
4 Methods of Projection 

Dimensionality reduction techniques reduce the dimensions of the input space to facilitate the 
exploration of structures in high-dimensional data. Two general dimensionality reduction ap-
proaches exist: manifold learning and projection. Manifold-learning methods attempt to find a 
sub-space in which the high-dimensional distances can be preserved. These sub-spaces may 
have a dimensionality of greater than two. However, only two- or three-dimensional represen-
tations of high-dimensional data are easily graspable for to the human observer. 
The goal of this chapter is the visualization of structures in high-dimensional data. Venna et al. 
argued that “manifold learning methods are not necessarily good for […] visualization […] 
since they have been designed to find a manifold, not compress it into a lower dimensionality” 
[Venna et al., 2010, p. 452], and it has been shown by van der Maaten et al that they do not 
outperform classical principal component analysis (PCA) for real-world tasks [L. J. van der 
Maaten et al., 2009]. 
Therefore, this chapter focuses on common projection methods. Many projection methods are 
characterized by an objective function that is optimized using gradient descent or a correspond-
ing learning algorithm. The quality of the projection and, consequently, of the visualization will 
critically depend on the similarity concept chosen as the basis of the objective function, which 
may be based on either distance or local proximity; thus, the methods will be categorized on 
this basis. This chapter will attempt to relate the various projection approaches to the compact 
and connected structure types introduced in the previous chapter. 

4.1 Common Approaches 

Here, projection is used as a method for visualizing high-dimensional data in a two-dimensional 
space such that the discontinuities in the data are captured. Thus, the quality of a projection 
critically depends on the chosen similarity concept. This concept may be defined based on either 
distance or local proximity. The former type of similarity describes the arrangement of all given 
points in space and is sometimes called topography; the latter compares local neighborhoods 
and is sometimes called topology. Here, projections are called focusing if they are constructed 
using an iterative learning process that first adapts to the global intercluster distances and then 
focuses on more local intracluster distances. 

4.1.1 Principal Component Analysis (PCA) 

PCA assumes that the directions in the input space that show the highest variance contain the 
most information about the data set [Hotelling, 1933]. The coordinate system of the input space 
is replaced with a (principal) coordinate system in which the variance of the data is maximized. 
This is achieved by finding a set of weighted linear combinations of the original variables, 
where the weights are found through eigendecomposition (for a definition, see [Goodfellow et 
al., 2016, pp. 42-44]). 
Pearson proposed an equivalent definition based on an objective function in which the average 
projection cost is minimized [Pearson, 1901]. The projection cost is defined in terms of the 
mean squared distances between the points ݈ ∈ ݆ and the projected points ܫ ∈ ܱ: 
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 Here, n is the dimension of the input space I, m is the dimension of the output space O, the .ܫ
ܾ ௜ are the basis vectors, and theݑ ௜ are constants. The minimization of J is achieved by choosing 
the basis vectors to be eigenvectors of the covariance matrix constrained by the orthonormality 
conditions [Duda et al., 2001, pp. 114-117]: 
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Now, the objective function E can be redefined in (4.4) in terms of the eigenvalues ߣ௜ in (4.1) 
as 
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where n is the dimension of the input space I and m is the dimension of the output space O. The 
largest eigenvalues correspond to the 1,… ,݉ dimensions with the largest variance. Dimensions 
of the input space with small variances are discarded. Thus, PCA is an orthogonal projection of 
the data into a lower-dimensional space. It should be noted that “PCA remains a rather basic 
method and suffers from many shortcomings” [Lee/Verleysen, 2007, p. 226]. 

4.1.2 Independent Component Analysis (ICA) 

“Independent component analysis (ICA) is a method for finding underlying factors or components from multivari-
ate (multi-dimensional) statistical data. What distinguishes ICA from other methods is that it looks for components 
that are both statistically independent, and nonGaussian” [Hyvärinen et al., 2004]. 

Let ܫ ൌ ሺ݈ଵ, … , ݈௡ሻ be defined as the matrix of the data in the input space. ICA assumes that I is 
a linear combination of non-Gaussian independent components S as follows: 

ܫ ൌ ܵ ∗ ܣ ሺ4.5ሻ	

where A is a linear mixing matrix and ܵ ൌ ሺ݆ଵ, … , ݆௡ሻ, ݆ ∈ ܱ. ICA unmixes I by estimating a 
matrix ܹ ൌ  ଵ such thatିܣ

ܫ ∗ ܹ ൌ ܵ ሺ4.6ሻ	

With the goal of estimating W, the central limit theorem and matrix search can be used to max-
imize the non-Gaussianity. In the fastICA algorithm [Hyvärinen, 1997], the non-Gaussianity is 
defined as the negentropy F, and it is approximately maximized by maximizing the objective 
function in (4.7) 
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where N is a Gaussian and G is a contrast function, e.g., ܩሺݑሻ ൌ െ݁݌ݔሺെ ௔௨మ

ଶ
	ሻ. 

Constraints on the estimated contrast function G include pre-whitening and the centering of the 
data in the input space [Hyvärinen et al., 2004]. 
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4.1.3 Non-linear metric multidimensional scaling (MDS) techniques 

Multidimensional scaling (MDS) was originally proposed by [Torgerson, 1952]. MDS tech-
niques attempt to preserve the pairwise distances D(l, j) of the input space in the output space 
to the greatest possible extent. Therefore, MDS techniques minimize an objective (error) func-
tion E that is, as given in [Kruskal, 1964b], defined as 
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where f(D(l, j)) is a non-metric, monotonic transformation of the distances in the input space 
[Kruskal, 1964a, p. 7]. E is often called the stress, and E is minimized in an attempt to reproduce 
the general rank ordering of the distances. This minimization is usually performed via gradient 
descent. 
However, the objective function E depends on the scale on which the distances are measured. 
It is preferable to normalize the objective E to reduce it to the same units in which the distances 
are expressed (Eq.4.9). Sammon mapping [Sammon] is one type of MDS technique and uses 
the error function 
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4.1.4 Curvilinear Component Analysis (CCA) 

When a non-linear structure is being analyzed, MDS cannot reproduce all distances. Therefore, 
[Demartines/Hérault] proposed a projection method that favors local neighborhoods. Curvilin-
ear component analysis (CCA) attempts to reproduce short distances before reproducing long 
distances [Demartines/Hérault, 1995]. The objective function is defined in (4.10) as 
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where ݄:		Թ → ሾ0,1ሿ is a neighborhood function that depends on a radius R as follows: 
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4.1.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

The t-distributed stochastic neighbor embedding (t-SNE) technique is an enhanced version of 
SNE [Hinton/Roweis, 2002] in which the Kullback-Leibler divergence (KLD) is symmetrized 
and the crowding problem solved. The latter is achieved by redefining the conditional proba-
bilities in the output space O through the application of Student’s t-distribution with 
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In [Van der Maaten/Hinton], the distance between two data points is redefined as the condi-
tional probability that j would pick l, where ݈, ݆ ∈  :as follows ,ܫ
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where ߪሺ݈ሻ is the variance of a Gaussian that is centered on data point j. If the projection is 
correct, then the conditional probabilities will be equal [Van der Maaten/Hinton]. Therefore, 
the objective function is defined using the symmetric KLD in (14) as 
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4.1.6 Neighborhood Retrieval Visualizer (NeRV) 

[Venna et al., 2010] reintroduced the idea of misses used by [Ultsch/Herrmann, 2005], where 
misses are similar data points ሺ݈ூ, ݆ூ)	∈ ݅ that are mapped onto far separated points ሺ݈ை, ݆ைሻ ∈ ܱ 
[Ultsch/Herrmann, 2005]. Conversely, if a pair of closely neighboring positions ሺ݈ை, ݆ைሻ repre-
sents a pair of distant data points, then this pair is called a false positive. From the information 
retrieval perspective, this approach allows one to define the precision ܨ௉	and the recall ܨோ for 
the case in which the neighborhoods are simply binary. However, [Venna et al., 2010] goes a 
step further by replacing such binary neighborhoods with probabilistic ones, which are loosely 
inspired by the SNE approach [Hinton/Roweis, 2002]. The neighborhood of the point l is de-
fined in terms of the relevance of the ݆ ∈  :points around l ܫ
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where ߪ௟ is set to the value for which the entropy of ݌௟ሺ݆ሻ is equal to log(knn) and knn is a rough 
upper limit on the number of relevant neighbors that is set by the user [Venna et al., 2010]. The 
authors propose a default value of 20 effective nearest neighbors. Similarly, the corresponding 
neighborhood in the output space is defined as 
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These neighborhoods are compared based on the mean of the KLD, which is used to define the 
precision ܨ௉ and recall	ܨோ: 
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The objective function is then defined in (19) as 
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The objective function E is non-linearly optimized via conjugate gradient descent. In the ab-
sence of prior knowledge, the neighborhoods p are defined as symmetric Gaussians or heavy-
tailed distributions. The weighting between precision and recall must be set by the user using 
the parameter	ߣ. Weighting precision over recall means that if points are similar to each other 
in the output space, then they will also be similar to each other in the input space, whereas 
weighting recall over precision means that if points are similar in the input space, then they will 
also be similar in the output space. Note that the KLD and the symmetric KLD do not follow 
the triangle inequality for metric spaces. 
The projection approach used in the Neighborhood Retrieval Visualizer (NeRV) method is ran-
domly initialized by default, resulting in stochastic projections (see Figure 4.1). However, there 
exists an option to use PCA projection for initialization. 

4.2 Emergent Self-Organizing Map (ESOM) 

Self-organizing (feature) map (SOM) was invented by [Kohonen, 1982a, 1982b] and is a type 
of unsupervised neural learning algorithm. In contrast to other neural network models20 a SOM 
consists of an ordered two-dimensional layer of neurons called units. Neurons are intercon-
nected nerve cells in the human neocortex [H. Ritter et al., 1992, p. 22], and the SOM approach 
was inspired by somatosensory maps (e.g. see [Hennig et al., 2015, p. 421] cites [Haykin, 1994], 
see also [Kandel, 2012, p. 335]). There are two types of SOM algorithms: online and batch 
[Fort et al., 2001]. The first is stochastic, whereas the second is deterministic, which means that 
it yields reproducible results for a given parameter setting. However, Fort et al. have argued 
“that randomness could lead to better performances” [Fort et al., 2001, p. 12]. 
The main differences between batch-SOM [Kohonen/Somervuo, 2002] and online-SOM [Ko-
honen, 1995] lie in the updating and averaging of the input data. In batch-SOM, prototypes (see 
Eq. 4.20 below) are assigned to the data points and the influences of all associated data points 
are calculated simultaneously, in contrast to online-SOM, in which sequential training of the 
neurons is applied (as described in detail below). The batch-SOM method has been shown to 
produce topographic mappings of varying quality depending on the pre-defined parametrization 
[Fort et al., 2001], and “the representation of clusters in the data space on maps trained with 
batch learning is poor compared to sequential training“ [Nöcker et al., 2006]. An important 
comparison between the batch-SOM approach and ant-based clustering was presented by 
[Herrmann/Ultsch, 2008c] and will be elaborated upon in chapter 7. No objective function is 
used in online-SOM [Lee/Verleysen, 2007, p. 241], and SOM remains a reference tool for two-
dimensional visualization [Lee/Verleysen, 2007, p. 244]. 
In one common approach to applying the SOM concept, the algorithm acts as an extension of 
the k-means algorithm [Cottrell et al., 2016] or is a partitioning method of the k-means type 
[Murtagh/Hernández-Pajares, 1995]. In such a case, only a few units are used in the SOM al-
gorithm to represent the data [Reutterer, 1998], which results in direct clustering of the data. 
Here, each neuron can be considered to represent a cluster. For example, Cottrell and de Bodt 

                                                      
20    For an overview, see [H. Ritter et al., 1992], for deep learning see [Goodfellow et al., 2016]. 
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used 4x4 units to represent the 150 data points in the Iris data set ([Ultsch et al., 2016a] cites 
[Cottrell, 1996]). Therefore, the conventional SOM algorithm is called k-means-SOM here. 
This SOM algorithm also has two common extensions called Heskes-SOM [Heskes, 1999] and 
Cheng-SOM; these two extensions include objective functions [Cheng, 1997] and are not dis-
cussed further in this thesis. The optimization of objective functions in general will be discussed 
in chapter 6, where it will be argued that it is not useful for the goal of this thesis. Chapter 7 
will show that objective functions are incompatible with self-organization. 
The other approach to applying SOM is to exploit its emergent phenomena through self-organ-
ization, in which case it is necessary to use a large number of neurons (>4000) [Ultsch, 1999]. 
This enhancement of the online-SOM approach is called emergent SOM (ESOM). In such a 
case, the neurons serve as a projection of the high-dimensional input space instead of a cluster-
ing, as is the case in k-means-SOM. 
Let ܯ	 ൌ 	 ሼ݉ଵ,…	,݉௡	ሽ be the positions of neurons on a two dimensional lattice21 (feature map) 
and ܹ	 ൌ 	 ሼݓሺ݉௜ሻ 	ൌ 	݅|	௜ݓ ൌ 	1, … 	݊ሽ the corresponding set of weights or prototypes of neu-
rons, then, the SOM training algorithm constructs a non-linear and topology-preserving map-
ping of the input space by finding the best matching unit (ܷܯܤ) for each ݈ ∈  :ܫ

ሺ݈ሻݑܾ݉ ൌ argmin
௠೔∈ெ

ሼܦሺ݈, ,௜ሻሽݓ ݅ ∈ ሼ1,… , ݊ሽ ሺ4.20ሻ,		

if in Eq. 4.20 a distance in the input space I between the point l and the prototype ݓ௜ is denoted. 
In each step, SOM learning is achieved by modifying the prototypes (weights) in a neighbor-
hood as follows: 

ሺܴሻݓ߂ ൌ ሺܴሻߟ ∗ ݄ሺܾ݉ݑሺ݈ሻ,݉௜, ܴሻ ∗ ሺ݈ െ ሺ݉௜ሻሻݓ ሺ4.21ሻ	

The cooling scheme is defined by the neighborhood function ݄ ܯ: ൈ ܯ ൈ Թା → ሾെ1,1ሿ and the 
learning rate ߟ: Թା → ሾ0,1ሿ, where the radius R decreases until ܴ ൌ 1 in accordance with the 
definition of the maximum number of epochs. In contrast to all previously introduced projection 
methods, no objective function is used in the ESOM algorithm. Instead, ESOM uses the concept 
of self-organization (see chapter 6 for further details) to find the underlying structures in data. 
The structure of a (feature) map is toroidal; i.e., the borders of the map are cyclically connected 
[Ultsch, 1999], which allows the problem of neurons on borders and, consequently, boundary 
effects to be avoided. The positions ݉ ∈  of the BMUs exhibit no structure in the input space ܯ
[Ultsch, 1999]. The structure of the input data emerges only when a SOM visualization tech-
nique called U-matrix is exploited [Ultsch/Siemon, 1990]. 
Let ܰሺ݆ሻ be the eight immediate neighbors of ௝݉ 	 ∈ -௝ ∈ ܹ be the corresponding proݓ let ,ܯ	

totype to ௝݉, then the average of all distances between prototypes ݓ௜ 

ሺ݆ሻݑ ൌ
1
݊
෍ ,ሺ݉௜ሻݓሺܦ ሺݓ ௝݉ሻሻ
௜∈ேሺ௝ሻ

, ݊ ൌ |ܰሺ݆ሻ|	 ሺ4.22ሻ	

A display of all U-heights in Eq. 4.22 is called a U-matrix [Ultsch/Siemon, 1990].  

                                                      
21 In general this work uses the term grid if the resulting tiling is hexagonal and lattice if the resulting tiling is 

rectangular (see connected graph). In the context here the distinction is not important, therefore we use the term 
(feature) map. 
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“By formalizing the displayed structures, [Lötsch/Ultsch, 2014] showed that the U-matrix is an approximation of 
the Voronoi borders of the high-dimensional points in the output space: 

Let bmu(l) and bmu(j) be the BMUs of data points l and j, where bmu(j) and bmu(l) have bordering Voronoi cells. 
On the borderline, there is a vertical plane (AU-height), which is the distance D(l, j) > 0 between the data points 
in the input space. In sum, the abstract U-matrix (AU-matrix) is the Delaunay graph of the BMUs weighted by the 
corresponding Euclidean distances in the input space” [Thrun et al., 2016a, p. 9]. 

4.2.1 Visualizations of SOMs 

This section is reproduced in its entirety from [Thrun et al., 2016a]. The result of every Kohonen 
SOM algorithm is a set of neurons located on a map where a set W of prototypes corresponds 
to a set M of positions. In general, the positions on M are restricted to a grid/lattice, but a few 
approaches exist that change the positions in M, like Adaptive Coordinates [Merkl/Rauber, 
1997]. Because these approaches are not grid/lattice based, they are not considered any further. 
BMUs define the locations of input points on the map. However, they exhibit no structure of 
the input space for a SOM [Ultsch, 1999]. However, the goal is to grasp the high-dimensional 
data structure and possibly even visualize cluster boundaries. Therefore, post-processing of the 
neurons is required for an informative representation of high-dimensional data. Three standard 
approaches are found in the literature: 
The first approach projects the set W of prototypes with MDS [Torgerson, 1952] or some of its 
variants to a two-dimensional space [Kaski et al., 2000; Sarlin/Rönnqvist, 2013]. The result is 
mapped into the CIELab color space [Colorimetry, 2004]. In this uniform color space, percep-
tual differences in colors correspond to Euclidean distances in the map space as precisely as 
possible [Kaski et al., 2000]. The next two approaches visualize either the distances or density 
of the prototypes. 
The second approach defines receptive fields around each position in M. The unified distance 
matrix (U-matrix), [Ultsch/Siemon, 1990] or one of its variants [Häkkinen/Koikkalainen, 1997; 
Hamel/Brown, 2011; Kraaijveld et al., 1995] , represents distances of prototypes (see equations 
above) by using proportional intensities of gray shades, color hues, shape or size. In [Kraaijveld 
et al., 1995], every neuron corresponds to a pixel. The gray value of each pixel is determined 
by the maximum unit distance from the neuron to its four neighbors (up, down, left, right). The 
larger the distance is, the lighter the gray value is. In [Häkkinen/Koikkalainen, 1997], additional 
unit distance visualization approaches are explained. The shapes and sizes of the receptive fields 
describe the dissimilarity of corresponding neurons. Apart from the U-matrix, visualizations of 
receptive fields in three dimensions or specific components of prototypes with receptive fields 
in two dimensions have been attempted [Vesanto, 1999]. It is also possible to add SOM quality 
measures to the receptive fields in a third dimension, e.g., [Vesanto et al., 1998]. 
The third approach connects the positions M by way of a specific scheme. In [Hamel/Brown, 
2011], in addition to a U-matrix approach, neurons are connected with lines along the maximum 
gradient. The authors claim that clusters are the always-connected components of the graph 
defined by the U-matrix. [Merkl/Rauber, 1997] omitted the receptive fields approach, merely 
connecting map positions with lines, where the connection intensities reflect the similarity of 
the underlying prototypes. [K. Tasdemir/Merenyi, 2009] proposed the CONNvis technique, 
which visualizes the feature map by connecting neurons whose corresponding prototypes are 
adjacent in an input space with a dimensionality equal to that of the high-dimensional data. The 
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width of each connection line is proportional to the strength of the connection [K. Tasdemir/Me-
renyi, 2009]. 
In sum, all above described visualizations of large SOMs require an expert in the field for in-
terpretation. To the best of the present author’s knowledge, there are no 3D visualizations of 
ESOMs based on a 2D feature map currently in use22. 

4.2.2 Clustering with ESOM 

Combining ESOM with the U*-matrix approach enables an application of [Ultsch et al., 2016a]: 

 “A single wall of AU-matrix represents the true distance information between two points in the data space. Valid 
density information at the midpoints between a BMU and a second BMU is calculated for [the] P-matrix, since the 
same volumes, i.e. spheres of a predefined radius, are used. The AU*matrix therefore represents the true distance 
information between two points weighted by the true density at the midpoint. The representation is such that high 
densities shorten the distance and low densities stretch this distance. Using transitive closure for these weighted 
distances allows classical clustering algorithms (AU*clustering) to actually perform distance- and density-based 
clustering, taking into account the complex structure of partially entwined clusters within the data.” 

In contrast to the Databionic swarm approach, in which the shortest paths between AU-dis-
tances are calculated23, this clustering approach uses only the direct neighborhood of the pro-
jected points. A computation of the abstract P-matrix is necessary because ESOM itself does 
not consider density. Overlaying a political map on the U*-matrix map reveals errors made by 
the ESOM algorithm during the annealing process. The political map shows the Voronoi areas 
of each cluster, where the color of each cluster area corresponds to the cluster label. The clus-
tering is solid if every cluster consists of only one connected area, of which the borders are 
mountain ranges. The clustering process is sensitive to the parcel window parameter that is 
required for estimating the density of the high-dimensional data, and the clustering process is 
mostly conducted through an interactive approach requiring human intervention24. 

4.3 Types of Projection Methods 

In the previous section, it was shown that projection methods such as CCA, MDS and NeRV 
are characterized by an objective function that is optimized using gradient descent or a corre-
sponding learning algorithm, whereas others, such as ESOM, are not. However, the first obvi-
ous difference between types of projection methods is that between linear projection methods 
such as PCA or ICA and non-linear projection methods. Linear projection methods are only 
able to rotate the high-dimensional data space and choose the most interesting dimensions, such 
as the dimensions with the highest variance, as is the case for PCA. 
In contrast to this approach, non-linear projection methods are able to disentangle structures, 
e.g., represent the Chainlink data set25 in such a way that the two clusters are separated in the 
output space. The next major distinction between projection methods is the deterministic versus 
the stochastic approach. Some projection methods will always produce the same projection in 
the output space if all parameters remain unchanged. However, for many projection methods, 
such as t-SNE, their projections in the output space will drastically change with different trials 
                                                      
22 Standard ESOM visualizations using the U-matrix are shown in supplementary D. 
23  See chapter 7 for details. 
24  For this reason, the ESOM/U-matrix clustering approach cannot be compared with other approaches in chapter 

10. 
25  See the next chapter for details. 
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even when all settings of the projection method remain unchanged (see also examples in chapter 
5, Figure 5.2). Hence, the results of deterministic methods are always reproducible, whereas 
stochastic methods may yield irreproducible results and require a statistical approach to assess 
their quality. Similarly to MDS techniques, deterministic projection methods are often based 
on Lyapunov functions (for further details, see [Lyapunov, 1992]). Here, it is assumed that 
linear and MDS techniques should only be able to visualize compact structures, which are based 
on the intra- versus intercluster distances of natural clusters (see the previous chapter for de-
tails). 
Stochastic methods are mainly characterized by either a focusing approach or a self-organizing 
approach. Let k be the neighborhood extent, and let ߁ be a graph; then, a projection method is 
of the focusing type if the result is constructed through an iterative learning process that adapts 
first to global neighborhoods ܪሺ݇ଵ ൐ 1, ,߁ ,ሺ݇ଶܪ ሻ and later to local neighborhoodsܫ ,߁  ,ሻܫ
where ݇ଵ ൐ ݇ଶ. Therefore, such methods should be capable of visualizing connected structures 
(see the previous chapter for details) if the annealing process is correctly chosen. 
Self-organization is defined as spontaneous pattern formation by a system itself, without any 
central control26 [Kelso, 1997, p. 8 ff.]. By means of self-organization, some projection meth-
ods, such as ESOM or Pswarm, are able to project data without requiring an objective function. 
Thus, self-organizing methods do not implicitly predefine the structures that are sought in the 
data of interest. The Pswarm projection method will be introduced in chapter 8 as part of the 
Databionic swarm clustering approach. An overview of the various types of projection methods 
is shown in Figure 4.1. 
Assumptions regarding the types of structures that the projection methods in Figure 4.1 are able 
to visualize will be either disproven or verified in chapter 10 based on 100 trials per projection 
method (with the exception of ICA due to technical difficulties) of five artificial three-dimen-
sional data sets. 

                                                      
26  Further explained in chapter 7, p.79 ff.  
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Figure 4.1:  Overview of different types of projection methods. Here, it is argued that linear methods and MDS 
techniques are only able to visualize compact structures (shaded with the first pattern), whereas 
focusing projection methods should be able to visualize connected structures (shaded with the 
second pattern) if the annealing scheme is correctly chosen. For self-organizing methods, the 
structures that are sought in the data are not implicitly predefined. The ellipses indicate that this 
overview includes only common projection methods. Pswarm will be introduced in chapter 8 as a 
new approach based on swarm intelligence. 
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