
2 Fundamentals 

The first section of this chapter familiarizes the reader with the definitions of the basic notation 
and terminology used in this thesis. Concepts of graph theory are introduced in the next section. 
They give rise to a new concept of neighborhoods, which is utilized in several chapters. The 
last section explains a possible approach to knowledge discovery, which is applied in chapters 
11 and 12. 

2.1 Basic Definitions 

Hilbert space 
Let ࣢ be a vector space above a field Κ with the following properties for every pair of elements 
ሺݔ, ,ݕ ሻݖ ∈ ࣢ and ߙ ∈ Κ: 
1.) 〈. , . 〉࣢:࣢	x	࣢ → Κ is a non-degenerate symmetric bilinear form: 

a. ∀	ݔ ∈ ࣢: ,ݔ〉 ࣢〈ݔ ൒ 0	
b. 〈ݔ, ࣢〈ݕ ൌ ݕ	∀	,0 ∈ ࣢ൌ൐	xൌ0	
c. 〈ݔ, ࣢〈ݕ ൌ ,ݕ〉 Κ	if	࣢തതതതതതതതത〈ݔ ൌ ԧ,	and	〈ݔ, ࣢〈ݕ ൌ ,ݕ〉 Κ	if	࣢〈ݔ ൌ Թ	
d. 〈ݔߙ, ࣢〈ݕ ൌ ,ݕ〉ߙ 	࣢〈ݔ
e. 〈ݔ ൅ ,ݕ ,ݔ〉࣢ൌ〈ݖ ,ݕ〉࣢൅〈ݖ 	࣢〈ݖ

2.) Each Cauchy sequence ሼݔ௜ሽ௜∈Գ in ࣢ converges to an element of ࣢, i.e., the space is com-
plete with respect to the norm induced by 〈. , . 〉࣢. 

Thus, ࣢ is a Hilbert space (for further details, see [Bronstein et al., 2005, pp. 635-636; Nolting, 
2001, p. 22]). 

Bra-ket notation 
Bra-ket notation 〈. |. 〉 is used in physics to describe functions or vectors in a Hilbert space when 
the coordinate system of the vectors is irrelevant. The left part is called the bra (ۦ. |), and the 
right part is the ket (|. ۧ). This notation is used to describe physical states (it is also called Dirac 
notation, as described in [Dirac, 1981, pp. 15-22]; for a formal introduction, see [Nolting, 2001, 
pp. 147-148]). 

Operator 

An operator ܣመ is an unambiguous mapping of each element |ۧߙ of the subset ܦఈ ⊆ ࣢ to an 

element |ۧߚ ∈ ஺ܹ ⊆ ࣢ such that หۧߚ ൌ ۧߙห	መܣ 	ൌ  መܣ ఈ is the definition range ofܦ where ,ۧߙ	መܣ|

and the set of all |ۧߚ is the domain of ܣመ, as defined in [Nolting, 2001, p. 153]; see also [Bron-
stein et al., 2005, pp. 49,639-640]. An “operator is considered to be completely defined when a 
result of its application to every ket vector [|ۧߙ] is given” [Dirac, 1981, p. 23]. 

Observation 
An observation f is a set of measured values for the properties of a phenomenon. It is described 
in the bra-ket notation as the change from one physical state ݕۦ| to another physical state |ۧݔ 
that results from the measurement of the operator መ݂, as denoted by ݂ ൌ |ݕ〉 መ݂|ݔ〉 (see [Feynman 
et al., 2006, pp. 145, 147]). Such an observation f is a measurement of a physical process. 
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Feature 
Each individually measurable property r of a phenomenon being observed can be mapped to an 
operator ̂ݎ that can be applied to a physical state |ۧݔ [Stöcker et al., 2007, p. 744]. Such an 
individually measurable property is called a feature, attribute or observable. Here, an approx-
imately continuous distribution of values in the vector space Թௗ is additionally assumed for a 
variable (see the definition of the distribution of a variable). 

Data 

A batch of data is defined as a matrix 〈݅หܣመ	ห݆〉 ൌ  ௜௝, in which facts1 about a physical state areܣ

summarized based on observations of the form 〈ݕหܣመ	หݔ〉 ൌ ∑ ௜௝〈ݔ|݆〉〈ห݆	መܣห݅〉〈݅|ݕ〉  of a phenome-

non in a Hilbert space, where ݆ۦ ,|݅ۦ|, |݅ۧ and |݆ۧ are the basic states relevant to the phenomenon 
(for further discussion, see [Feynman et al., 2006, pp. 147-150]). 

Distribution of a variable 
A formal distribution ݂݀ is defined as the probability density of a feature ݎ: 

݂݀ሺݎሻ ൌ lim
୼௥→଴

〈௫ೝ,౴ೝ|	௫〉

√ሺ୼௥ሻ
 [Nolting, 2001, p. 150]. If the feature r is continuous, then it is called a 

variable	ݖ ∈ 	Թௗ, and df is called its probability density function (pdf) (see [Goodfellow et al., 
2016, p. 58]). Here, when it describes how the relative probability of a variable ݖ takes on a 
given value, such a distribution is a pdf that is assumed to be normalized as follows [Walck, 

2007, p. 15]: ׬ ݖሻ݀ݖሺ݂݀݌ ൌ 1
ஶ
ିஶ .  

“Statisticians often use the distribution function or as physicists more often call it the cumula-

tive function which is defined as ݂ܿ݀ሺݖሻ ൌ ׬ ݖሻ݀ݖሺ݂݀݌
௫
ିஶ ” [Walck, 2007, p. 15]. 

If not elaborated further, here, the distribution of a variable z is regarded as an approximation 
of its pdf; for further details, see, for example, [Bock, 1974, p. 250; G. Ritter, 2014, p. 275 ff], 
and for types of pdfs, see [Walck, 2007]. 

Dirac delta function 
The Dirac delta function ߜ is a function with the following properties [Jackson, 1999, p. 31]: 
ݖሺߜ (.1 െ ܽሻ ൌ 0	iff	ݖ ് ܽ 

׬ (.2 ݖሺߜ െ ܽሻ ൌ ൜
1, if	ݖ ൌ ܽ lies in the integration area under the curve
0, otherwise

 

Density of data 
Let dn be the number of observations in an elementary volume (see [Bronstein et al., 2005, 

p. 491]) ݀ௗ෨ݒ ൌ ଵݒ݀ ∗ ଶݒ݀ ∗. . ௗ෨ݒ݀ ൌ Ԧ of the Hilbert space Թௗ෨ݒ݀  (henceforth, Թௗ); then, the 

density of the data is defined as ߩሺݒԦ	ሻ ൌ ௗ௡

ௗ௩ሬԦ	
, where ߩ:Թௗ → Թ is the density field function. 

Here, ߩ is subject to the condition that N is the number of data points defined by 

ܰ ൌ ׬ ԦሻԹ೏ݒሺߩ dݒԦ ൌ ׬ ∑ Ԧݒሺߜ െ ԦݒԦ௜ሻdݒ
ே
௜ୀଵԹ೏ , in analogy to [Jackson, 1999, p. 33], where ߜ is the 

Dirac delta function and ߩሺݒԦሻ ൌ ∑ Ԧݒሺߜ௜ݍ െ Ԧ௜ሻݒ
ே
௜ୀଵ  is the charge density of point charges. Then, 

the homogeneity of the data is defined as  

ܰ ൌ ׬ ԦԹ೏ݒԦሻdݒሺߩ ൌ ׬ ԦԹ೏ݒ଴dߩ ൌ ଴ߩ ׬ dݒԦԹ೏ , where	ߩ଴ ൌ const. 

                                                      
1  See [Fayyad et al., 1996, p. 6]. 
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Pattern 
A “[p]attern is an expression E in a language L describing facts [F] in a subset ܨா of F. E is 
called a pattern if it is simpler than the enumeration of all facts in ܨா” [Fayyad et al., 1996, 
p. 7]. Here, the expression E is “simpler” if it describes a group of similar (see the definitions 
of metric space and distance below) or homogeneous observations. 
In graph theory, a pattern may be described by a neighborhood H (see the graph theory section 
for details). If the observations are not directly comprehensible, such a pattern is called a hidden 
pattern. 
 

Discontinuity in data 
A set of data can exhibit discontinuity if 

׬ ԦԹ೏ݒԦሻdݒሺߩ ് ଴ߩ ׬ dݒԦԹ೏ , 

which means that the density of data ߩ depends on its location ݒԦ in the Hilbert space Թௗ; 
Discontinuities can occur when interruptions or distortions exist in the homogeneity of the data, 
or in the continuity of the distribution of the data, in Թௗ. Thus, there are elementary volumes	dݒԦ  
with high density and elementary volumes	dݒԦ with low density or even empty elementary 
volumes.  In the one-dimensional case, such a discontinuity can be mathematically defined as 
an essential or jump discontinuity. In two or three dimensions, a discontinuity may manifest as 
a spatial separation (see, e.g., Figure 2.1 or chapter 5 and 9, the Hepta data set). 
In a higher-dimensional case, a discontinuity represents a change in the characteristics of facts, 
resulting in multiple patterns (see, for example, the leukemia data set, chapter 3, Figure 3.7 and 
chapter 9).  
 

 

Figure 2.1:  Spatial separation of data, after [Handl et al., 2005]. 
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Metric space and distance 
Let a metric space be represented by an ordered pair (M, d), where M is an arbitrary set and d 
is a metric on M, i.e., a function 
      d ∶ 	M	 ൈ 	M	 → 	Թ 
such that for any l, j, m ∈ M , 
      ݀ሺ݈, ݆ሻ ൌ ݀ሺ݆, ݈ሻ 

      ݀ሺ݈, ݆ሻ ൒ 0 

      ݀ሺ݈, ݆ሻ ൌ 0,iff	݈ ൌ ݆ 

and the triangle inequality is satisfied as follows: 

           ݀ሺ݈, ݆ሻ ൅ ݀ሺ݆,݉ሻ ൒ ݀ሺ݈,݉ሻ	

Then, the metric d is also called a distance (see [Bronstein et al., 2005, pp. 624-625]). By 

contrast, for a dissimilarity, denoted by መ݀, the triangle inequality may not apply ([Bock, 1974, 
pp. 25-26]. The distance between two similar points ݈, ݆ ∈  is small, whereas that between ܯ

two dissimilar points ݈, ݆ ∈  is large. Transformations exist between a dissimilarity መ݀ and a ܯ
distance d (e.g., [Bock, 1974, pp. 77-79]). 
If the distance is defined in an output space O, it is denoted by d(l, j), whereas a distance defined 
in an input space I is denoted by D(l, j). An example of a metric space is a Hilbert space that is 

a real-numbered vector space Թୢ of d dimensions. If the distances in a space are defined as 
Euclidean distances, then the corresponding space is called a Euclidean space. 

Data set 

A data set consists of a finite set of observations ݂ ∈ F ⊂ ࣢෩ୢ of ሚ݀ observed features. 
In this work, observations ݂ are assumed to be vectors l in a metric space M, and features are 
assumed to be variables, if not stated otherwise. 

Input space 

An input space ܫ ⊂ Թௗ is the d-dimensional space consisting of ݀≤	d෨  variables in a data set that 
have been selected for a given task and contains n data points: ܫ ൌ ሼ݈ଵ, … , ݈௡, ݊ ∈ Գሽ. The prop-
erties of an input space are as follows (see [Lee/Verleysen, 2007, p. 243]): 
I. The input space is considered to be high dimensional if it contains more than five variables, 

which makes direct visualization very difficult. 
II. If the number of data points is greater than 2000, then the input space is considered to be 

large2. 
III. If the number of data points is fewer than 200, then the input space is considered to be 

small. 

Data point 
A data point ݈ ∈  is a numeric vector consisting of one observation for each of the d variables ܫ
in the input space, where a vector is an array of numbers arranged in a specific order defined 
with respect to the d variables. 

                                                      
2  Note that, in general, the number of data points has greatly increased over time [Goodfellow et al., 2016, p. 21 

, Fig. 1.8] and therefore the precise number may change with time 
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Object 
When the data of interest are a set of facts F consisting of numerical, ordinal or nominal scaled 

entries, each fact	݂ ∈ f	such that ,ܨ ∉ Թୢ, is called an object or case. 
An object can be regarded as a generalization of a data point. If an object can be interpreted 
(has a meaning within itself), then it contains information ([Ultsch, 2016c]; see also [Ultsch, 
1994, p. 2]). 

Output space 
An output space ܱ ⊂ Թ௠ is the m-dimensional space such that m<d in which, for each point 

݆ ∈ ܱ, a mapping to a data point ݈ of the input space I⊂ Թௗ exists. 

Machine learning 
The field of machine learning concerns computer programs that can imitate learning behavior 
[Natarajan, 2014] (see also [Goodfellow et al., 2016, p. 99]). Machine learning comes in two 
general forms3 (see [Murphy, 2012, p. 2]). Unsupervised learning refers to the task of finding 
patterns in unlabeled data. Since the data are unlabeled, no reward function exists that can be 
used to evaluate potential results. If the data set is labeled, then supervised learning is possible. 
A typical supervised learning task is classification or regression. A typical unsupervised learn-
ing task is cluster analysis. 

Label 
A label is a tag ݃ ∈ ሼ1, . . . , ݇ሽ ⊂ Գ attached to an object ݂ ∈  that identifies the object via a ܨ
mapping	݂: ሼ1, . . . , ݇ሽ →  The labels of such a set of objects range from one to k [Hennig et .ܨ
al., 2015, p. 2], where k is the number of groups of objects. Here, it is assumed that a label 
exists for every object. 

Classification 

A classification ܥ ൌ ሼܩଵ, ,ଶܩ … ሽ is a system of subsets [Bock, 1974, p. 22] such that ܥ ⊂ ࣢෩ୢ. 
A subset ܩ௜ ൌ ሼ݈ଵ,, … ݈௞ሽ݅ ∈ Գ, , is a set of k observations.	In an exclusive classification, the 

subsets are disjunct, denoted by ܩଵ ∩ ଶܩ ൌ ∅; in a non-exclusive classification, elements that 
overlap between two subsets may exist, denoted by ܩ௝ ∩ ௞ܩ ് ∅. However, overlapping clas-

sification is not considered here (for various types of classification, see Figure 2.2 or [Hennig 
et al., 2015, p. 45]). Supervised and unsupervised classifications are defined as in the context 
of machine learning. 

                                                      
3 Reinforcement learning is not considered in this context; semi-supervised learning (e.g. active learning) uses 

labeled data as well as unlabeled data. 
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Figure 2.2:  Tree of classification types, after [Jain/Dubes, 1988, p. 56]. This work concentrates on unsupervised 
classification (see unsupervised machine learning). 

Classifier 
A classifier is an algorithm that constructs a function ݏ݈ܥ: ܨ → ሼ1,… , ݇ሽ ⊂ Գ that maps objects 
݂ ∈ ݃௜	to class labels ܨ ∈ Գ. 
In terms of understandability, a distinction can be drawn between symbolic and sub-symbolic 
classifiers [Ultsch/Korus, 1993]. Symbolic classifiers are able to acquire knowledge (for a de-
tailed description, see the last section of this chapter). By contrast, sub-symbolic classifiers 
(e.g., KNN classifiers) are only able to integrate knowledge [Ultsch, 1994], because a charac-
teristic property of a sub-symbolic representation of data is that a single object alone does not 
contain information (see [Ultsch, 1994, p. 2]). 

Projected point 
A projected point ݆ ሺݔଵ, . . , ௠ሻݔ ൌ ଔԦ is a vector of m scalars ݔ௜ in the output space	ܱ ⊂ Թ௠, where 
a vector is an array of numbers arranged in a specific order such that each individual number 
can be identified by its index. 

Projection 
Let ݆ ∈ ⊃denote data points in the input space I ܫ Թௗ, and let ݈ ∈ ܱ denote projected points in 
the output space O⊂ Թ௠. Then, a mapping proj:	I → O, j ↦ 	l is called a projection iff ݉ ൌ
	ݐݏ݊݋ܿ ∧ 	݉ ≪ ݀. 
Note that unlike for a projection method, for a manifold learning method, the dimensionality of 
the output space ݉ depends on the data set (see, e.g., [Lee/Verleysen, 2007, pp. 14-15]). 

2.2 Concepts of Graph Theory Applied to Patterns 

This section uses graph theory to describe patterns found in data. 
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Graph 
“A graph [Γሿ is a pair [Γ ൌ ሺV, Eሻ] consisting of a finite set ܸ ് ∅ and a set E of two-element 
subsets of V. The elements of V are called vertices. An element e = (a, b) of E is called an edge 
with end vertices a and b. […] [In such a case,] a and b are adjacent or neighbors of each other” 
[Jungnickel, 2013, p. 2]. 
A graph ߁ is called undirected if, for every edge ݁ሺܽ, ܾሻ in E, the edge ݁ሺܾ, ܽሻ is also in E. A 
graph is called a weighted graph if a number (weight) is assigned to each edge. 

Directed graph 

A “directed graph or, for short, a digraph is a pair ߁	 ൌ 	 ሺܸ,  ሻ consisting of a finite set V andܧ
a set E of ordered pairs (a, b), where ܽ	 ് 	ܾ are elements of V” [Jungnickel, 2013, pp. 25-26]. 

Direct adjacency 

Let Γ	be a graph, and let	j be a point in a metric space	M; then, 

࣢ሺ݆, ሻܯ,߁ ൌ ൛݈ ∈ ௟ݒ	|ܯ ∈ ܸ ∧ ∃	݁ሺݒ௟, ௝ሻݒ 	∈ 	ൟܧ

is the set of points that are directly adjacent to j. The direct adjacency is defined by the specified 
graph. 

Adjacency matrix 
A digraph Γ with a vertex set ሼ1, . . . , ݊ሽ is specified by an ݊	 ൈ 	݊ matrix ܣ	 ൌ 	 ሺܽ௜௝	ሻ, where 

ܽ௜௝ 	ൌ 	1	if and only if ሺ݅, ݆ሻ	is an edge of	Γ, and ܽ௜௝ 	ൌ 	0 otherwise. A is called the adjacency 

matrix of Γ [Jungnickel, 2013, p. 40]. 

Path 
Let ሺ݁ଵ, . . . , ݁௡ሻ be a sequence of edges in a graph ߁. If there exist vertices ݒ଴, . . . ,  ௡ such thatݒ
݁௜ 	ൌ 	 	݅ ௜ forݒ௜ିଵݒ ൌ 	1, . . . , ݊, then the sequence is called a walk; if ݒ଴ 	ൌ 	  ௡, one speaks of aݒ
closed walk (Figure 2.3). A walk for which the ݁௜ are distinct is called a trail (Figure 2.3), and 
a closed walk with distinct edges is a closed trail. If, in addition, the ݒ௝ are distinct, then the 

trail is a path [Jungnickel, 2013, p. 5]. 

 

Figure 2.3:  Examples of trails, walks and paths [Jungnickel, 2013, p. 6 Fig. 1.5]: (a, b, c, v, b, c) is a walk but 
not a trail, and (a, b, c, v, b, u) is a trail but not a path [Jungnickel, 2013, p. 5]. 
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Connected Graph 
Two vertices a and b of a graph Γ are called connected vertices if a walk exists with start vertex 
a and end vertex b. If all pairs of vertices of Γ are connected, then Γ itself is called a connected 
graph. For any vertex a, we consider a to be a trivial walk of length 0, such that any vertex is 
connected with itself. Thus, connectedness is an equivalence relation on the vertex set of Γ. The 
equivalence classes of this relation are called the connected components of Γ. Thus, Γ is con-
nected if and only if its vertex set V is its unique connected component [Jungnickel, 2013, p. 6]. 

Lattice 
A connected graph Γ with a particular well-defined two-dimensional tiling (tessellation) is de-
fined as a lattice. A ݊݉ݔ lattice has n vertices on the x-axis and m vertices on the y- axis. If the 
tiling is rectangular (every vertex has exactly four perpendicular edges) it will be called a lattice 
(tiling) in this work, if the tiling is hexagonal (every vertex has exactly three edges) this will be 
called a grid (tiling) in this work. 

Shortest path 
For a connected graph Γ, there exists a distance D(a, b) between two vertices a and b that can 
be defined as the shortest path between these vertices [Jungnickel, 2013, pp. 65-66] as follows: 
For each path ܲ ൌ ሺ݁ଵ, … , ݁௡ሻ, let the length of P be ݌ሺܲሻ:ൌ ሺ݁ଵሻ݌ ൅ ⋯൅  ሺ݁௡ሻ; then, the݌
distance between two vertices a and b in (Γ, p) is defined by 

,ሺܽܩ ܾ, ሻ߁ ൌ ൜
∞, if	ܾ	is	not	accessible	from	ܽ

minሼ݌ሺܲሻ:	ܲ	is	a	path	from	ܽ	to	ܾ	݅݊	߁ሽ , otherwise 	

Let the vertices be denoted by points ݈, ݆ ∈ -is the nota (߁	,l, j)in the metric space M; then, G ܯ
tion if the points ݈ and ݆ lie in the input space I, and gሺl, j,  is the notation if they lie in the (߁
output space O. 
Note that ݀ሺܽ, ܽሻ 	ൌ 	0 always holds because an empty sum is considered to have a value of 0, 
as usual. If no explicit length function is given, then the shortest paths and distances in a graph 
are defined using a length function that assigns a length of ݌ሺ݁ሻ 	ൌ 	1 to each edge e [Jung-
nickel, 2013, p. 66]. An algorithm for calculating the shortest paths in a graph is described in 
[Jungnickel, 2013, pp. 83-87]. The authors Lee and Verleyson have claimed that graph dis-
tances outperform the traditional Euclidean metric in terms of dimensionality reduction 
[Lee/Verleysen, 2007, p. 227]. 

Acyclic graph 
Let ሺܯ,≼ሻ be a partially ordered set (a poset, for short), which consists of the set M together 
with a reflexive, antisymmetric and transitive relation ≼, and let M correspond to a digraph ߁ 
with the vertex set M and with edges defined by pairs (a, b) such that ܽ	 ≺ 	ܾ; then, because of 
the transitive property, ߁ is acyclic [Jungnickel, 2013, p. 49]. 

Tree 
A tree is a graph ߁ that satisfies the following three conditions [Jungnickel, 2013, pp. 7-8]: 
I. ߁ is connected. 
II. ߁ is acyclic. 
III. ߁ contains n-1 edges and n vertices. 
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The vertices in a tree are often called nodes. If ሺܽ, ܾሻ is an edge in a tree, then a is called the 
parent of b, and b is a child of a. If a path exists from a to b (ܽ ് ܾ), then a is a proper ancestor 
of b and b is a proper descendant of a [Safavian/ Landgrebe, 1990, p. 2]. If a node has no 
descendant, it is called a leaf; if a node has no ancestor, it is called a root. 

Directed acyclic graph (DAG) 
A DAG is a directed tree (see above) that contains no cycles and one vertex, defined as the root, 
into which no edges enter. There is a unique path from the root to every vertex [Safavian/Land-
grebe, 1990, p. 3]. Every vertex has a descendant called a child, except for the leaf vertices, 
which do not. 

Decision tree 

Let ܩ௜ be a subset of a classification ܥ ൌ ሼܩଵ, … , ,௜ܩ … ሽ ⊆ ࣢෩ୢ; then, a decision tree is a tree 
with the following properties: 

I. Each node that is not a leaf is mapped to a feature ݂ ∈ ܨ ⊂ ࣢෩ୢ. 
II. Every edge (a, b), where a is the parent and b is the child, is mapped to a condition that 

matches the feature mapped to the parent a (see I.). 
III. Every leaf is mapped to a subset ܩ௜. 

Decision tree learning 
Decision tree learning refers to a type of supervised machine learning in which decision trees 
are used (see [Safavian/Landgrebe, 1990]). 

Binary tree 
A binary tree is an ordered tree such that [Safavian/Landgrebe, 1990, p. 3] (see also the defini-
tion of a DAG) 
I. each child of a vertex is designated as either a left child or as a right child, and 
II. no vertex has more than one left child nor more than one right child. 

Lemma 1 
Let ߁ ൌ 	 ሺܸ,   ,ሻ be a connected graph with a positive length function p. Thenܧ
(V, D) is a finite metric space, where the distance function is defined as  
ܦ ൌ ,ሺܽܩ ܾሻ [Jungnickel, 2013, p. 68]. 

Proposition 1 
Any finite metric space can be represented by a pair (߁,  with a positive length (network) (݌
function p [Jungnickel, 2013, p. 68]. 

Ultrametric space 
Note that a metric space can be represented by a tree if and only if the following condition holds 
for any four vertices x, y, z, and t of the given metric space [Jungnickel, 2013, p. 69]: 

݀ሺݔ, ሻݕ 	൅ 	݀ሺݖ, ሻݐ 	൑ ,ݔሺ݀ሺݔܽ݉	 ሻݖ 	൅ 	݀ሺݕ, ,ሻݐ ݀ሺݔ, ሻݐ 	൅ 	݀ሺݕ, 	ሻሻݖ

Changing the triangle inequality to this condition implies an ultrametric space. 
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2.2.1 Patterns Defined as a Generalization of Neighbourhoods 

Here, it is argued that by using shortest paths and direct adjacency, the patterns that exist in 
data can be generalized to neighborhoods H of an extent k. 
Let k ∈ Գ, k>0, let Γ be a connected graph, let	݆ be a point in a metric space ܯ, and let ܩሺ݆, ݈,  ሻ߁
be the shortest path between ݆ ∈ ݈ and an arbitrary point ܯ ∈  ,then (1) ;ܯ

,௝ሺ݇ܪ ሻܯ,߁ ൌ ሼ݈ ∈ ,ሺ݈ܩ	|ܯ ݆, ሻ߁ ൑ ݇ሽ ሺ1ሻ	

is the neighborhood set of the point j and k the neighborhood extent. The neighborhood H can 
define a pattern in the input space4. 
The easiest example is a neighborhood defined by distances in a Euclidean graph. In the context 
of graph theory, a Euclidean graph is an undirected weighted graph of the highest order with 
respect to all other graphs discussed here, because every vertex is connected to every other 
vertex. Note that the weights of the vertices in a Euclidean graph need not necessarily be defined 
by the Euclidean metric. Another representation of a neighborhood H is a Delaunay graph 
ࣞሺܸ, ,ሻ, which is a subgraph of a Euclidean graph. A Delaunay graph ࣞሺܸܧ  ሻ is based onܧ
Voronoi cells [Toussaint, 1980]. Each cell is assigned to one data point, and the size of a cell is 
characterized in terms of the nearest data points surrounding the point assigned to that cell. 
Within the borders of one Voronoi cell, there is no position that is nearer to any outer data point 
than to the data point within the cell. Thus, a neighborhood of data points is defined in terms of 
direct links between borders of Voronoi cells that induce an edge E in the corresponding De-
launay graph [Delaunay, 1934]. In short, a Delaunay graph represents a graph for a neighbor-
hood ܪሺ1, ,ሺܸܩ ሻ. A neighborhood H can also be represented by a Gabriel graphܯ,ࣞ -ሻ [Gaܧ
briel/Sokal, 1969], which is a subgraph of a Delaunay graph ࣞሺܸ,  ሻ in which two points areܧ
connected if the line segment between the two points is the diameter of a closed disc that con-
tains no other points within it (empty ball condition). A Gabriel graph represents a graph for a 
neighborhood ܪሺ1,  ሻ. Another case that is often considered is that of a neighborhoodܯ,ܩ
 where the number of nearest neighbors of a point j is defined by the number of ,(M ,ܭ ,knn)௝ܪ

vertices connected to this point in the K-nearest-neighbor graph (KNN graph), e.g., [Brito et 
al., 1997]. Here, we will use the shorter notation H(knn, M). 

 

Figure 2.4:  Four points and their Voronoi cells: D(l, k)>D(l, m) illustrate the different types of neighborhoods: 
unidirectional versus direction-based. 

                                                      
4  Such neighborhoods H will prove useful for various evaluation steps, as summarized in Fig. 2.5. 
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Neighborhoods of points can be divided into two types, namely, unidirectional and direction-
based neighborhoods. Consider the four points shown in Figure 2.4. The points l, k, j, and l are 
in the same neighborhood ܪ௟ሺ1,  in the corresponding Delaunay graph, but the points l (ܯ,ࣞ
and m are never neighbors in this graph, even if the distance D(l, m) is smaller than D(l, k). 
Thus, in this neighborhood definition, the direction information is more important than the real 
arrangement of the points in space as characterized by the distances D. 
However, if a neighborhood is defined in terms of a KNN graph, then the points l and m could 
be in the same neighborhood ܪ௟ሺ݇݊݊, -and the points l and k could be in different neigh ,(ܯ,ܭ
borhoods, depending on the value of ݇݊݊ and on the ranking of the distances between these 
points. Therefore, this type of neighborhood is called unidirectional. In other words, it can be 
said that the points l, j, and m are more dense with respect to each other than they are with 
respect to k. Thus, unidirectional neighborhoods defined in terms of KNN graphs or unit disk 
graphs [Clark et al., 1990] can be used to define neighborhoods based on density. 

2.3 Overview of Knowledge Discovery 

 “The term knowledge discovery in databases […] was coined in 1989 to refer to the general process of finding 
knowledge in data and to emphasize the ‘high-level´ application of particular data mining methods” [Fayyad et 
al., 1996, p. 3].  

In 1996, Fayyad et al. used this term in his introduction to “From Data Mining to Knowledge 
Discovery” as follows:  

“Knowledge discovery in databases is the non-trivial process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data” [Fayyad et al., 1996, p. 6].  

Dropping the suffix in databases, the term knowledge discovery was extensively discussed in 
[Mörchen, 2006, pp. 6-7]. According to the definition used in that work, knowledge discovery 
is “data mining with the goal of finding knowledge, i.e., novel useful, interesting, understand-
able, and automatically interpretable patterns” [Mörchen, 2006, p. 7]. The definition of data 
mining as given in [Mörchen, 2006, p. 7] is  

“The process of finding hidden information or structure in a data […] [set.] This includes extraction, selection, 
preprocessing, and transformation of features describing different aspects of the data”.  

The following overview in Figure 2.5 presents a possible approach to knowledge discovery, as 
applied in chapters 11 and 12. It is not claimed here that this view is the only approach available 
in this research field. The remainder of this chapter will describe the various tasks involved in 
knowledge discovery which are shown in Figure 2.5. 
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Figure 2.5:  The step-wise process of knowledge discovery, as inspired by [Fayyad et al., 1996, p. 10; Ultsch, 

2000b]. The systematic process may contain loops between any steps [Behnisch/Ultsch, 2015, 
p. 52]. This work focuses on Clustering analysis which will be separately discussed in the next 
chapter, but in general applying Machine learning algorithms would be the 4th step. 

2.3.1 Feature Selection 

In the first step, the “features must be properly selected so as to encode as much information as 
possible concerning the task of interest. […] minimum information redundancy among the fea-
tures is a major goal” [Theodoridis/Koutroumbas, 2009, pp. 596-597] (see also [Lee/Verleysen, 
2007, p. 230]). Redundancy refers to a case in which certain features of a data set are not inde-
pendent of each other [Lee/Verleysen, 2007, pp. 1-2]. For example, if the two variables ݈ and ݆ 

are correlated, then ܦሺ݈, ݆ሻ ൌ ඥ∑ ݈௜ െ ݆௜௜  is no longer a Euclidean distance [Cormack, 1971, 

p. 326]. 

2.3.2 Preprocessing 

 “Preprocessing the data to be mined is utterly important for a successful outcome of the analysis. If the data is not 
cleansed and normalized, there is a high danger of getting spurious and meaningless results. Cleansing includes 
the removal of outliers, i.e., data objects with extreme values, replacement of missing values, or the removal of 
erroneous corresponding data sets” [Mörchen, 2006, pp. 7-8].  

Sometimes, this first step is already referred to as feature extraction [Bishop, 2006, p. 2]. 
Many data mining methods rely on the concept of (dis-)similarity between pieces of information 
encoded in data. For example, for Euclidean distances, “normalization of the data needs to be 
considered to avoid undesired emphasis of features with large ranges and variances” [Mörchen, 
2006, p. 8] (see also [Jain/Dubes, 1988, p. 38]). This process of creating such “syntetic” data 
features that retain the most important information of a pattern in question is here called feature 
extraction (consistent with [Mirkin, 2005, p. 208]). 

2.3.3 Feature Extraction 

The first step of feature extraction is to determine the distribution of each individual variable. 

 “Important tools for this inspection are the quantile-quantile plot (QQ-plot) and kernel estimators for the proba-
bility density function (pdf). Here we use the PDE method for pdf estimation [Ultsch, 2003b] as it is specially 
designed to uncover subsets in the variables” [Behnisch/Ultsch, 2015, p. 54].  
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A QQ-plot makes it possible to compare the given distribution of a variable to standard distri-
butions. Additionally, box-whisker diagrams (boxplots) may be used to visualize the quartiles 
of a variable. 

2.3.3.1 Transformations 

“Real valued data often comes from domains where variables have greatly varying variances because of different 
scales. Variables with large variances are likely to dominate the obtained distance structure, e.g. when using Min-
kowski metrics. To overcome this problem, each variable is linearly transformed (standardized) such that the esti-
mated variance is the same on all variables. The Z-score scheme transforms a variable’s values ݔ ← ሺݔ െ ݉ሻ/ߪ 
with mean m and standard deviation σ” [Herrmann, 2011, p. 28]. 

If a variable can be non-linearly transformed to a normal distribution, the Box-Cox algorithm 
(see [Asar et al., 2014]) is often used to estimate the factor of the transformation. With an ap-
proximation of the factor obtained from the ladder of powers [Tukey, 1977], an “understanda-
ble” transformation, e.g., “log” or “sqrt,” can be applied that is as near as possible to the factor 
of the Box-Cox algorithm. “These allow for hypotheses on why the distribution is shaped in a 
particular way” [Behnisch/Ultsch, 2015, p. 56]. 
For non-normally distributed variables (e.g., a variable with a multimodal distribution), a mean-
ingful variance ߪଶ may be difficult to estimate. “Instead, a (robust) min/max-standardization 

transforms a variable’s values ݔ ← ௫ି௠௜௡ሺ௫ሻ

௠௔௫ሺ௫ሻି௠௜௡ሺ௫ሻ
 with robust estimates ݉݅݊ሺݔሻ, ݉ܽݔሺݔሻ for 

minimum and maximum values. There is empirical evidence by Milligan and Cooper [Milli-
gan/Cooper, 1988] that min/max standardization is to be preferred over Z-score, especially if 
variances of underlying distributions is [sic] hard to estimate” [Herrmann, 2011, p. 28]. In this 
context,	݉ܽݔሺݔሻ and ݉݅݊ሺݔሻ are estimated as the 95th and 5th percentiles, respectively, of the 
distribution [Herrmann, 2011, p. 127]. 

2.3.3.2 Dimensionality Reduction 

A common approach to feature extraction is dimensionality reduction (DR). To cope with the 
“curse of high dimensionality” (for further details, see [Verleysen et al., 2003]), dimensionality 
reduction reduces an input space I⊂ Թௗ to an output space O⊂ Թ௠ such that ݉ ൏ ݀ [Lee/Ver-
leysen, 2007].  

“All difficulties that occur when dealing with high-dimensional data are often referred to as the ‘curse of dimen-
sionality´. When data dimensionality grows, the good and well-known properties of the usual 2D or 3D Euclidean 
spaces make way for strange and annoying phenomena” [Lee/Verleysen, 2007, p. 3].  

The various phenomena related to this concept are explained in [Lee/Verleysen, 2007, pp. 4-9] 
(see also [Bellman, 1957]). A DR method is usually either a manifold learning method or a 
projection method. DR methods such as autoencoders [Hinton/Salakhutdinov, 2006], Isomap 
[Tenenbaum et al., 2000] or local linear embedding (LLE) [Roweis/Saul, 2000] that are de-
signed to find a manifold5 that represents a given set of high-dimensional data6 are called man-
ifold learning methods. Such methods are disregarded here because these manifolds usually 
have more than two dimensions. DR methods of the type known as projection methods are 

                                                      
5  “A manifold is a connected region. Mathematically, it is a set manifold of points, associated with a neighborhood 

around each point. From any given point, the manifold locally appears to be a Euclidean space.” [Goodfellow 
et al., 2016, p. 160]  

6  Often described using the term intrinsic dimension (e.g., [Lee/Verleysen, 2007, pp. 18-24, 41, 47ff]). 
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separately introduced in chapter 4. There, the focus is placed on methods that attempt to visu-
alize information by means of projections that are restricted to visualizing high-dimensional 
data in a two-dimensional space while preserving their structure (for details, see chapter 5). The 
quality of a projection critically depends on the concept of dissimilarity that is chosen to be 
applied to the input space I. This concept could be a definition based on either distance or local 
proximity. An index used to evaluate the quality of a projection is called a quality measure 
(QM), and 19 QMs are introduced in chapter 6. 

2.3.4 Cluster Analysis 

Many data mining methods rely on some concept of the dissimilarity between pieces of infor-
mation encoded in the data of interest. These methods are used for cluster analysis, and common 
approaches will be described in the next chapter. Cluster analysis is the task of unsupervised 
classification that results in a clustering. Given a data set I that contains n data points, the ob-
jective of cluster analysis is to group the data points into K disjoint subsets of I, denoted by 
ܿଵ, … , ܿ௄ [Hennig et al., 2015, p. 2]. “A clustering is […] the partition obtained” with  
Κ ൌ ሼܿଵ, … ܿ௄ሽ. If a data point l belongs to a cluster ܿ௚, then it has the class label ݃ ∈ Գ. In the 

literature, this process is often called hard clustering to distinguish it from methods such as 
fuzzy clustering, in which a fractional degree of membership is assigned to each ݈ ∈  Jain et] ܫ
al., 1999]. 

Cluster 
No generally accepted definition of clusters exists in the literature [Hennig et al., 2015, p. 705]. 
When describing clusters, the term pattern is often used (e.g., [Theodoridis/Koutroumbas, 
2009]). 
Here, consistent with Bouveyron et al., it is assumed that a cluster is a group of similar objects 
[Bouveyron et al., 2012]. Chapter 3 will elaborate on this statement while presenting the defi-
nition of natural clusters. 

Intracluster Distance 
Let ܿ௣ ⊂ be a cluster such that ∀ܿ௤ ܫ ⊂ ,݌ where ,ܫ ݍ ∈ ሼ1,… , ݇ሽ and ݌ ് ௣ܿ ,ݍ 	∩ ܿ௤ ൌ ሼ	ሽ; 
then, the distance ܽݎݐ݊ܫሺܿ௣ሻ ≔ ,ሺ݈ܦ ݆ሻ between two data points ݆, ݈ ∈ ܿ௣, is called an intraclus-

ter distance. 

Intercluster Distance 
Let ܿ௣ ⊂ ܿ௤	and	ܫ ⊂ ,݌ be two clusters such that ܫ ݍ ∈ ሼ1,… , ݇ሽ	, ܿ௣ 	∩ ܿ௤ ൌ ሼ	ሽ, and ݌ ്  ;ݍ

then, the distance ݎ݁ݐ݊ܫ൫ܿ௣, ܿ௤൯ ൌD(݆, ݈) between two data points ݆ and ݈ in the two clusters, 

݆ ∈ ܿ௣ and ݈ ∈ ܿ௤, is called an intercluster distance. 

Compact Structures  
Compact structures in a data set are mainly defined by distances d if discontinuity in data exist 
such that the intracluster distances are small and the intercluster distances are large. Note, that 
the distance distribution is often bimodal if the data structures are compact. This type of struc-
tures leads to natural clusters (see chapter 3). 
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Connected Structures  
Connected structures in a data set are mainly defined by density ߩሺݒԦ	ሻ if discontinuity in data 
exist. If a connected graph Γ is chosen appropriately regarding the data set, these data structures 
are based on neighborhoods ܪ௝	ሺ݇, Γ,ܯሻ. This type of structures leads to natural clusters (see 

chapter 3). 

2.3.5 An Approach to Knowledge Acquisition 

If, for a given data set, there exist labels defined by a clustering or a domain expert, the next 
step may be to determine what each cluster means [Behnisch/Ultsch, 2015, p. 65] or what kind 
of knowledge can be acquired from it7. 

“Under knowledge we understand a symbolic representation of objects, facts and rules for an interpreter with 
symbol processing capability, e.g. a human8. In particular, knowledge is communicable by word or writing” 
[Ultsch, 1994, p. 1] (see also [Ultsch, 1987, p. 22]).  

Knowledge has the properties of being valid, comprehensible, nontrivial, potentially innovative 
and useful in practice [Behnisch/ Ultsch, 2015, p. 52]. It can be stored in a knowledge base, 
which “is an organized collection of knowledge together with operations for accessing and ma-
nipulating knowledge” [Ultsch, 1987, p. 22]. One example of a representation of knowledge is 
a rule [Ultsch, 2016c], which is defined as a prescription regarding how to generate, interpret 
and manipulate facts [Ultsch, 1987, p. 22]. 
In the context of knowledge discovery, knowledge acquisition can be defined “as the encoding 
of knowledge into the formal representation scheme of a knowledge-based system [KBS]” 
[Ultsch, 1987, p. 23]); here, a KBS is defined as “a computer program that contains an explicit, 
formal representation of knowledge in a knowledge base and is capable of [drawing conclu-
sions9]” [Ultsch, 1987, p. 23]. In another context, researchers may interview domain experts 
“to become educated about the domain and to elicit the required knowledge, in a process called 
knowledge acquisition” [Russell et al., 2003, p. 217]. In short, knowledge acquisition can be 
described as a process that leads to a formal representation of knowledge (see [Aikins, 1983]), 
for example, a process leading to the generation of rules required for a computer program, e.g., 
DENDRAL [Russell et al., 2003, p. 22] or MYCIN [Aikins, 1983]. One possible approach to 
knowledge acquisition is to use machine learning [Russell et al., 2003, p. 687]. With regard to 
understandability, the machine learning methods used for this purpose can be classified as either 
symbolic or sub-symbolic methods [Ultsch/Korus, 1993]. 

“Sub-symbolic methods model the structure of data using many numerical parameters. They are usually aimed at 
prediction or classification. The output of sub-symbolic methods often depends on the values and interactions of most 
or all model parameters. They fail to explain the prediction or classification. There are certainly areas of data mining 
where it is sufficient to build such black-box models that can approximately reproduce a classification or predict 
future data. An important requirement for knowledge discovery is the interpretability of the results. In many domains 
the expert wants to know why a decision was made or what a […] pattern describes. Comprehensible descriptions 
of the models are crucial for success in this case” [Mörchen, 2006, p. 120]. 

For the acquisition of knowledge through cluster analysis, symbolic methods are preferable, as 
described in chapters 11 and 12 (see also [Ultsch, 1994]). In chapter 12, decision tree learning 

                                                      
7    In another context one would like to explain a prediction done by a machine learning algorithm. 
8  For humans 7±2 rules appear to be the optimum [Miller 1956]. 
9  Formally defined as inference in [Ultsch, 1987, p. 22]. 
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is used in a knowledge acquisition approach called Classification And Regression Tree (CART) 
analysis [Breiman et al., 1984]). This method relies on a binary tree in which the splitting cri-
teria (decisions) for the vertices are expressed in terms of the Gini index (for further details, see 
[Safavian/Landgrebe, 1990, p. 15]). 
“A class is described by a number of conditions” [Ultsch/Korus, 1993, p. 3] that lead to the 
generation of a subset ܩ௜ ⊂  defined by a previously identified clustering. Additionally, for ܥ
each class, a unique class label ݃ ∈ Գ exists for all	݋ ∈ ݋ ௜. Every observationܩ ∈  ௜ can beܩ
unambiguously described by one or more properties that are shared among all observations of 
 ௜ is reachedܩ ௜. Here, the conclusion that an observation can be correctly assigned to a classܩ
based on the conditions defining a path (rule) from the corresponding leaf to the root of the 
binary tree, and this conclusion is called the decision to place ݋	in	ܩ௜. Therefore, the class ܩ௜ 
has a semantic characterization because it is characterized by the rules governing the decision 
tree, which allow this class to be distinguished from other classes. Here, it is assumed that the 
last step in the evaluation of a clustering is to ask domain experts to validate the identified 
classes. 
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