projection methods were the 
Neighbor Retrieval Visualizer (NeRV) algorithm ([Venna et al., 2010]) as implemented in the 
freely available C++ code [Nybo/ Venna, 2015] called in R (Thrun et al., 2017b]), the Sammon 
mapping technique for multidimensional scaling (MDS) [Sammon, 1969] available from [R 
Development Core Team, 2008], and the emergent self-organizing map (ESOM) algorithm as 
implemented in the R package Umatrix [Thrun et al., 2016a] which reproduced the results of 
[Ultsch/Mörchen, 2005]. 
For every projection method, only the default parameters were used, as given here (see also 
[Thrun et al., 2017]): The ESOM algorithm was set with 20 epochs; a planar lattice; 50 lines; 
80 columns; a Euclidean neighborhood function; and a linear annealing scheme with a starting 
radius of 25, an end radius of 1, a starting learning rate of 0.5 and an end learning rate of 0.1. 
For the NeRV method, lambda was set to 0.5 (for DCE baseline with PCA initialization) and 
0.1 (default); the optimization scheme was set with 20 neighbors, 10 iterations, 2 conjugate 
gradient steps per iteration, and 20 conjugate gradient steps in the final iteration; and the points 
were randomly initialized (default). PCA and Sammon mapping did not require any input pa-
rameters. For CCA, 20 epochs, an initial step size of 0.5, and a radius of influence of 
3*max	ሺ݀ݐݏሺ݀ܽܽݐሻሻ were specified. The t-SNE method was set with a perplexity of 30,100 
epochs and a maximum number of iterations of 1.000. Aside from ESOM, every projection 
method is available through standardized wrappers in our R package projections on CRAN. 
The NeRV source code was modified only as required for compatibility with the CRAN pack-
age Rcpp. The Delaunay classification error (DCE) measure is also available in our R package 
projections on CRAN. 

9.2.2.1 Swarm-Organized Projection (SOP) 

The SOP parameterization was chosen following Herrmann [Herrmann, 2011, p. 98], using a 
64 x 64 toroidal lattice with Gaussian neighborhoods, as described above. Further parameter 
specifications included a maximum of 500 iterations per epoch (for a single radius) and a jump-
ing DataBot threshold of 5%. In a given iteration, the DataBots were allowed to jump only if 
the number of DataBots that wished to jump was above this threshold. If only 5% or fewer of 
the DataBots could find a better position or if the maximum number of iterations was exceeded, 
the radius was reduced. The starting radius was set to the maximum possible distance in the 
output space as defined by [Herrmann, 2011, p. 65]. The source code was implemented in R by 
Kohlhof [Kohlhof, 2010] under the supervision of Lutz Hermann  and the SOP algorithm was 
executed using version 3.2.3 of R on a 64-bit Windows 7 system. Only Euclidean distances 
were used for SOP, consistent with the settings defined by [Herrmann, 2011, p. 98] and the 
restrictions of the source code. For this reason, the GDP194 data set was excluded because this 
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data set requires the use of special dissimilarities [Herrmann, 2011, p. 100]. Moreover, it should 
be mentioned that Rmin was set to a value much larger than 1 for this data set, although the 
precise number was not recorded [Herrmann, 2011, p. 167]. 
Other functional code for SOP or its extension for very large data sets, swarm-organized quan-
tization, was not available to the author67. A self-developed implementation based on the algo-
rithm exactly as described in chapter 7 yielded worse results on the data sets compared with 
that of Kohlhof [Kohlhof, 2010] because of the problems discussed in chapter 8. 

9.2.2.2 Pswarm 

For Pswarm, there are no parameters to set. In the case of the Wine data set, the distances were 
changed to squared Euclidean distances because the resulting distance distribution yielded a 
better distinction between the intra- and intercluster distances (see supplement B). The data sets 
were compared using the generalized U-matrix technique for three-dimensional visualization, 
as described in chapter 5. The CRAN R package Databionic swarm was used [Thrun, 2017]. 
Notably, the three-dimensional topographic map with hypsometric tints that is referred to as the 
generalized U-matrix in this thesis is completely different from the gray-scale two-dimensional 
visualization of Hermann [Herrmann, 2011, p. 72], which was also called the generalized U-
matrix.All source code was executed in R 3.3.1 [R project, , 2008] on a 64-bit Windows 7 
system. 

9.2.3 Common clustering algorithms 

For the k-means algorithm, the CRAN R package cclust was used [Dimitriadou/Hornik 2017]. 
For the single linkage (SL) and Ward algorithms, the CRAN R package stats was used [R De-
velopment Core Team, 2008]. For the Ward algorithm, the option “ward.D2” was used, which 
is an implementation of the algorithm as described in [Ward Jr, 1963]. For the spectral cluster-
ing algorithm, the CRAN R package kernlab was used [Karatzoglou et al., 2016] with the de-
fault parameter settings: “The default character string “automatic” uses a heuristic to determine 
a suitable value for the width parameter of the RBF kernel”, which is a “radial basis kernel 
function of the “Gaussian” type”. The “Nyström method of calculating eigenvectors” was not 
used (=FALSE). The “proportion of data to use when estimating sigma” was set to the default 
value of 0.75, and the maximum number of iterations was restricted to 200 because of the al-
gorithm’s long computation time (on the order of days) for 100 trials using the FCPS data sets. 
For the mixture of Gaussians (MoG) algorithm, the CRAN R package mclust was used [Fraley 
et al., 2017]. In this instance, the default settings for the function “Mclust()” were used, which 
are not specified in the documentation. For the partitioning around medoids (PAM) algorithm, 
the CRAN R package cluster was used [Maechler et al., 2017]. 

9.3 Gene Ontology (GO) 

An ontology is a representation of knowledge in which the relationships part of and is a are 
visualized in a directed acyclic graph (DAG). For the analysis of pain genes, the GO database 
was accessed via R 3.3.1 [R Development Core Team, 2008]. In the GO database, knowledge 

                                                      
67  Lutz Herrmann’s 2011 Java implementation is largely identical to that of [Kohlhof, 2010], but the source code 

could not be compiled. 
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about molecular functions, biological processes and the cellular components of genes is defined 
using a controlled vocabulary consisting of labels called GO terms, which are used to represent 
biological concepts [Ashburner et al., 2000]. These terms describe and unify the attributes of 
genes and gene products68 in a species-independent manner. “The GO terms are ordered in a 
directed acyclic graph (DAG), in which the set of genes annotated69 to a certain term (node) is 
a subset of those annotated to its parent nodes” [Goeman/Mansmann, 2008]. Here, the important 
relationships between the nodes are of the “part of” type, resulting in a “top-down poly-hierar-
chy of GO terms” starting “at the root with terms with the broadest definition” and specializing 
“toward the leaves representing GO terms of the narrowest definition (details)” [Ultsch et al., 
2016b]. Given a set of genes, ORA reveals the significance of a GO term that represents these 
genes or a subset of these genes [Backes et al., 2007]. 

9.3.1 Overrepresentation Analysis (ORA) 

“In ORA, the most commonly used statistical test is based on the hypergeometric distribution or its binomial ap-
proximation ([…] among others). Let A denote a GO term or the set of genes annotated to A (with cardinality ܫ஺), 
and let S denote the set of genes (with cardinality ܫௌ) based on a certain criterion (i.e. differential expression) from 
a full gene list G (with cardinality I) in an experiment. The number of genes belonging to both S and A (S∩A), 
denoted by ݊஺, indicates the representation of A in S. Under the null hypothesis that S and A are independent (i.e. 
the GO term is irrelevant to the gene cluster), ݊஺ follows a hypergeometric distribution. The [p-value ݌] measuring 
the significance of association is the tail probability of observing ݊஺, or more genes annotated by A in S, 
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 is the binomial coefficient. Many software packages and webtools (Onto-Express, CLAS-

SIFI, GoMiner, EASEonline, GeneMerge, FuncAssociate, GOTree Machine, etc.) have been developed based on 
the hypergeometric [p-value]. A detailed review can be found in Khatri and Drăghici [Khatri/Drăghici, 2005]. 

The hypergeometric [p-value] provides a straightforward measure of overrepresentation for each individual GO 
term. However, the major drawback of this approach is that it ignores the hierarchical structure in the GO DAG, 
which contains a substantial amount of information regarding the interactions among the GO terms” [Zhang et 
al., 2010, pp. 905-906].  

For the ORA algorithm, the R package ORA was used [Lippmann et al., 2016]. 

9.3.2 Filtering via ABC Analysis 

The resulting p-values ݌ were filtered via ABC analysis (see chapter 5.3.2 on p. 49 for further 
explanation) [Ultsch/Lötsch, 2015]; thereafter, only the most important group A was considered 
for interpretation. For the ABC analysis algorithm, the CRAN R package ABC analysis was 
used [Thrun et al., 2015]. 
Here, it is argued that changing the threshold with respect to the significance of the p-value 
does not lead to better results. Aside from the problems discussed by Button and Nuzzo [Button 
et al., 2013; Nuzzo, 2014], the paramount goal of a gene analysis is to find GO terms with a 

                                                      
68 Usually either Ribonucleic acid (RNA) or a protein 
69  For further details, see [Camon et al., 2003] and [Camon et al., 2004]. 
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high effect strength. For this purpose, it is sufficient for the effect to be significant with regard 
to a commonly used (arbitrary) p-value threshold. 
Let E be the strength of an effect as defined with respect to its p-value significance p (expressed 
as a percent), as follows: 

ܧ ൌ െ10log	ሺ݌ሻ ሺ9.2ሻ 
At first glance, the definition given in Eq. 9.2 is contradictory to the equation above (1). 
On the one hand, the calculation of p-values based on the Fisher test with ݌ሺܫ஺,ܫௌ, ݇,  ሻ requiresܫ

four parameters; on the other hand, one would calculate the strength of an effect based on the 
relative difference between the expected value e and the observed value o, known as the fold 
change ܥܨ: 

,ሺ݇ܥܨ ݁ሻ ൌ 2
݋ െ ݁
݋ ൅ ݁

ሺ9.3ሻ 

Here, the p-values are calculated analogously to Backes [Backes et al., 2007], where the formula 
is called the hypergeometric test. However, the hypergeometric test is simply the Fisher test 
based on the hypergeometric distribution [Ultsch, 2014a]. The hypergeometric distribution is 
defined as 
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Given this distribution, the expected value ݁ሺ݂ሻ is defined as 
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It can be shown that Eq. 9.2 is directly proportional to the definition of the expected number of 
genes in Eq. 9.5 [Ultsch, 2014a]. Therefore, the observed number of genes o are compared 
against a hypergeometric distribution (Eq. 9.4) around the value for the expected genes number 
of e in Eq. 9.5, and in the special case of ORA, the p-values imply more than merely 
significance. 
One may ask why the calculation must be complicated if the fold change, as defined in Eq. 9.3, 
could be used. The disadvantage of the fold change is illustrated in the following equation: 

,݋ሺܥܨ ݁ሻ ൌ 2
݋ െ ݁
݋ ൅ ݁

ൌ 2
ܿ ∗ ݋ െ ܿ ∗ ݁
ܿ ∗ ݋ ൅ ܿ ∗ ݁

ሺ9.6ሻ 

According to this equation, one expected gene compared with four observed genes yields the 
same value as 100 expected genes compared with 400 observed genes. Clearly, the effect 
strength here is not the same. 
It could be argued that this problem could be solved by reducing the p-value threshold to a low 
level, such that only a few GO terms are represented in the DAG. However, one would be 
obliged to do this manually for every ORA calculation. Moreover, to the author’s knowledge, 
every tool or package that uses GO terms or performs ORA calculations has a different version 
of the GO database. Hence, the p-value calculation has a measurement error that is difficult to 
specify. Furthermore, even if a tool used the database obtained directly from the Gene Ontology 
Consortium, there is an even stronger source of measurement error: every list of genes ܫௌ to be 
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analyzed was obtained based on microarray experiments with arbitrary thresholds or probe 
intensities (for a detailed discussion, see [Khatri et al., 2012, p. 3]). 
Here, with regard to the definition of the effect strength given in (Eq. 9.2), it is assumed that 
the magnitudes of the p-values do not change regardless of measurement errors. This is the 
reason for taking the logarithm of the p-value in (Eq. 9.2). Moreover, Figure 9.1 shows the 
correlation between the fold change FC (Eq. 9.3) and the effect strength E (Eq. 9.2) for a given 
interval of the number of annotated genes per GO term. Consistent with Ultsch [Ultsch, 2014a], 
it is argued here that in ORA, the p-values are directly proportional to the effect sizes. 
After setting the p-value threshold to 0.05, which is a generally accepted level of significance, 
and calculating the corresponding GO terms, the results of an ABC analysis of the effect 
strengths as given by (2) can be obtained. The relevant GO terms are defined as those assigned 
to group A in the ABC analysis. 

 

Figure 9.1:  Scatter plot of the fold changes FC of Eq. 9.6 and the corresponding E value of Eq. 9.3 for numbers 
of annotated genes per GO term in the range [10,25] is proportional.  
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