

Topics in Information Systems

Editors:

Michael L. Brodie
John Mylopoulos
Joachim W. Schmidt

Office Automation
Concepts and Tools

Edited by

Dionysios C. Tsichritzis

With 86 Figures

Springer-Verlag
Berlin Heidelberg New York Tokyo

Series Editors

Dr. Michael L. Brodie
Computer Corporation of America, Four Cambridge Center
Cambridge, MA 02140/USA

Dr. John Mylopoulos
Department of Computer Science, University of Toronto
Toronto, Ontario M5S lA4/Canada

Dr. Joachim W. Schmidt
Fachbereich Informatik, Johann Wolfgang Goethe-Universitat
DantestraBe 9, D-6000 Frankfurt a. M. Il1FRG

Volume Editor

Prof. Dr. D. C. Tsichritzis
Computer Systems Research Institute.
10 King's College Road
University of Toronto
Toronto, Ontario, M5S lA4/Canada

ISBN-13 :978-3-642-82437-1
001: 10.1007/978-3-642-82435-7

e-ISBN-13 :978-3-642-82435-7

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically those of translation, reprinting. re-use of
illustrations, broadcastings, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies are
made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort"
Munich.

© Springer-Verlag Berlin Heidelberg 1985
Softcover reprint of the hardcover I st edition 1985

The use of registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for gener?
use.

Printing: Beltz Offsetdruck, HemsbachlBergstr.
Bookbinding: J. Schaffer OHG, Griinstadt
2145/3140-543210

Topics in Information Systems

Series Description

Dramatic advances in hardware technology have opened the door to a new
generation of computer sytems. At the same time, the growing demand for
information systems of ever-increasing complexity and precision has stimulated
the need in every area of Computer Science for more powerful higher-level
concepts, techniques, and tools.

Future information systems will be expected to acquire, maintain, retrieve,
manipulate, and present many different kinds of information. These systems will
require user-friendly interfaces; powerful reasoning capabilities, and shared access
to large information bases. Whereas the needed hardware technology appears to
be within reach, the corresponding software technology for building these systems
is not. The required dramatic improvements in software productivity will come
from advanced application development environments based on powerful new
techniques and languages.

The concepts, techniques, and tools necessary for the design, implementation,
and use in future information systems are expected to result from the integration of
those being developed and used in currently disjoint areas of Computer Science.
Several areas bring their unique viewpoints and technologies to existing informa
tion processing practice. One key area is Artificial Intelligence (AI) which
provides knowledge bases grounded on semantic theories of information for
correct interpretation. An equally important area is Databases which provides
means for building and maintaining large, shared databases based on computa
tional theories of information for efficient processing. A third important area is
Programming Languages which provides a powerful tool kit for the construction of
large programs based on linguistic and methodological theories to ensure program
correctness. To meet evolving information systems requirements, additional
research viewpoints and technologies are or will be required from such areas as
Software Engineering, Computer Networks, Machine Architectures, and Office
Automation.

Although some integration of research results has already been achieved, a
quantum leap in technological integration is needed to meet the demand for future
information systems. This integration is one of the major challenges to Computer
Science in the 1980s.

VI

Topics in Information Systems is a series intended to report significant
contributions on the integration of concepts, techniques, and tools that advance
new technologies for information system construction. The series logo symbolizes
the scope of topics to be covered and the basic theme of integration.

The logo will appear on each book to
indicate the topics addressed.

The first book of the series, "On Concep
tual Modelling: Perspectives from Artifi
cial Intelligence, Databases and Pro
gramming Languages", Michael L. Bro
die, John Mylopoulos, and Joachim W.
Schmidt (Eds.), February 1984, which
deals with concepts in the three areas,
has the logo:

The second book, "Query Processing in
Database Systems", Won Kim, David S.
Reiner, and Donald S. Batory (Eds.),
March 1985, which deals with Database
and Programming Language Concepts,
AI and Database techniques, and Data
base system tools, has the logo:

The third book, "Office Automation",
Dionysios C. Tsichritzis (Ed.), March
1985, which deals with the design and
implementation of Office Systems, has
the logo:

concepts

techniques

tools

Artificial

Intelligence

•

•

•
•

Programming

Databases Languages

• •

• •
•
•

•
•
• •

Future books in the series will provide timely accounts of ongoing research efforts
to reshape technologies intended for information system development.

March, 1985 Michael L. Brodie
John Mylopoulos

Joachim W. Schmidt

Preface

The term "Office Automation" implies much and means little.
The word "Office" is usually reserved for units in an organization that
have a rather general function. They are supposed to support different
activities, but it is notoriously difficult to determine what an office is
supposed to do. Automation in this loose context may mean many
different things. At one extreme, it is nothing more than giving people
better tools than typewriters and telephones with which to do their
work more efficiently and effectively. At the opposite extreme, it
implies the replacement of people by machines which perform office
procedures automatically. In this book we will take the approach that
"Office Automation" is much more than just better tools, but falls
significantly short of replacing every person in an office. It may reduce
the need for clerks, it may take over some secretarial functions, and it
may lessen the dependence of principals on support personnel. Office
Automation will change the office environment. It will eliminate the
more mundane and well understood functions and will highlight the
decision-oriented activities in an office.

The goal of this book is to provide some understanding of office .
activities and to evaluate the potential of Office Information Systems
for office procedure automation. To achieve this goal, we need to
explore concepts, elaborate on techniques, and outline tools.

The main theme of the book is the application of Data Base and
Artificial Intelligence concepts and techniques to the implementation
of Office Automation tools. From Data Bases we take structure and
property specification techniques. From Artificial Intelligence we take
rule and event specification techniques. The book could be called "Data
Bases and Artificial Intelligence techniques for Office Automation". We
call it simply Office Automation to emphasize the importance of this
area. Data Bases and Artificial Intelligence are important and, at this
point, even fashionable for the general public. In the long run, how
ever, Office Automation will affect more people, more institutions and

VIII Office Automation

our general way of life. Computers and Communications are the means
for change. Data Bases and Artificial Intelligence provide the tech
niques for change. Office Automation is change: change that will affect
more than half the working population of the world directly and the
rest indirectly.

Word processing, electronic mail and advanced telephony are part
of office mechanization. Office mechanization provides tools which
enhance office workers' productivity. We represent the area of office
mechanization in Part I of the book with its most critical aspect:
Integration. The first integration problem is integrating users' views
through appropriate user interfaces. User interfaces are probably the
most important single factor in the adoption of an automated system.
There are important directions and guidelines to be used for producing
good user interfaces, and they are outlined in the first paper, "User
Interface Design". The second integration problem is integrating the
different system facilities. Products like Lotus 1-2-3 and Symphony are
very successful in integrating word processing, graphics, data base and
spreadsheet functions. Far more integration is needed among the office
tools. In the second paper, "Document Management Systems", system
integration of editing, retrieval, formatting, filing, and mailing is dis
cussed, and an example system emphasizing integration is outlined.

Offices deal with information and knowledge. Filing and mailing
happen to be two key areas in handling office information. Office scrib
ing, e.g., word processing, is, in our opinion, only a secondary office
activity. People want mainly to remember and to communicate (filing
and mailing). They write things down only as a means to achieve these
ends. If they had had another way of recording information, e.g., voice
filing and mailing, they might not have written down anything in the
first place. In Part II, we discuss Filing. The third paper, "A Mul
timedia Filing System", gives an example of an office filing system and
discusses the relative merits of some of the design decisions. The
fourth paper, "Office Filing", outlines a more general framework for
multimedia document filing. In Part III, we discuss Mailing. The fifth
paper, "Etiquette Specification in Message Systems", provides a frame
work for office communication. The sixth paper, "Intelligent Message
Systems", describes a prototype system in which messages are active
objects with their own rules of behaviour.

Office Automation implies the availability of tools for capturing
and automating office procedures. In Part IV, we discuss Procedure
Specification. Paper number seven, "Office Procedures", outlines a sys
tem with triggers for automatic handling of office forms. In the eighth
paper, "An Object-Oriented System", a much more basic approach is
taken. The paper introduces a generic object-oriented system which can
be used as a basis for office procedure specification and automation.

Preface IX

To provide the proper system facilities and introduce office pro
cedure design, we need models to clarify the concepts. In Part V
(Modelling) we present two models. In paper number nine, "Concep
tual Modelling and Office Information Systems", the general environ
ment of the office and its associated objects is discussed. In the tenth
paper, "A Model for Multimedia Documents", we look inside docu
ments and exploit their structure.

Automation can cause havoc if it does not perform as anticipated.
We should be able to analyze Office Information Systems and identify
undesirable properties. Two examples are presented in Part VI
(Analysis). In paper number eleven, "Properties of Message Address
ing Schemes", the routing of messages is carefully considered and
related to a number of standard distributed-processing problems. In
paper number twelve, "Message Flow Analysis", the flow of documents
in offices is analyzed for loops, dead ends, etc.

Finally, performance considerations are important in office sys
tems. We use office filing as a sample environment for the discussion
of performance considerations. In Part VII (Performance), we present
two approaches relating respectively to performance analysis and special
machines. In the thirteenth paper, "Access Methods for Documents",
we analyze data and text retrieval mechanisms. In paper number four
teen, "Text Retrieval Machines", hardware proposals are evaluated for
text retrieval.

This book has the format of the Alpha-Beta Reports which we
have produced the past few years. As was customary with these
reports, we end the book with a paper looking towards the future. The
paper is called "Objectworld", and it outlines an imaginary world that
could be very useful in the design of Office Information Systems.

The authors of this book are as closely connected with one
another as their papers. All of them were members of a specific group
on Data Bases and Office Automation at the Computer Systems
Research Institute, University of Toronto. For about five years (1980-
1985) we worked as a group on various topics chosen for importance,
relevance, and our ability to contribute to them. This book summarizes
our findings. We refer to many other contributions by other research
ers. However, we concentrate on what we have done. We hope we
have covered many interesting topics related to Office Automation. We
did not exhaust the possible topics and we probably missed some
important ones. This is not a book on "Everything You Wanted to
Know about Office Automation". It is a book on "What We Can Tell
You about Office Automation".

The ideas and terms appearing in the papers have some degree of
inconsistency. The group always encouraged creative thinking, by
allowing a certain degree of controlled anarchy. Individual projects had

X Office Automation

much flexibility and independence in their thinking. Only within the
same project and system was consensus enforced. This state of affairs
is apparent in the book. The book gives a snapshot of our thinking as
it continuously evolved. At this stage of Office Automation develop
ment, it is important to highlight choices and not give recipes. Present
ing an appearance of final, irrevocable truth would have been a disser
vice to the readers. The whole world of Office Automation is rapidly
evolving. Dealing with it is like shooting at birds from a moving car
(while the driver and the birds try to avoid each other). The office
environment is changing as computer and communications technology
evolves. One has to create tools capable of solving future problems on
the basis of projected technology.

The material in this book was used many times in a graduate
course on Office Automation given by the University of Toronto Com
puter Science Department. The prototype systems outlined in the
papers are working, and most of them can be seen either as a demons
tration or in videotape form. The programming was done by graduate
students who also finished their degrees. The laboratory equipment
consisted mainly of SUN workstations, and access to a VAX 11/780, all
running UNIXTM. We believe that interesting research on Office Auto
mation can be carried out in such a basic experimental environment.
We would have liked, however, to have had the capabilities of more
advanced workstations, local area networks, and image and voice
hardware.

The Data Base and Office Automation Group had many graduate
students and visitors over the years, including: E. Bertino, C. Cheung,
J. Chui, P. Economopoulos, K. Elles, C. Faloutsos, S. Gamvroulas, S.
Gibbs, J. Hogg, R. Hudyma, J. Kornatowski, I. Ladd, A. Lee, D. Lee,
P. Martin, M. Mazer, J. Mooney, O. Nierstrasz, D. Propp, M. Papa, F.
Rabitti, K. Twaites, C. Thanos, M. Theodoridou, J. Vandenbroek, and
C. Woo. We thank all of these people for their contributions. The
research was a group effort, and it is hard to separate the individual
contributions. The fact that all of these people were exposed to
advanced office automation ideas is as important as the research results
themselves. High quality professionals are the key element and critical
resource for any effort in high technology. As a university, we are very
proud to provide a challenging environment for these people, and we
are sure that the systems they will produce in the future will be far
superior to anything we did within our group.

March,1985 D.C. Tsichritzis

Contents

Part I: Integration ... 1

1. User Interface Design
A. Lee and F. Lochovsky ... 3

2. Document Management Systems
C. Woo, F. Lochovsky and A. Lee 21

Part II: Filing .. 41

3. A Multimedia Filing System
D. Tsichritzis, S. Christodoulakis,
A. Lee and 1. Vandenbroek .. 43

4. Office Filing
S. Christodoulakis .. 67

Part III: Mailing .. 91

5. Etiquette Specification in Message Systems
D. Tsichritzis and S.l. Gibbs 93

6. Intelligent Message Systems
J. Hogg .. 113

Part IV: Procedure Specification ... 135

7. Office Procedures
1. Hogg, O.M. Nierstrasz and D. Tsichritzis 137

8. An Object-Oriented System
O.M. Nierstrasz 167

XII Office Automation

Part V: Modelling ... 191

9. Conceptual Modelling and Office Information Systems
S.l. Gibbs .. 193

10. A Model for Multimedia Documents
F. Rabitti ... 227

Part VI: Analysis ... 251

11. Properties of Message Addressing Schemes
P. Martin ... 253

12. Message Flow Analysis
O.M Nierstrasz ... 283

Part VII: Performance ... 315

13. Access Methods for Documents
C. Faloutsos and S. Christodoulakis 317

14. Text Retrieval Machines
D. Lee and F. Lochovsky ... 339

Epilogue .. 377

15. Objectworld
D. Tsichritzis .. 379

References .. 399

Index .. 427

Part I

Integration

1
User Interface Design

A. Lee
F .H. Lochovsky

ABSTRACT User interface design is one of the most important
and one of the most difficult aspects of designing a computer
system. It is the contact point between the user and the system
and determines to a large extent the usefUlness and
effectiveness of the system. In this paper, we examine the tools
and techniques used for designing user interfaces. As user
interface design is to a large extent an art, our goal is to
highlight important issues in user interface design and not to
prescribe a recipe for designing user interfaces.

1. Introduction

The user interface of a system is unquestionably one of its most
important components. It manifests itself at a number of levels of con
tact between the user and the system: physical, conceptual, and percep
tual [Mora8H Physically, it determines how the user interacts with the
system. Conceptually, it determines how the user thinks about and
explains the behaviour of the system. Perceptually, it determines
whether the user accepts or rejects the system. As such, the user inter
face is a component that cannot be considered apart from the rest of
the system. It cannot be designed haphazardly, added in hindsight, or
just made to happen. Rather, it should be considered early in the
design process and designed in conjunction with the rest of the system.

In this paper, we are concerned with the tools and techniques
used for designing user interfaces. The tools and techniques of any

4 Office Automation

trade evolve, but the tools and techniques of user interface design have
had less than a decade to arrive at their present forms. As yet, there
are no definitive experiences and no standard guidelines for building
good user interfaces that we can draw from. However, there are some
important principles emerging and several important design considera
tions which we will highlight.

One of the most important aspects of a user interface is its concep
tual model. The conceptual model provides the mechanisms both for
conveying knowledge to the user to perform his tasks and for assimilat
ing this knowledge. Approaches to designing a conceptual model are
discussed in section 2. In actually designing the properties and dynam
ics of the user interface, there are many design considerations. In sec
tion 3 we outline these considerations and some of the approaches
used. To determine the suitability of the design of a user interface, we
need to experiment with different techniques and see if they fit together
well. Therefore, we need prototyping tools that will allow us to put
such designs together quickly and cost effectively. Section 4 will dis
cuss such a facility. Finally, our conclusions are presented in section 5.

2. Conceptual Model and User's Model
A conceptual (system) model is the system designer's abstract

framework on which the system and the world in which it operates are
based [Maye81]. It encapsulates the knowledge about the workings of
the system and how this knowledge may be used to accomplish tasks
[Mora81]. The underlying conceptual structures of the conceptual
model are taught to the users to increase their understanding of the
system, to provide them with an appropriate basis to reason about the
system and its behavior, and to provide assimilative context to enable
them to relate to new situations and tasks.

A user's (mental) model, on the other hand, is a personalized,
somewhat high-level understanding of the conceptual model based on
the user's knowledge and experiences. It is not only a personal descrip
tion but also a prescription as well [Me Va82]. The user employs his
mental model not only to perform tasks that were taught, but also to
perform tasks not originally encompassed by the conceptual model (i.e.,
transfer performance).

Since a user bases his mental model on a system's conceptual
model, it is very important that the conceptual model be properly con
ceived (i.e., that it be complete and consistent). A conceptual model
that gives a cursory, incomplete notion of the system or is not cohesive
or not thorough will make a system difficult to understand, and may
result in conflicts between the conceptual and the user's models. A

User Interface Design 5

conceptual model that is inconsistent will frustrate the user and inhibit
experimentation and learning. As a result, it may not provide the
appropriate anchoring knowledge that is required for comprehension of
the system and for assimilation of new situations and tasks.

There are two extremes in the formulation of conceptual models
[GIIT83]:

Emulation A conceptual model that emulates the familiar uses the
user's knowledge, through analogies and metaphors of an
existing system, to aid in the understanding of a new tool.

Innovation A conceptual model that exploits the representational pos
sibilities of a new tool, synthesizes and introduces new
approaches of thinking and new methods of doing things.

There are many reasons to choose the emulation approach which
happen to be reasons against choosing the innovation approach, and
vice versa. The emulation approach may be intuitive, easier to learn,
more likely to encourage user acceptance and able to minimize training
required (although there is little experimental evidence to prove this).
However, while analogies may be very effective for teaching novices
about a system (Le., as a literary metaphor), they can be dangerous
when used for detailed reasoning about a system [HaM082]. There
may be many aspects of an analogical model that are irrelevant to the
analogy, and some may in fact be in conflict with the system. Also,
analogical models inhibit representation of new and innovative concepts
(e.g., directories in a file system [HaM082]). In some limited situa
tions analogical models can be useful. However, they should not be
adopted haphazardly or simply because they are easy to learn and use.
Analogical models should be chosen because they are an appropriate
representation of the conceptual model. Otherwise, the designers may
in fact be postponing or ignoring teaching users new concepts and
operations.

Superficially, the emulationlinnovation approaches appear to
represent a dichotomy. The premise in the innovation approach is that
the system being modelled is very different from the concrete system
and must be synthesized. However, on careful examination we may
observe that it need not be a dichotomy at all. If the emulation
approach is properly used (Le., the analogical model does not inhibit
the assimilation of new concepts), the dichotomy can in fact define a
trajectory along which the user's model may be directed in a controlled
way towards the conceptual model. As a consequence, the goal of the
system growing with the user can be realized. The difficulty then is in
finding a useful isomorphism between the analogical model and the
conceptual model [GIIT83].

As we can see, analogical models can be exploited to advantage.
By starting with a suitable analogical model, the user is not

6 Office Automation

overwhelmed from the outset. Also, we can take advantage of the
benefits associated with the emulation approach (i.e., easy to learn and
easy to use). In office systems, such criteria are essential. Office work
ers, notably managers, have little interest in spending large amounts of
time learning how to use a system to perform their desired tasks.

Whether one follows the emulation approach or the innovation
approach, it is important to avoid haphazardly introducing restrictions
or exceptions. They are not only difficult to understand, in the context
of the rest of the system, but they also tax the user's ability to recall,
and hamper his performance. Arbitrary, artificial restrictions clearly
affect the complexity of not only the system but also the conceptual
model. Just as it is important not to adopt poor analogical models, it is
also true that designers should not introduce unjustifiable exceptions.

To illustrate some of the preceding issues, we draw attention to a
text editing example. In the Xerox Star office system [SIKV82], the
editing philosophy adopted is edit original document with autosave. Here,
as the user edits a document, all changes that are made to the copy on
the screen (i.e., memory copy) are reflected in the original copy (i.e.,
disc copy). This is unlike traditional text editing systems, which usually
adopt the philosophy edit copy with explicit save. In this case, a distinc
tion is made between the two copies of the document. This distinction
is not only artificial, it is also inconsistent with a novice's mental
model. The distinction is artificial because the user's intent in the first
place was to modify the particular document. Otherwise, a backup copy
would have been made explicitly, prior to the editing. It is inconsistent
with a user's mental model because in a paper environment one edits
the original version. As we can see, the Star's conceptual model for
text editing is not only consistent, it is also self-consistent, with its
overall emulation approach of mimicking a paper office.

3. Design Considerations
Formulating the conceptual model is the first, and perhaps the

most important, step in designing a user interface. Once the basic phi
losophy of the system has been adopted, many other choices for the
user interface follow naturally. However, it is difficult to formulate an
appropriate conceptual model without some familiarity with user inter
face design considerations. In this section we will discuss these design
considerations and highlight some of the more important approaches.

User Interface Design 7

3.1. Input and Output Devices
The primary level of contact with an interactive system is the

level of pragmatics [Buxt83]. This level has a strong effect on the
user's perception of the system. A system's input and output devices
greatly affect its pragmatics. An inappropriately chosen input or output
device may make a task difficult to specify and hence difficult to do.
For example, many systems use the keyboard for both text and opera
tion entry. This results in a complicated interface and can cause the
user to make silly mistakes due to a lack of awareness of his current
context.

One objective in the design of a system is to choose an appropri
ate input device so as to minimize the number of input devices used.
For example, the multi-touch, touch-sensitive tablet can represent
many input devices, depending on the context in which it is used
[BuHR84]. This can minimize the need to switch between input dev
ices. Hence, if a single device can serve as several different devices
(i.e., a virtual device) without overloading its semantics, it is generally
preferable to using many single purpose input devices. For example,
mice are general purpose input devices that allow pointing and selecting
of objects (e.g., text, icons, graphics, etc.) displayed on the screen, as
well as manipulation of control objects like cursors, menus, windows,
and scrolling icons [NeSp79].

In choosing a suitable input device, reference to an input device
equivalence tableau may be useful [GIIT83, Schi84]. The tableau
imposes structure on a domain of input devices and serves as an aid in
finding appropriate equivalences. As well, it makes it easy to metaphor
ically relate different devices. More importantly, the tableau is useful
in quantifying the generality of various physical input devices. This
allows us to match application needs to devices.

In terms of output devices, CRTs are the most commonly used
device in interactive systems. The falling cost of sophisticated display
technology now makes it viable to substitute graphics displays for stan
dard CRTs. The graphics display is not only useful for displaying the
final results of an operation, but can also be a mechanism by which the
apparent complexity of the user interface can be reduced [Lodd83,
Mill82]. It can greatly aid the presentation of operations, system infor
mation, and the intermediate progress of operations, through visual
representation. This has the following benefits:

• It provides ease of learning and use because the display avoids forc
ing the users to remember conventions, since everything related to a
task can be made visible .

• It improves user performance and reduces errors because objects and
operations are visible to the user.

8 Office Automation

• It conveys an unspoken narration of all the user's actions and the
system's responses, as well as ideas and information.

• It allows the user to utilize direct manipulation as opposed to descrip
tive manipulation (see section 3.4).

• It allows the designer to incorporate visibly meaningful feedback and
help mechanisms which can develop mnemonics and other memory
and learning aids.

Interactive text-editors and office systems like Bravo [Lamp78],
Etude [HIAG81], Star [Seyb81], Lisa [WiIl83], and Macintosh [Will 84]
provide a bit-mapped display that can present a fairly faithful represen
tation of the changes to the documents or resources available (Le., an
electronic desktop). They provide a "what you see is what you get"
interface as opposed to an "embed-compile-print" interface. This, in
effect, reduces the turnaround time, since one can perform an action
and see the results immediately.

Great strides have also been made in other input and output dev
ices. For example, voice hardware can be used for presenting informa
tion (e.g., speak out on-line help information) and for accepting input
(e.g., operation recognition) [Andr84, Cann83, LeL083]. Their falling
costs and improving reliability and effectiveness make them candidates
for improving the means of communicating with users.

3.2. Operation Set
The operations in a user interface are the set of actions (com

mands) that are provided for manipulating the objects and resources of
the system. Two approaches are commonly used in designing the
operation set. In one approach, a small set of generic operations that
have few restrictions and exceptions, and minimal overlap in meaning
or functionality is provided. Each operation embodies fundamental
concepts with many of the extraneous application-specific semantics
stripped away [SIKV82]. They can be used in a wide range of applica
tions, always behaving the same way regardless of the type of object
selected. In the other approach, a large set of application-specific
operations is provided. Here, operations have limited range and are
often customized to the specific application.

A small set of operations does not, however, necessarily imply
less confusion or greater ease of use than a large application-specific set
of operations. It might minimize the confusion normally associated
with a large operation set. However, the generalizations may, in fact,
obscure or eliminate certain necessary application-specific semantics.
As a result, the user may misinterpret or misunderstand the effect of an
operation in such situations. The net effect is that we have traded away

User Interface Design 9

one problem for another.

For example, when a Star document icon is MOVEd to a printer
(Le., to initiate the hardcopy operation), it is not clear what the system
does with the moved icon, that is, which of the following occurs
[SIKV82]:

• The system consumes (Le., deletes) the icon .

• The system does not consume it but

• puts the icon back where it came from .

• places the icon in an arbitrary spot on the "desktop" .

• leaves the icon in the printer so that it must be expli
citly moved out.

The first is acceptable because the printer icon would behave con
sistently with other function icons (e.g., when an icon is moved into an
out-basket, the system mails it and deletes it from the desktop). In the
latter cases, the printer icon would behave consistently with its physical
counterparts (Le., the behavior of an electronic analogue of a real
printer should have no notion of deleting the piece of paper).

Large operation sets present a cognitive burden on the user in
learning and using the system. As [Reis811 points out, the ease of use
and likelihood of making errors in an interactive system can be meas
ured by the complexity of the grammar of the language (i.e., number
and length of the production rules). This of course does not take into
account the binding of a number of actions into one chunk (i.e., chunk
in;) [Buxt83]. Nevertheless, it does not discount the fact that a large
operation set can present a much larger cognitive burden then a smaller
operation set.

3.3. Operation Syntax
The operation syntax determines the order in which and place in

the specification of an operation at which the operands and the opera
tion are specified. The operation syntax is generally in one of three
forms - prefix, postfix, or infix. In prefix (verb/noun) syntax, the opera
tion is specified first, followed by the operand for the operation. The
operand of an operation in postfix (noun/verb) syntax is specified first
and then the operation. An operation in infix (noun/verb/noun) nota
tion is a cross of the prefix and postfix notations. This operation syntax

1 In psychology, chunking is the information processing ability of human beings to combine
several small units into one large unit, which is just as easy to handle as its individual
parts.

10 Office Automation

is typically used when an operation contains more than one operand.

The postfix syntax is natural in graphics applications, where the
operation serves double duty as a virtual carriage return delimiting the
end of the operation specification. However, postfix is unnatural in
alphanumeric mode. Here, the prefix syntax is the more natural form
of operation syntax (Le., carrying over natural language ways of doing
things). Hence, there is an apparent inconsistency or perceived
discrepancy in a mixed text-graphic system as to which syntax is more
natural.

This problem may be resolved somewhat by making the
object/scope of the operation the required operand, as in the Star
[SIKV82, BFHL831. This results in the user being able to deduce the
syntax and semantics of unfamiliar operations. This is not meant to be
the solution to the operation syntax problem; however, it does, from
one point of view, resolve certain inconsistencies.

3.4. Manipulation Technique
The manipulation technique of a user interface is the way in

which the objects of the system are manipulated. Two approaches are
commonly used: direct manipulation and descriptive manipulation
[HaKS83, Shne831. Direct manipulation uses physical actions and
selections on objects (i.e., recognize and point), whereas descriptive
manipulation uses English-like syntax to describe objects and actions
(Le., remember and type). Descriptive manipulation is commonly
associated with command language user interfaces.

Direct manipulation is commonly found in systems using a what
you see is what you get philosophy (e.g., interactive editor-formatters).
Unlike batch formatting, the user does not intersperse formatter com
mands between text. Rather, users cut, paste, and dress the docu
ments, with the formatted result being immediately visible. Also, users
do not need to contend with an edit-com pile-execute work cycle. The
annoyance and delay of debugging the format commands are alleviated
because the results and errors are immediately visible.

It is easier in the direct manipulation approach to start using the
system and to master its simple parts. A user need not remember as
much. Each step of the user's actions is immediately visible. As such,
it provides a visual narration of the actions and their results. Also,
most operations are reversible. For nearly every operation there is an
inverse operation; in certain cases, an operation has a natural inverse -
applying the operation in the reverse direction.

Direct manipulation encourages the users to experiment with and
capitalize on transfer performance - performance of a task for which they

User Interface Design 11

were not specifically trained. Features can be progressively assimilated
and may therefore be amenable to skill acquisition. This is often
referred to as the onion approach (Le., layers of skin comprise increas
ingly advanced concepts), whereby the system's complexities are gradu
ally unveiled as the user becomes comfortable and his understanding
increases [Land83]. This is an invaluable aspect of the tool, not only
because it allows the user to incrementally master the system but also
for formulating the conceptual model. Unlike descriptive manipulation,
direct manipulation, when used properly, can provide the means for
evolving the user's mental model along the projected trajectory men
tioned in section 2.

The direct manipulation approach works well with an object
oriented conceptual model in which a set of objects and orthogonal
actions (Le., any action can be applied to any object) are defined. If a
message passing scheme similar to Smalltalk [GoR083] is used to
request actions, then new objects can be defined with a new combina
tion of already-defined properties, while minimally upsetting the exist
ing objects. The problems and complications associated with descriptive
manipulation, when syntax structures are modified, are avoided.

However, there are some drawbacks to direct manipulation. The
biggest drawback is that not all actions are simple, easy, or possible to
demonstrate (e.g., finding all objects that satisfy a set of constraints).
Descriptive manipulation may be better able to capture these actions
concisely and clearly. For example, several discrete tasks may need to
be performed, which involve a large number of keystrokes or button
presses to perform a complicated action. Direct manipulation would
benefit greatly if it could use short forms, abbreviations, and concise
syntax like those used in descriptive manipulation to minimize the
number of steps per task. This would also be desirable for expert
users, who would want fast and less verbose user dialogues. In allow
ing both manipulation techniques to coexist, the benefits of each tech
nique are realized.

An additional drawback of direct manipulation is that visual
representation can be confusing, due to incorrect information, cluttered
presentation, or misleading graphic representation [Shne83, Lodd83].
Pictorial representation can be somewhat deceiving, in that it may not
necessarily be apparent what the cause of an error is (e.g., inheritance
format attributes in interactive editor-formatters). The user may be
misled by the appearance of the problem and may not actually identify
its source.

12 Office Automation

3.5. Dialogue Technique
A dialogue technique is the method by which the user communi

cates his requests to the system. Dialogue techniques in current use
include [FoWC81, FoVa82, NeSp79]:

• type-in
• function-key
• menu

• iconic
• gesture

• voice

A type-m approacn reqUires me user to type operations In a well
defined syntax, using the keyboard. It is a quick and efficient mode of
input for expert users, but difficult for casual or novice users. In the
absence of sophisticated input (e.g., mouse or tablet) and output (e.g.,
graphics display) devices, the prevalent dialogue technique is the type
in approach.

Function keys are special keyboard keys that represent an object
or operation. They can either have a fixed meaning, or their meaning
can change depending on the current context. Function keys provide
easy operation and object specification, since it takes very little time to
select a function key. They are appropriate for a small set of functions
but are unsatisfactory when there are a large number of functions,
because of the limited number of keys that can be set aside on a key
board. They take up no screen real estate but are not as flexible as
menus and gestures. By properly arranging the order and position of
the function keys, operation specification is easily facilitated and
dangerous keys are not accidentally selected2.

Menus present all the possible choices in the current context to
the user. Selections are made by number, by mnemonic letter, or by
function keys. Menus are attractive because they require less cognitive
effort on the part of the user, since all the options are listed. It is not
possible to make a meaningless selection. However, menus are often
annoying to the expert user. This is especially true when choices are
hierarchically structured, and a number of menu selections are required
to completely identify an object or operation. The user's input, when

2 In Etude, special keys for nouns (e.g., word, sentence, paragraph, etc.), verbs (e.g.,
copy, move, delete, etc.), and modifiers are defined and arranged from left to right
with dangerous keys placed in out-of-the-way positions. The keys are arranged in the
order in which they are provided in command specification.

User Interface Design 13

using menus, is paced by the system. There is thus a tradeoff between
speed and accuracy.

Icons are graphic abstractions of operations or objects. They are
usually selected by some form of pointing device (e.g., mouse or joys
tick). Icons are extremely useful for conveying ideas or information in
a nonverbal manner, if the abstractions are appropriately represented3

[Lodd83, Mill821. Like fixed menus, icons can take up valuable screen
real estate. However, iconic based interfaces require a user to "recog
nize and point" rather than to "remember and type", as in type-in based
interfaces.

Gestures are simple graphical shorthand strokes (e.g., a check
mark) [BFHL83]. They represent a natural form of dialogue technique,
and are less complicated than on-line character recognition approaches
[NeSp79], which require extensive user training and effective recogni
tion algorithms. Gestures can reduce the number of subtasks when
they are combined into appropriate tasks (i.e., by exploiting closure and
composition - see section 3.7). Gestures also can reduce the syntactic
complexity of dialogues and the number of modes occurring within a
dialogue. Like the iconic dialogue, gestures can enhance the perfor
mance and learning of tasks that are difficult to verbalize [BFHL83].
They can decrease the number of input devices required, and may
increase the utilization of specific input devices.

Finally, all the previous techniques have emphasized the written
verbal-forms and visual-pictorial forms of communication. Very little
consideration has been paid to the spoken verbal forms used in some
spatial database management system applications [Bolt80]. Speaker
dependent and independent voice recognition technology is currently
available to complement situations where, previously, function keys and
menus were used. This technique is relatively unexplored but seems to
be just as suitable.

3.6. Use of Modes
A mode in an interactive system is a state of the user interface
that lasts for a period of time, is not associated with any particular
object, and has no role other than to place an interpretation on
operator input [SIKV82].

These special purpose context-sensitive states lock the user into a spe
cialized and typically highly restricted functionality that severely limits
flexibility [MeVa82]. Each additional mode, in which the user's input

3 In fact, menus can be made up of non-textual icons.

14 Office Automation

is interpreted differently, adds to what the user needs to remember. As
a result, the user is prone to making the mistake of trying to perform
an action not permitted in the current mode. Such modal interaction
forces the user to concentrate heavily on remembering how to do some
thing instead of what is to be done. This can be counter-productive and
should be avoided as much as possible [TesI81].

Modes in the user interface often create what has been called the
dilemma of preemption [Tes181]. That is, when the facilities provided by
the current mode do not include the one the user wants, he has to
preempt what he is currently doing and move to a mode that does.
This may result in a loss of information, because it has been erased
from the screen. It may also cause the user to possibly forget the task at
hand, as he is preoccupied with getting out of the current mode. It is
unrealistic to anticipate and provide for all the possible alternatives that
a user may require in solving a problem. Instead, the system should
facilitate cognitive branching, so that the user can gracefully preempt
the current subtask without loss of information or loss of context. Text
editing and graphics editing are examples of tasks where the user may
require a discontinuity in his problem solving strategy.

While modelessness may be desirable, it is difficult to achieve.
Some modes are inherently part of the system and others appear
through design. As such, it may not be possible to do away with them
entirely. However, they should be minimized as much as possible, and
they should be made as transparent as possible to the user. In design
ing a user interface, the important consideration is to identify when
modes are appropriate and when they are not. To achieve the extreme
- modelessness - much must be sacrificed, and the result may be a res
tricted scope in the applications that can be designed and the operations
that can be performed.

3.7. Closure and Composition
Oosure is the phenomenon in which operations in the user inter

face fuse together in such a way that the user views the set of opera
tions as a single chunked operation [Buxt83 , Schi84]. A user interface
should be designed to exploit the phenomenon in which an operation,
whether sequential or concurrent, triggers the next operation. In effect,
one operation serves to reinforce another so that they logically connect
to form a chunked operation. In fact, this technique is commonly
applied in our everyday life (e.g., to change gears in a manual shift
car). It is analogous to word associations commonly used to remember
and recall definitions or a set of procedures. Like word associations,
there are some benefits that can be reaped. The most obvious is that
the cognitive burden of the resulting aggregate operation may be

User Interface Design 15

equivalent4 to a single operation [Buxt83]. Hence, by properly incor
porating chunking/closure into the design of the interaction, we can
better utilize the rather limited but valuable cognitive resources that are
available.

An example that clearly demonstrates the use of closure can be
seen in the manner in which selections are made with pull-down or
pop-up menus within Smalltalk [GoR083], Apple Lisa [Will83], and
Apple Macintosh [Will 84]. With the use of one button press, position
ing of the cursor over the selection, and then release of the button, the
menu is made to appear, a selection is made, and the menu is made to
disappear. With practice, selections of common menu items become
single cognitive operations.

A discussion about closure is not complete without also discussing
the importance of proper composition of operations. Whereas closure
is concerned with the design of a chunked operation in which its parts
are intrinsically related to the whole, composition deals with the smooth
transition from one operation to another, wherein one operation does
not necessarily imply the next operation. The objective is to combine
tasks in such a way that they bind together strongly, to achieve better
task performance and to render the performance of the task almost
transparent to the user [Schi84]. In effect, the operations coalesce, to
behave very much like a natural operation. Proper composition is not
easy to achieve and is affected by a number of design factors (e.g.,
input devices, manipulation technique, etc.). The major emphasis is
not on providing optimal tasks5 but rather ensuring consistency
throughout the domain of tasks.

3.8. Feedback
An important and invaluable element of the user interface is feed

back [NeSp79]. There are two forms of feedback: user and system.

User status feedback provides feedback of all the user's actions.
Examples of this type of feedback include echoing the character typed,
highlighting the object or menu item selected, and displaying error mes
sages for mistakes. In fact, error messages should always appear in the
area currently being viewed or where the user is working (Le., near the
current tracker). However, this strategy may overwrite something that

4 Note, the amount of information in a chunk has no significant affect on the number
of chunks that we can remember (e.g., no additional cognitive resources are re
quired to remember words as opposed to letters.)

Two techniques, which are shown to be less than optimal for two tasks in isolation,
may, when combined, yield a fairly optimal composite task [Schi84].

16 Office Automation

is already on the screen. In addition, if the user needs to refer to the
message again, it might have disappeared. Therefore, an alternative
strategy is to keep the error messages in the same area of the display,
so that the user can always check to see if anything has gone wrong at
any time.

System status feedback provides feedback of the progress of the
system's actions. Time-consuming operations, or operations performed
in a time-sharing environment, may result in a period of delay. Other
than the initial echo to the user that the command has been accepted,
he usually has no indication of what the system is doing until the
operation has completed. In between the start and the end of the
operation, a user who is not familiar with the operation, or is the anxi
ous type, may interpret the delay to mean that the system is hung, is in
an infinite loop, or has ceased operation. Hence, some form of inter
mittent feedback to indicate that the system is still alive and performing
its task is important. For example, the Star has a number of cursors
that indicate the state of the system whenever the user is in a mode, in
addition to posting a message in the Message Area [SIKV82], As well,
it has an hourglass cursor that appears while the system is performing
an operation. Percent-done progress indicators [Myer85] are another
approach that actually allows the user to monitor the progress of a task.
Instead of just a fixed hourglass cursor, "sand" can actually flow in the
hourglass, to monitor not only the extent of the progress but also that
progress is occurring.

3.9. User Aids
There are two forms of user aids that may be provided:

• Tools that alleviate anxiety and safeguard against detrimental
changes .

• Tools that compensate for human limitations and limitations
of screen real estate.

A major issue, typically associated with computer-based systems,
is the so called anxiety factor [Good81a], A system that does not
attempt to alleviate the fear, apprehension, and uncertainty that users
feel when they are using the system will merit very little consideration
or interest from users. Even in the most straightforward of user inter
faces, these feelings may arise because of the user's unfamiliarity with
the system. The system should appear to be helpful and forgiving
instead of instilling a feeling of "walking a tightrope" [Good81a],

User Interface Design 17

A number of different kinds of aids provided by systems to allevi
ate anxiety can be cited. Some editors provide an undo operation to
reverse the effects of the previous operation. In this way, the system
appears to be more forgiving, as the user can correct mistakes. As
well, the user is not afraid to experiment with operations. Many sys
tems have a help operation that provides an on-line, condensed version
of the system manual. Help might also be available as to the system's
current state and the user's options at the current point. A cancel
operation provides a means of terminating the current specification and
gracefully returning to the operation level. In many systems, opera
tions causing substantial changes require the user to confirm the opera
tion.

Other forms of user aids include tools that make task performance
easier for the user. Some tools compensate for human limitations.
These are the tools that a computer system is ideally suited for. A
repeat facility enables the user to repeat the last operation on a new
selection [Good81b]. Some editors provide the user with the ability to
perform global searching and substitution [Lamp78, Seyb81]. Other tools
compensate for limitations on the size of the screen. For example,
scrolling and thumbing facilities allow the user to travel freely through a
document being edited or scanned in a window. Scrolling facilities per
mit the user to scroll a document. Thumbing facilities permit the user
to jump around from section (Le., page or other logical segment) to
section of a document quickly.

3.10. Customizability
Designing a system targeted for a particular level of computer

expertise (e.g., casual users) is rather short-sighted, not to mention
discriminatory. The system should be usable by a range of user types.
This can be achieved by including optional features. For example, a
user should be able to choose the dialogue technique and the level of
verbosity of the user-computer dialogue. As a result, expert users
would not be encumbered by the facilities which are provided for the
novice users, and vice versa. The system would thus allow a user to
evolve a little further before outgrowing it, by elevating him to another
level or choosing a faster way of doing things. The optional features
result in a system that is more flexible.

18 Office Automation

4. User Interface Development Systems
It is clear from the previous sections that the process of user

interface design is still very much in its infancy. Our knowledge and
expertise is very limited. As a result, the question of whether the
design of a user interface is suitable or effective cannot be answered
until it has been prototyped and tested. Through testing, we can iden
tify inconsistencies and problems with the design and correct for them.

In general, the first design and implementation of a user interface
is far from being the desired end product. This is evidenced by the
lack of good user interfaces. There is a need for an environment in
which a user interface can be specified, designed, implemented,
debugged, tested, evaluated, and then redesigned in an iterative fashion
[MaCa83, SwBa82, BuSn80]. Since an iterative design methodology
can be costly, the feasibility of such an approach hinges on the availa
bility of a set of tools which facilitates each stage in the design process.
A user interface development system within an appropriately structured
operating environment is such a set of tools [TaBu83, RoYe82]. Its
purpose is to aid in the design, implementation, and evaluation of
interactive, graphical user interfaces. It supports structured forms of
interaction, facilitates the graphical layout of an interface, controls input
and output for the application, and aids in the evaluation of an inter
face. It gives the interface designer a high-level view of the system,
leaving implementation dependent and low-level details to be managed
by the system.

A user interface development system should contain the following
components (see Figure 1) [Hi1l8S, TaBu83]:

• manipulation and dialogue specification tools

• run-time support tools

• analysis tools

Virtually all existing user interface development systems have the
first two components [TaBu83]. Respectively, they are known as the
specification and run-time support components. The design and imple
mentation is done by using the specification component. The run-time
module provides the mechanism that actually executes the user inter
face. In addition, general system tools such as compilers, debuggers,
editors, window managers, and graphics packages, as well as suitable
hardware, support the user interface development system.

Ideally, the specification component is made up of a dialogue
builder and glue system. Note that existing user interface development
systems provide one or the other, but not both [TaBu83]. The dialogue
builder provides a dialogue specification language for defining a library
of interaction dialogues (Le., customized dialogue modules). These are

User Interface Design 19

Specificat.ion Run-Tine Analysis

Figure 1: User Inter/ace Development System Architecture.

usually designed and implemented by an individual with programming
skills. The dialogue modules can then be glued together by the glue sys
tem into, hopefully, a coherent and unified dialogue language for the
user interface. In most cases, this can be done by non-programmers
[Hill8S].

The run-time component communicates with the specification
component via a shared file called the user inteT/ace definition file. This
file contains the state transition information, which is kept in table
form. The run-time component takes all the user interactions and
interprets them according to the user interface definition. In addition,
this component monitors usage, by recording information such as
interaction errors, time between commands, etc., for analysis [Hill8S].

Finally, to reap the benefits of a user interface development sys
tem, a component to analyze and evaluate the user interface on the
basis of the data collected from testing (Le., a run-time support com
ponent) is needed (see Figure 1). At present, there are no existing
user interface development systems that support this component. How
ever, its importance in the successful development of good user inter
face is unquestionable.

20 Office Automation

5. Conclusion
In this paper, we considered various aspects of user interface

design. The first issue to address was the development of a good con
ceptual model of the system. Two approaches, emulation and innova
tion, were discussed. We discussed how the two, through careful
design, can be combined to realize the concept of a system growing
with the user as his expertise increases. Next, we examined various
design considerations and their impact on the user interface. We dis
cussed choice of input and output devices, size of the operation set and
its syntax, choice of manipulation and selection technique, the use of
modes, closure and composition of operations, feedback, user aids, and
customizability of the user interface. Finally, we considered the need
for tools to aid in the development of good user interfaces. We dis
cussed the use of user interface development systems that allow a user
interface to be designed, specified, tested, and evaluated iteratively.

Our understanding of how to build user interfaces and what
makes a good user interface is still evolving. Today, user interface
design is still largely an art. Hopefully, the exploration and evaluation
of the techniques discussed in this paper will eventually make user
interface design more of a science. At least, the techniques should help
us build better user interfaces more cost effectively.

6. References
[Andr84] [BFHL83] [Bolt 80] [BuHR84] [BuSn80] [Buxt83] [Cann83]
[FoVa82] [FoWC81] [GIIT83] [Good81a] [Good81b] [GoR083]
[HaKS83] [HaM082] [HIAG81] [Hill 85] [Lamp78] [Land83] [LeL083]
[Lodd83] [MaCa83] [Maye81] [MeVa82] [Mill 82] [Mora81] [Myer85]
[NeSp79] [Reis81] [RoYe82] [Schi84] [Seyb81] [Shne83] [SIKV82]
[SwBa82] [TaBu83] [Tes181] [Will 83] [Will 84]

2
Document Management Systems

c.c. Woo
F .H. Lochovsky
A. Lee

ABSTRACT Document management is a major activity in an
office, and one that is readily amenable to computerization. A
great deal of research and development has been done on facili
ties for editing, formatting, filing, retrieving and mailing docu
ments in office systems. However, there has been a lack of
attention to the integration of such facilities. In this paper, we
discuss our view of what a document management system
should be, and what facilities it should provide. An integrated
document management system, Officeaid, is used as an exam
ple, throughout the paper, to illustrate our approach.

1. Introduction

Office systems have matured in recent years from providing
separate, primitive office functions to providing integrated capabilities.
As well, the growth in interest in computers and electronic games has
made non-computer-oriented people (e.g., office workers) more aware
of the potential of computers in the office. The increasingly sophisti
cated demands in a computerized office require office systems with
powerful and integrated facilities. Proper integration of these facilities
is an important task requiring unifying concepts that can be used to tie
together diverse physical capabilities.

22 Office Automation

In this paper, we focus on the document preparation, communica
tion and management aspects of office systems. We will refer to such
office systems as document management systems. As a means of integrat
ing the different resources and facilities required, we take an object
oriented viewpoint. As the reader will see, this viewpoint is pervasive
throughout this book (see for example the companion paper, "Concep
tual Modelling and Office Information Systems", in this book). The
objects in a document management system are the resources that peo
ple require to prepare, communicate, and manage documents. These
include the documents themselves, document repositories, printing
facilities, etc. These system resources are manipulated by office work
ers playing various office roles (e.g., manager, secretary, etc.), and
using various system facilities.

We believe that an object-oriented viewpoint, when applied to
document management systems, allows us to nicely integrate the
resources and facilities required to prepare, communicate, and manage
documents. We illustrate the integration that can be achieved using
this approach by a specific example, Officeaid, a prototype document
management system developed at the Computer Systems Research
Institute at the University of Toronto. Section 2 discusses the use of
office roles for structuring communication paths, and for controlling
access to system resources and facilities. Section 3 outlines how an
object-oriented approach can be used to provide an integrated model of
the system resources available to users of a document management sys
tem. We focus particularly on documents and their properties. Section
4 discusses the facilities required in a document management system
for manipulating the system resources and in particular for preparing,
communicating and managing documents. Section 5 presents our con
clusions.

2. Office Roles
To facilitate use of the system resources and facilities, and in par

ticular the communication of, and access to, documents, it is helpful to
structure the users in an office. In this section, a method for structur
ing users in an office is briefly outlined. The method is similar to the
methods described in the companion papers, "Etiquette Specification in
Message Systems" and "Properties of Message Addressing Schemes". It
is based on roles and the ability of office workers to play roles.

The concept of a role is taken from the theatrical context, where a
role is defined to be a part played by an actor on a stage. Roles can be
used in document management systems to model office functions done
by a user [RoSh82, Mart84, WoL0841. An office role is the set of
actions and responsibilities associated with a particular office function.

Document Management Systems 23

"Secretary", "Manager" and "Chief Programmer" are all examples of
office roles. A user can be associated with more than one role. For
example, an individual may play the role of a professor in the Com
puter Science Department, and also the role of director of the Com
puter Systems Research Institute. In addition, if there are five people
that perform a particular office role R, then all five people are associ
ated with R.

The notion of a user playing a role provides logical independence
in specifying the capabilities of users with respect to system resources
and facilities. In particular, it can be used to specify the access rights as
well as the location (role) to which a document can be sent. For exam
ple, the role director of CSRI can be used in mailing and authorization
without having to know which individual is currently the director. If
the individual who plays the role changes, then only this fact needs to
be changed: the access rights or mailing address of the role are not
required to change.

In Officeaid, individual users are known as agents. Agents are
assumed to be the basic entities within Officeaid, and are available for
use in role definition. To define a role, the authorized document
administrator fills out the system-supplied form shown in Figure 1.

In Officeaid, roles can be generalized (Le., a subset of a role can
be another role). For example, the role graduate student in U of T gen
eralizes the roles Computer Science graduate student in U of T, Business
graduate student in U of T, and so on. This mechanism can be used to
refer to a set of roles without knowing the details of which users
assume these roles. Furthermore, a role can be specialized (Le., a role
can be a subset of another role). Hence, a role like Computer Science
graduate student in U of T specializes the role of graduate student in U of
T. Specialized roles provide a mechanism to group agents into a smaller
set, yet still preserve their required properties.

3. System Resources
In order to prepare, communicate and manage documents in a

document management system, the users require various resources.
We view these resources as the objects that the users manipulate to
perform their various document management tasks. Taking an object
oriented view of these resources allows us to categorize system
resources as to type, and to operate on the types as well as the specific
instances. Viewing all the system's resources as objects also allows us
to define generic operations that operate in a similar way on all objects
regardless of their type (see section 4).

24 Office Automation

Role NaIIe :"

Agents Included: ____________ _

Roles Included :

Agents Excluded: ____________ _

Roles Excluded :

Figure 1: Role System-supplied Form

Officeaid defines a set of generic objects which represent the avail
able system resources. These generic objects include documents, file
folders, envelopes, terminals, file cabinets, printers, mail trays, and garbage
cans. The objects are grouped by functionality and category. The func
tionality describes the functions of the objects: either they bear data
(e.g. documents), provide a service such as acting as repositories for
data objects (e.g., file cabinets store documents), or perform specific
functions on data objects (e.g., printers produce hardcopy of docu
ments). The data bearing objects in Officeaid are the document, file
folder, and envelope objects. The server objects are the file cabinet,
mail tray, garbage can, printer, and terminal objects.

There are three categories for each generic object in Officeaid.
The meta-type category is used to group all the types of an object. The
type category is used to group all the instances of a particular type.
Finally, the instance category represents a particular instance of a partic
ular type. For example, the document meta-type groups all the docu
ment types in Officeaid. A document type groups all the instances

Document Management Systems 25

(documents) of a particular document type. Finally, a document
instance is an instantiation of a particular document.

3.1. Documents
The basic information carrying entity in Officeaid is the document.

The other Officeaid objects provide various facilities for communicating
and managing documents. For example, file folders provide a way to
aggregate documents while envelopes provide a mailing facility for
documents. Because of the importance of the document object in a
document management system, the rest of this section will discuss vari
ous aspects of document structure and contents. We first discuss the
types of data that can constitute the contents of a document. We then
discuss the structuring of documents. Finally, we consider the types of
constraints that can be specified both on the document contents, and on
the document structure.

3.1.1. Document contents
Documents are used to communicate information in the office. In

a paper environment, anything that can be written on paper can be con
sidered a document. Thus, a document management system must sup
port at least text and attribute data types, where attribute data types are
the traditional data types supported in programming languages and data
base management systems. However, in the office there are other ways
to communicate information, and these can also be regarded as poten
tial constituents of documents. For example, documents such as
letters, memos and reports may contain tables, graphics and images as
well as text and attribute data. Voice data is also a very prevalent way
to communicate in the office, and could form part of a document in an
electronic environment.

It is thus very important to consider office documents as mul
timedia documents, and to provide support for the different data types
[SIKV82, Zlo081, BAMT84, WEFS84]. To support multimedia docu
ments, hardware facilities must be available for handling the different
types of data. In addition, user level facilities such as editing must be
provided for the different data types. Some approaches to dealing with
multimedia documents are discussed in section 4.1 as well as in the
companion paper, "A Model for Multimedia Documents".

Sometimes it is impossible to type a field of a document. That is,
we don't know a priori that all the instances of that field are of a given
type, or even for that matter that it is one data type. Take a letter as an

26 Office Automation

example: if the body of the letter is a field, then any particular instance
may have one or more data types as the content of that field. To handle
such fields, a document management system should support the notion
of an untyped field (Le., a type which is as yet unknown).

Officeaid supports attribute and text data, and their associated
editing facilities. However, as discussed in section 4.1, the architecture
and user interface of Officeaid also facilitates the incorporation of other
types of data. In particular, a facility for incorporating image data into
Officeaid has been designed but not yet integrated into the system
[EcL083].

3.1.2. Document structure
To facilitate the communication and management of documents, a

document management system should support the categorization of
documents according to their type. That is, all documents with the
same content structure belong to the same document type. Not only
does this make management of documents easier, but it also facilitates
the incorporation of more advanced office automation functions such as
office procedures (see for example the companion paper, "Office Pro
cedures").

The representation of document types and instances can be
divided into two levels: the external representation and the internal
representation. The external representation is concerned with what
users see, how they see, and how they use what they see. The internal
representation captures all the information of the external representa
tion in an internal data structure. This data structure is transparent to
the user, and stores the documents for future use. A sophisticated
internal data structure (Le., other than simple files) is required for a
document to facilitate and improve the performance of operations such
as querying and retrieval. Appropriate representations for the two levels
facilitate the mapping between them.

The external representation of a document type is defined by one
or more document templates. A document template specifies at least the
following information:

1. The background information for the document template (e.g.,
headings, field names, etc.).

2. The layout (position) of the document fields on the document
template.

3. The contents of the document fields (Le., the data types of the
fields) .

Document Management Systems 27

For maximum flexibility, user level facilities should be provided for
defining document templates [HePa79, Geha82, RoSh82, WoL083,
YHSL84].

Officeaid provides not only the ability to define document types
via document templates, but also the ability to define views of docu
ment types. The Officeaid facilities for defining document templates
and document views are discussed in section 4.2.

Internally, one could represent the document templates and docu
ment contents in any appropriate data structure. One common way to
represent a document type, and that used in Officeaid, is as a relation
(or table) in a relational data base management system [Gibb79,
HePa79, Zlo081, RoSh82, LeWL84]. Then each document will be a
tuple in one of the relations defined in the data base. The advantage of
using a data base management system is that the filing and retrieving
can be done more easily. However, currently, data types of the kind
found in multimedia documents are not supported in commercial data
base management systems. Additional facilities must be provided such
as those described in Part II, "Filing", and Part VII, "Performance", of
this book.

3.1.3. Document constraints
In a document management system, constraints are logical restric

tions on document types and document field values. There are many
constraints that can be specified on document types and document
fields [Geha82, Wo083]. All of these constraints can be viewed as
(pre-condition, action) or (post-condition, action) pairs. For example,
associated with each document type can be pre-conditions and post
conditions, and their corresponding actions. The pre-conditions of a
document must be satisfied before it can be used. For example, if a
document is allowed to be accessed only by managers, any users other
than a manager will not be permitted to access it. The post-conditions
of a document must be satisfied before the document can be filed away.
For example, all required fields are filled. Two sets of actions can be
attached to each pre-condition and post-condition. One set of actions is
performed if the associated conditions are satisfied. Otherwise, the
other set of actions is performed. A useful action is to print messages
to the user.

Similarly, pre-conditions and post-conditions can be associated
with each document field. A pre-condition is a constraint that must be
satisfied before filling a field. For example, some fields cannot be filled
by the user. A post-condition is a constraint that must be satisfied
after a field is filled. For example, in a salary field,

28 Office Automation

NEW salary> OLD salary. Again, two sets of actions can be attached
to pre- and post-conditions. If the action part of the constraint is
powerful enough, then it will act like an automatic procedure [Zlo081]
(see also the companion paper, "Office Procedures"). For example, a
document field can be calculated automatically after other document
fields are filled in (e.g., tax and total from the subtotal).

Sometimes it is necessary to perform certain actions, depending
on the state of the document data base at that time. This can be
accomplished by extending the pre-condition or post-condition state
ment to include querying the document data base in a simple way
[Astr76, Ferr82, Wo083].

The preceding view of constraints is very general, and can accom
modate almost any kind of constraint. In addition, the constraints must
be specified explicitly by the user. There are many constraints that are
used very frequently, particularly constraints on document fields. Such
constraints should be available as part of a document management sys
tem.

Besides type constraints on field values, OFS [Gibb79], Oz (see
the companion paper, "An Object-Oriented System") and Gehani's work
[Geha82] identify the following constraints which are applicable to
document fields:

1. key - this field uniquely identifies a document; normally, the key
is generated automatically by the document management system,
and may not be modified by users.

2. required - this field must be filled when a document is created;
once entered it cannot be modified.

3. unchangeable - this field may be filled at any time but once
entered it may never be changed.

4. signature - associated with certain document fields may be a sig
nature field which is automatically filled with the identification of
the user or workstation whenever the document field is entered
or modified; a signature field cannot be modified by the user.

5. date created - this field will be filled in automatically by the docu
ment management system with the current date when the docu
ment is created; this field may not be modified.

4. System Facilities

The facilities of a document management system are the opera
tions available to the office roles for manipulating the system resources
(objects). For true integration of facilities, operations should be
designed in such a way that a user does not have many different

Document Management Systems 29

protocols for using the system. Furthermore, for ease of use and learn
ing, the way in which operations are specified should be uniform across
objects as well as across operations.

In the same way that we structured the system resources, it is also
useful to structure the system facilities. Not all users require all system
facilities to perform their document management tasks. This considera
tion leads us to the notion of different environments in a document
management system: a default environment which provides common or
frequently used facilities that are accessible to all users, and one or
more application-specific environments which provide facilities that are
restricted to more knowledgeable users or are of less global interest.

Document
Ad .. t t mtnts ra

1
or

[SUN screenJ
Interface

/ I"

"-V
Application-Specific

Environment
III
c:
0 '-.. GI .. ." ;g N ~ c: 0 GI III '- 1Il o III

E GI III 0 GI
:> 0.. GI .L <II f <II 0..

t.I '"
....,. :> ,. gt- 0 :> t;:t- ~t-0:: ([

/ ~

"-V
ISpecificationl/

Informat i on I"
I

User

"-V
SUN Screen
Interface

/ f"

"-1/
Default

Environment

0') 0')
c: c:-; 0') .. .,

c: .. III <II c
." c E '-

~ ~ i: <II ~ 0::

/ " / I"

" 1/
eMS ., Interface

,,/ W

MISTRESSt Text
DBMS

Searching
Engine

Figure 2: Officeaid System Architecture

In this section we will illustrate these two types of environments
by referring to the Officeaid document management system. The

30 Office Automation

Officeaid system architecture is shown in Figure 2.
4.1. Default Environment

Minimally, a user in this environment should have access to facil
ities that allow him to create and modify documents (Le., edit), to
define the appearance of documents (Le., format), to organize docu
ments (Le., file), to find particular documents (Le., retrieve), and to
send documents to other users (Le., mail). At the same time, this
environment should provide a way to access the application-specific
environments.

Like all the environments, the default environment must be con
cerned with providing a uniform and consistent interface to all the facil
ities available within the environment. One way to achieve this goal,
and to achieve integration of facilities within an environment, is to pro
vide a generic set of operations across all the objects. In this way, the
semantics of an operation, when applied to an object, are the same
regardless of the object to which they are applied. Integration of facili
ties is achieved by commonality of effect, as far as the user is con
cerned.

Officeaid provides the generic operations COPY, MARK, MOVE,
QUERY, RETRIEVE, HELP, and UNDO to manipulate the objects in
its default environment (Le., the documents, file folders, envelopes, termi
nals, file cabinets, printers, mail trays, and garbage cans (see Figure 3)).
The semantics (and applicability) of an operation depend on the func
tionality and category of the selected object. The applicability of an
operation is apparent from its presence in the universal command win
dow or in the pop-up menu that appears after an object is selected. The
semantics of an operation are uniform across the categories of objects.

As an example, let us look at the semantics of the COpy opera
tion. When applied to the meta-type category, the effect of the COPY
operation is to switch to an application-specific environment for
defining a new type of the selected object. For example, when applied
at the meta-type level of a document object, the effect is to define a
new document type. This simply allows the user to switch to the partic
ular application-specific environment for defining document types
(described in section 4.2). When applied to the type category, the
effect of the COPY operation is to create a new instance of the selected
object. For example, when applied to a specific document type object,
the effect is to create a new instance of the document type. Finally,
when applied to the instance category, the effect of the COPY operation
is to create a replica of the selected object. For example, when applied
to a specific document, a copy of that document is created.

SllJ)[HI PI: Uf IJlt\ll,TI~

-

(OP' HE.lP 'lW: ~nrE

CLOSE EXIT rI\ll FOR)tAT

l '\llO

QUERY

Document Management Systems 31

RETRIEH

r;:1
P?

-. -....
, .

t __

'F?j " , , . ,

Figure 3: Screen Layout for Default Environment

Note that only the semantics at the last (instance) level are intui
tive. The semantics at the other two levels are not intuitive, but they
are consistent across objects. In this way, we maintain some familiarity
for the user while at the same time introducing new concepts.

4.1.1. Editing

A document management system must provide an editing facility
for preparing a document. The fact that a document may contain
different data types requires that this facility allow the user to edit any
of them. This means that the following tools are required:

• word processing for text editing like Bravo, ETUDE, and Scribe
[FuSS82].

• geometric editor for structured graphics design (e.g., charts, figures,
and diagrams) like PIC and IDEAL [FuSS821.

• paint/bitmap editor for free-hand drawing and editing of digitized
images like MacPaint [Will 84].

32 Office Automation

• voice editor like the one described in [Maxe80).

Currently, research is focused on finding a single set of operations
that can be used in the editing of all data types [FuSS82). The intent is
to allow the data types to be nested in arbitrary combinations with a
great deal of flexibility, and to reduce the amount of detail characteris
tic of existing multi-packaged document preparation systems. There
has been some success with a limited set of data types (e.g., Star
[SIKV82]). However, the lack of any major results may be due, in
part, to the lack of appropriate hardware to support different data types,
and also a lack of understanding of how to impose structure on images
and voice.

In the absence of a uniform framework for handling different data
types, a fully integrated editing facility is difficult to achieve. However,
with clever use of the boxes-and-glue idea, first proposed by Knuth for
format and page layouts [Knut791, along with information about the
data type of the contents of a box and the application of certain user
interface techniques (Le., multiple windows), we can provide logical
integration of separate physical facilities.

The boxes-and-glue approach uses two-dimensional objects, called
boxes, that encase concrete entities such as characters, words, lines,
paragraphs and pages. Boxes of varying sizes have reference points
which are used to align them together horizontally and vertically. Glue
is used to connect these boxes together. In this case, the content of a
document can be constructed from a collection of boxes whose contents
may contain only one type of data. To enter information into a box,
the appropriate type of box (e.g., text, graphical, paint, speech, etc.) is
selected, positioned and sized. The type of box defines the appropriate
editor to be invoked. Note that, if similar actions in these editors are
represented by one common protocol (Le., same syntax, selection
sequence, and manner of selection), it can greatly alleviate the com
plexity of using these various editors.

At present, Officeaid supports attribute and text data types. It
provides the general text editing capabilities associated with normal edi
tors as well as cut and paste operations. However, because of the
nature of the user interface, it is very easy to apply the boxes-and-glue
approach to support editing capabilities for other data types.

4.1.2. Formatting
A document template allows us to specify the position of the

fields and background information for a document. In addition to this
information, we also need to be able to specify the appearance (format)
of the field contents and the background information when displayed or

Document Management Systems 33

printed. Since we are able to categorize documents as to type, it seems
natural to associate some formatting information with each document
type. This formatting information is called the document profile, and it
specifies the default appearance for the document fields and background
information. In addition, we may want to change the appearance of
specific fields of a document type. We therefore also need to be able to
override the default format, and to associate a different format with
parts or all of a document field. Similarly, for specific document
instances, the override mechanism can be used to override the format
for the document type (i.e., document profile or document field).

Most interactive formatters have a hierarchical structure and
inheritance scheme for the format environment [FuSS82]. The format
environment at any point in a document instance is the complete set of
values (for all the format parameters) that are in force at that point.
The root format environment of this hierarchy is the document profile.
In a particular format environment, the value for a format attribute
may be undefined. In this case, the format attribute inherits its value
from a higher format environment; the particular format environment
may extend all the way back to the document's document profile.

It should be noted that most existing interactive formatters are
designed on the presumption that a high resolution display is available.
However, there are also many less sophisticated ASCII-based displays
in common use. To be flexible, we need to design a formatting facility
that will display a readable document not only on graphical displays but
also on non-graphical displays. Granted, this would be a less faithful
representation, but at least some representation conveying the neces
sary information content. This is important, because not everyone may
have access to a high-resolution graphics display, and many users per
form non-graphical information processing.

Officeaid has a hierarchical structure and inheritance scheme for
document formatting information. The format attributes are listed in
the FORMAT system-supplied form shown in Figure 4. Associated
with each Officeaid document type there is a document profile. To
override an existing format attribute value, the user may issue the
appropriate text processing command (see Table 1) or the general for
mat command FORMAT. In the latter case, the FORMAT command
displays the FORMAT system-supplied form shown in Figure 4. This
allows the user to alter the values of format attributes not alterable by
the commands provided in Table 1. Note that the FORMAT system
supplied form can be used to define specific paragraph formats or the
format of a segment of text by filling in the appropriate format attribute
values.

34 Office Automation

Font Size :

Font lype : Bold h.allc

Face Detail Box Embolden Italic Reverse Underline

Base-Line Spacing

Line Spacing :

Indent :

Left ~argjn Indent

Right Margin Indent

Header Indent

Footer Indent

Al ig,,"ent Center jMM§iM" Flush Rlght Justify

F;11 : On

It ... ize Bullet Dash Label Number

It ... ize Indent

Break Before :

Break After :

Figure 4: FORMA T System-supplied Form

4.1.3. Filing
After documents have been created, some sort of file manage

ment facility is needed to allow the user to collect them into piles and
to put these piles away. In a paper office, there are typically two levels
of file organization: file folders and file cabinets. Having more levels
introduces management problems, and also becomes more complicated
for the user to deal with. A file folder can contain instances of docu
ments either all of the same type or of different types . A file cabinet
contains various file folders . There are many different ways in which
the documents in a file folder and the file folders in a file cabinet may
be organized. A document management system must allow the user to
choose which way he wants to organize his documents.

Officeaid mimics the physical office by providing file folders and
file cabinets for collecting and storing documents. Two specific file
folder types are available (although others can be defined). Instances
of the first file folder type are immediately created for each new docu
ment type in Officeaid. Each of these file folders allows the user to col
lect the document instances of a particular document type, and put

Document Management Systems 35

COMMAND
Add
Delete
Replace
Alter Font
Alter Type Face
Alignment
Paragraph
No Paragraph
Move Right
Move Left
Add Space
Delete Space
Delete Blank Lines
Add Blank Lines

Table 1: Text Processing Commands

them in one place, the file folder. Unless otherwise specified, docu
ment instances are filed in their corresponding file folders. The other
file folder type is a dossier, which is analogous to a dossier in OFS
[Gibb791. Here, instances of the file folder type may contain document
instances of different document types. File cabinets can also be defined
by the user, and can contain file folders of any type.

4.1.4. Retrieving

When a document is filed away in a document management sys
tem, it is necessary to be able to retrieve it at some later point in time.
Typically, two types of retrieval patterns are observed. In one case, the
user is not quite sure of what he (or she) is looking for, in which case,
he needs to scan or browse a number of documents. On the other
hand, he may have an idea of what he is looking for, but tends to be
vague when he formulates his request (i.e., a fuzzy query). Both of
these must be supported in a document management system. The
former is fairly straightforward: the user simply flips through the batch
of documents. The latter is somewhat more difficult, and the technique
must allow the user to formulate his fuzzy request, and also find all
documents that are relevant. Query by example is generally recognized
as being one of the best techniques to handle such query formulations
[Z100811. It is an extremely flexible and powerful technique, because
very few restrictions are imposed on what the user can say (i.e.,

36 Office Automation

patterns may be used), and it allows the user to formulate a request
fairly naturally and quickly.

Officeaid uses the query-by-example technique to locate docu
ments for retrieval. Aside from retrieving documents from particular
file folders, users may also request documents which may be in one of
the file folders in the file cabinet(s). This is, of course, not very fast or
efficient, but it is a natural request. As well, the retrieval facility allows
the user to retrieve file folders from file cabinets, envelopes, and mail
trays, and documents from envelopes and garbage cans.

4.1.5. Mailing

Documents are used to in an office to communicate information
as well as used to record it. Communication facilities are therefore a
fundamental part of a document management system. However, offices
require more sophisticated communication facilities than those provided
by electronic mail alone. Electronic mail is inadequate because it has a
very flat communication structure, and also does not enforce an eti
quette of communication (see the companion paper, "Etiquette
Specification in Message Systems"). In addition, electronic mail does
not provide facilities for using, to advantage, the document structure
information. For example, one might want to screen mail based on its
content.

A mailing facility in a document management system therefore
should provide the capabilities for managing as well as transmitting
documents. By using the document structure and communication paths
inherent in an office, the document mailing facility can provide the fol
lowing additional features which are not available in traditional elec
tronic mail systems:

1. Specification of the recipient using office roles.

2. Grouping together of documents in a structured manner for mail
ing (e.g., a user can mail a dossier to another user [Fong83]).

3. Filing and retrieval facilities for mail similar to those for docu
ments.

In Officeaid, mailing is done by creating or selecting the appropri
ate document, placing it inside an envelope, and putting it in the out
mail tray to be sent away. The complete document retrieval facilities
can be used to select the appropriate documents, but operations for
placing them in envelopes have to be issued individually for each docu
ment. However, Officeaid can group documents into objects such as
dossiers and mail these. When selecting mail from mail trays, the user
can browse through the mail trays or he can selectively pick mail from a

Document Management Systems 37

mail tray using the document retrieval facilities. When mailing is cou
pled with automatic procedures and/or a document routing capability,
the user can be relieved from much of the routing specification
required for mailing documents [MaL084, Tsic84].

4.2. Application-Specific Environments
For the application-specific environments, we can assume that the

users are more sophisticated than users of the default environment.
This implies that we can provide more powerful operations to deal with
application-specific requirements. As a result, these environments have
to be restricted to certain users (Le., document administrators).
Officeaid provides several application-specific environments, among
them template design, routing specification, and procedure specification
[WoL083, MaL084, Prop83]. In this section, we will discuss one of the
application-specific environments available in Officeaid, namely tem
plate design.

4.2.1. Template Design
All users (including the document administrators) by default log

into the default environment. To switch to the environment for
defining a new document type, the user selects the COPY operation,
the document object, and the meta-type category. To define a docu
ment template for a document type, the following actions are required:

1. Enter background information.

2. Define document fields.

3. Layout document fields.

4. Specify repeating groups or tables if any.
When defining a document type, the user may have to manipulate a
number of system-supplied forms at the same time. To allow this,
Officeaid provides two working areas in the user interface: the
workspace area and the miniatures area (see figure 5). The workspace
area displays the system-supplied form for the user to fill in. The mini
atures area displays the miniaturizations of the system-supplied forms
that the user is working on. It acts as a reminder to the user of what
the unfinished tasks are, and also provides a visual abstraction of the
state or extent of the incomplete work. As well, it provides the
mechanism for switching from one task to another easily by simply
selecting the miniature, in the miniature area, corresponding to the
desired task.

38 Office Automation

Oe-sc:rl p\ lon . , .. , IW': r· ______ _

flvld P..-apgrty

LXIT FOR.'L\T ROL[VIRTl.'Al
DOCL'ML\T n 'PE

Figure 5: Screen Layout for Document Type Creation

A benefit of using a data base management system to store docu
ments internally is that data can be shared, using views. Officeaid
incorporates this facility by introducing two kinds of document types,
namely base and virtual. In data base terms, a base document type
corresponds to the stored data base representation, while a virtual docu
ment type corresponds to views of the stored representation. That is, a
virtual document type is supported by providing transformations on
base document types.

A base document type is defined by specifying the layout for the
document type using document fields and background information.
The position of a document field in a document template is indicated by
pointing to the desired position, entering the desired background text,
and then pointing at and dragging the desired field name to the
appropriate location [WoL083].

A virtual document type is defined by specifying transformations
on base document types. The following three basic transformations are
supported:

Document Management Systems 39

1. Projection.

2. Selection.

3. Cross Product.
When constructing the layout of a virtual document template,

projection is implicit in the selection of the document fields. However,
if a base document type name is selected, then the transformation is a
cross product. Selection is specified by filling the condition field in the
virtual document type system-supplied form. Using the above method,
the order of performing or selecting the transformations is not
significant. Furthermore, from these basic transformations, it is possi
ble to synthesize more complicated transformations such as joins.

As in a data base environment, updates to virtual documents
introduce some data integrity problems. However, in Officeaid, the
document administrator is forced to specify the virtual document types
in such a way that the system can detect and intercept transformations
on a base document type that would lead to data integrity violations
[FuSS791.

In addition to specifying the document template, the user can also
specify constraints on the document type and document fields, authori
zation for using and changing the document type, and formatting infor
mation for the document template and document fields (see Figure 5).

5. Conclusion
In this paper we discussed what a document management system

is and what facilities it should provide. We took an object-oriented
viewpoint of the resources and facilities of such a system. The system
resources corresponded to the various objects that the user had avail
able to prepare, communicate, and manage documents. The system
facilities corresponded to the operations available for manipulating the
objects. Office roles were used as a means of controlling access to the
system resources and facilities and for structuring the communication
paths in an office.

A specific example of an integrated document management sys
tem, Officeaid, was used throughout the paper to illustrate our ideas.
Officeaid provides integration of resources and facilities by treating all
system resources as objects. This allows us to structure the system
resources in a uniform way (Le., meta-type, type, and instance levels).
Integration of facilities is achieved by uniformity of effect of operations
on objects.

Officeaid is implemented on a SUN workstation [Sun82] in the C
programming language [KeRi78] under the UNIX operating system

40 Office Automation

[ThRi781. The MISTRESS relational data base management system
[Rhod8I] is used as the underlying storage and access mechanism for
the system.

6. References
[Astr76] [BAMT84] [EcLo83] [Ferr82] [Fong83] [FuSS79] [FuSS82]
[Geha82] [Gibb79] [HePa79] [KeRi78] [Knut79] [LeWL84] [MaLo 84]
[Mart 84] [Maxe80] [Prop83] [Rhod8I] [RoSh82] [SIKV82] [Sun82]
[ThRi78] [Tsic84] [WEFS84] [Will 84] [WoLo83] [WoLo84] [Woo83]
[YHSL84] [Zloo8I]

Part II

Filing

3
A Multimedia Filing System

D. Tsichritzis
S. Christodoulakis
A. Lee
J. Vandenbroek

ABSTRACT This paper outlines an Office Filing System for
multimedia documents. The system uses signature techniques
for fast filtering. It uses miniatures, voice excerpts and a game
environment for effective browsing and selection of the desired
documents. Some implementation issues, user reactions and
fUture directions are discussed.

1. Introduction
In this paper we discuss the design and implementation of a facil

ity for filing office objects. With the advent of the widespread use of
office information systems, such a facility is much needed. As people
exchange text documents, voice documents, records and facsimile, they
will need to file them and retrieve them in a flexible manner. Such
filing activity serves two purposes. First, it enables the users to store
and retrieve the information relevant to their own work. Second, it
enables the system to retain information from which it can feed cor
porate data bases to augment the "corporate memory" [MoR079].

We will refer loosely to documents as the office objects related to
filing. A document can be a data base record, a text document, a voice
document, or an image. It can also be any combination of the above.
For instance, a document may consist of:

44 Office Automation

a) attribute values, e.g., date, sender

b) text part, e.g., letter contents

c) voice part, e.g., voice annotation

d) image part, e.g., digitized photographs

A document in our context consists of a header that has a unique
identifier. The contents consist of various sections of attribute values,
text, image, and voice. (For more details on the structure of mul
timedia documents see the companion paper by F. RabittU We want
to provide a facility for filing and retrieving such multimedia docu
ments.

A simple way of filing and retrieving documents utilizes labels.
Each document is labeled with a name and stored in a separate file. It
is retrieved through a search of the file directories, e.g., UNIX™
hierarchical file directories. The approach is effective, irrespective of
the nature of the document's contents. It is equally applicable to data,
text, voice, and image, or any combination of these. The management
of names, however, becomes difficult for the user and does not work
well in the presence of many documents.

Another simple approach is to file all documents sequentially and
to search them sequentially to select the needed documents. It is the
method applied when doing a library search, using a microfiche reader.
The ordering of the documents can facilitate the search, e.g., alpha
betic, chronological, etc. The method works well when we do not have
many documents and/or the documents have an order which is very
meaningful to the user. However, it is time-consuming to sequentially
scan all documents, when we have many documents and want to access
them in many different ways.

A third approach is to abstract certain properties of the documents
and encapsulate them in attribute values. The approach is used in
information retrieval when doing keyword searches. The search is
effected in terms of a selection of attribute values. The selection filter
is specified through a query involving a Boolean expression of simple,
attribute < op> value, conditions. The method is effective when the
attribute values adequately represent the properties of the document
and when the environment is static. It implies a priori knowledge of
the properties which are important for searching purposes.

A fourth approach is to retrieve documents according to a pattern
present in them [Salt 80, AUl80, Hask81, AhKW781. This approach
works well for text. The text part of a document can be qualified
according to a regular expression of strings (words, combinations of
words) present in it. For voice and pictures, however, patterns are not
easy to define, and they often require complicated and time-consuming
pattern recognition techniques [Redd76, BaBr82, EHLR801. Note that

A Multimedia Filing System 45

what can be a natural pattern for the human eye/ear is not as easy to
pin down in terms of computer-oriented documents. (For more on
content addressibility of multimedia documents, see the companion
paper by S. Christodoulakis')

Finally, a fifth approach to retrieving documents is to encapsulate
their properties in abstractions which are easy for the users to recog
nize. The users proceed to search for the documents with the aid of
these abstractions. An abstraction can be closely related to a document;
e.g., it can be a miniature image of the document. Abstractions can also
be unrelated to the exact contents of the document; e.g., a particular
tune may identify a person, or an icon an idea. An association easily
recognized by the user relates the seemingly independent abstraction of
the document to the document itself.

In this paper we will deal with multimedia documents. We will
use, therefore, a combination of the above techniques for flexible docu
ment retrieval. In this way, the facility will be effective for each
medium of communication and will be especially suitable for combina
tions of data, text, voice and pictures.

Information retrieval facilities consist usually of two parts; a filter
ing capability and a browsing capability. Filtering enables the user to
specify what he (or she) would like to see or, equivalently, the docu
ments which he does not wish to see. The browsing capability enables
the user to pinpoint in the filtered documents the ones which he actu
ally wants. In many systems the browsing capability is only an aft
erthought (especially true for Data Base Systems). It deals only with
the presentation of the selected documents to the user. It is not con
sidered an integral part of the selection. In addition, the filtering and
browsing are considered as two independent and consecutive steps
without any relation to each other. In the case of office filing, the
browsing capability is very important. We will consider it as important
as the filtering capability for selection purposes. This approach is neces
sary because the user filters are rather vague. The user does not ade
quately remember what he is looking for. Filtering alone cannot pin
point the desired documents. In addition, voice and image filtering
according to contents is difficult to implement because it may imply pat
tern recognition. In this case it is advantageous to emphasize browsing
rather than filtering.

We believe that the browsing aspect is a dual method to the filter
ing for selection purposes. We provide, therefore, "play" methods sup
porting browsing in the same way that we provide access methods sup
porting filtering. We also allow filtering and browsing to be interleaved.
That is, while browsing, we can modify the filter for selection of the
documents we are currently browsing. In this way, filtering and brows
ing proceed concurrently, enabling the user to pinpoint the appropriate

46 Office Automation

documents. The additional advantage of this approach is that the
dynamics of the interaction between the user and the system are greatly
improved. The user does not get bored waiting for the filtering, nor
swamped with its results when they come in bursts. Instead, the user is
provided with a continuous stream of filtered documents from which he
can select, by advanced browsing methods, the documents he wants.
The browsing is also implemented as an interesting game to further
appeal to and retain the interest of the user.

2. General Design
Documents in our Office Filing System are structured, consisting

of a unique identifier and a number of fields. Each document has a date
field, a sender field and a subject field which are attribute fields. Attri
bute fields have a maximum length and take single values from a
domain of values. In addition, a document has fields which are
unstructured and of variable length. These fields consist of text,
images, and voice annotations. Images include graphs, tables, captions,
bar charts, pie charts, diagrams, and pictures. Images may appear any
where in the document. Voice annotations are parts of the document
that are used to clarify and enhance it. For instance, they can be verbal
comments about the document or an utterance to attract the attention
of the reader.

All incoming documents are filed in a general document file. The
user searches for the required documents, guided by a vague recollec
tion of the contents of the documents and a vague image of what the
documents look like. The user initially provides a partial specification
of the document contents [Zlo0751. This partial specification of the
desired documents acts as a filter. The filter restricts the attention of
the documents in the document file to a manageable subset. The filter
can be changed dynamically by tightening its specification.

The filtering capability is by no means an exact one. The user sel
dom specifies an accurate filter. His specification will allow more docu
ments to qualify than the ones he absolutely wants. These additional
documents are eliminated in the browsing mode by the user. To assist
the user in identifying the appropriate documents, miniatures and fast
talk are provided. Miniatures are realistic visual abstractions of the
documents which are displayed for the user during browsing, as in
[FeND81]. At the same time as the miniature appears in view, the
fasttalk can be heard. The fasttalk is a voice excerpt associated with the
document, which highlights the document's meaning. On the basis of
what the user sees and hears, he can decide if the document is one of
the ones he wants retrieved. If so, the document corresponding to the
miniature is displayed to the user along with a playback of the voice

A Multimedia Filing System 47

annotations for the document.

To select the miniature to be viewed in full, the user identifies it
by shooting it down with a toy cannon. Using miniatures and fasttalk
rather than the documents themselves, the user can skim over many
more filtered documents. In this way his browsing capability is
enhanced. In addition, the presence of many more document abstrac
tions enables the user to spend more time on the more interesting
choices. The user should also be able to control the speed at which the
abstractions are displayed.

3. User Interface
The screen layout of our system appears in Figure 1. Our imple

mentation environment consists of a SUN computer which provides a
page and a half of bit-map display. On the left is a whole page of docu
ment, while the right is half a page of screen real estate used for menus
and miniatures.

Overflow input Area ,?!,stem
Messase Area

Command Menu

Document Display Area Miniature
Display Area

or
or

Filter Display Area Icon Menu Area

Figure 1: Screen Layout

48 Office Automation

The status of the display depends on the current mode. There are
three modes:

1. Create/append - the user creates or appends to the filter. This
state can be recognized by the appearance of the filter template
and the contents of the filter (in the case of append mode) on the
left of the screen and the icon menu area on the right (refer to
Figure 2a). An icon is a graphical representation of an object
[Lodd83]. These icons are similar to those found in the Star
[SIKH82] and the Apple Lisa [Will83].

2. Browse - the user is playing the abstractions (miniatures and fast
talk) for the documents that are filtered by the system. Minia
tures are scrolled on the right side of the display while the filter
remains on the left side.

3. View - the user has just frozen the browsing of the miniatures, to
view one of the documents in more detail. The expanded docu
ment appears on the left while the right side of the screen
remains frozen (refer to Figure 2b).

s .. '~o~ .. ·nu ,~ ... u"l 'n f"~"~

•• 111. eturn
rows1ng

VOICE ~

I
I

IMAGE ~

~
LOGO

i c!> I

iJ
~ !

I lL

I X

Figure 2a: Screen Layout of Create/Append Mode

The jilter used by the searching process is the conjunction of all
the restrictions on the data, text, voice, and image values of a docu
ment. The template of the filter and its icon menu appear in the Filter
Display and Icon Menu areas shown in Figure 2a.

A Multimedia Filing System 49

snCDER ; s. G;ant
DAtE ; Jun .. t. iii'
s UlU £:U = PI"Oih.lf:l Duc:r'pt,an 0. t.

Jr",n -FiJI!
I
lhll ... ", .,.0101 for '''''1 DIiPort", .. '\) \0 U'l!fOcl"c:. ''''. S .. glt It

o!;rQ~g.p~t.r 0..... pr.' lIainarv Info, •• t Jon p .. t; !iiI.
""" ,'1'1" II C)n.' !DrQOL/c., 'I~.C""C"\lCI,", lI 11 ... 0..,'
"'t, on IJr .tlng II d.,l r... 1'111' "'Coull::! 'He \0 _*nd
..... ~ _or. 1!;0000P"."l!'nto''' t Il~ lIt.rllur •• Dut ""'. " ... d

\.) ~,.,O'"" wnlcl<l In 'or,. .. ,IOIlo Plltlo.lI!ii1" yOIol ",ot"l1d It" '0
"(:1111 ...

• ' ,,. .. 111 In.r.! .. , ... ".,hl:ll" tor end 1J'Iltl. Clelt'.fl.

Ur 'CI",,~orl. tlE ~.. 1M ty"'" I'IOw~' " j\o *110 "'tve
.. count •• ,,.,In,]. fcu' ."""Clltlo,.,.1 ',.,,,tl\u\ICI"" Ji!'ld

"''''''. entia..",." Ar.)' Df ,,,,. In'o" •• t'Dn L in b rl'
".", ol:l'I'".d I:I¥ ' .11,,,'11 out .,"1;1 ".,""" .. nlI'1Q \he
.. cIa ... ", butH'I " ... '-Ir.., IIH C',lllrUiII Out ' ... rt"4
"P"" I ... n~ Il 11i1~ J~2"~'IiIOIi

Ie." for '~o'c.1 OfftQ\lr .. ~ lon, .,. l1,l .d b.lo ...
!:I]. II. ~I)c. ' 1 3a1!Iij ell
Sf'l. II ~Od,,1 i .. 4B6 Be
.fl., I I "'0111111 3; 'j~eij IiU~

5"'1~ t I "'''C~ ' 4 ~8F1.1 eo
1'011(11.10,", 'Ofu •• '. I~I' tn", S.II. II Ir lHll. 11'0-

pCO S,. t" .. , I,." 'PI
4105 N M.1A t 183'3 Froud'. ~ l 14
P!!'I'I" "n, N. 14"J~1 ~.n 01"g' ell! Q2121
J1~ ~]fi 1428 1U "':iB-I~2e

Ivrn,r f Il'lIr.g qUlI,tlon, CII'IO. "nWl'f.d 0.., our
p_lr~lr\.-t.nt or r~turl'lrn \h. Included

E ~- _ _

~~~~~ 
~&~~ 
-'~"'"11--

-~~a;-
~~~-~-~-

Figure 2b: Layout of View Mode

Restrictions on attribute and text values are provided as values
and patterns. For each of the attribute and text fields, a field restriction
may be defined. Each field restriction is a conjunction of conditions.
The syntax of the field restriction is given by the following pseudo
grammar:

fieldJestriction = element I fieldJestriction "&"
element

= string I element I string element
string = word I word part I string word I

string word part
= letters word

wordpart - ''', .. , letters I letters "*,,
letters "*,,

n*"

letters = digit I char I symbol I letters
digit I letters char I letters sym
bol

A field restriction need not be provided for each of the data and
text fields . In such cases, a null field restriction is assumed for the par
ticular field. The field restriction is entered in the appropriate field

50 Office Automation

entry on the filter, using a by-example approach [Zlo0751.

The following types of restrictions may be placed on images:

1. There are images present in the documents being sought. The
user specifies approximately where these images reside in the
documents and the type of image.

2. There are no images present in the documents being sought.

3. The documents being sought mayor may not contain images (a
null restriction).

The selection of the appropriate condition is facilitated by selecting the
light button beside the appropriate image entry in the filter.

If the user specifies that there are images in the desired docu
ments, then the positions and image types are identified by dragging the
"x" icons or object icons (e.g., graph, pie chart, etc.) and positioning
them in the appropriate place on the filter template. The "x" icons
(representing any type of image) and the object icons are picked up
from the icon menu. Selecting an object icon implies that the desired
image is represented by this object icon. In our implementation, an
image is a single indivisible object (e.g., a pie chart). Within a filter
create or append session, the user may drag any of the positioned icons
(those placed in the same session) into the menu area to remove the
image from the filter. The icons appearing in Figure 2a represent the
image types recognized in the Office Filing System. They are, from top
to bottom:
1. picture (i.e., any other image type)

2. logo or letterhead

3. pie chart

4. bar chart

5. table

6. line graph

7. any of the above image types

The user specifies the voice restriction by selecting the light but
ton (for voice) corresponding to whether voice annotation is present or
absent, or by selecting ANY for don't care (refer to Figure 2a).

Commands for the Office Filing System are located in a command
line area near the top of the screen. The appropriate command is
selected, using the appropriate light button. The command menus that
appear depend on what mode the user is in. The command menus for
the various modes are:

Create/append Mode

Browse Mode

View Mode

Return to
Browsing

A Multimedia Filing System 51

To exit the Office Filing System, the "Exit OFP" button is selected
while the user is in the View mode. When the Create Filter light but
ton is selected, it indicates that the user is to provide a new filter. A
blank filter template appears on the left part of the screen, and the user
is in the Create mode. After all the restrictions are added, the Return
to Browsing button is selected. When the Append Filter light button is
selected, it indicates that the user wants to augment the existing filter
with more restrictions. The user can now edit in the restrictions and
select Return to Browsing when finished. When the Scroll Down light
button is off, the miniatures are displayed from bottom to top; when
the button is on, the miniatures are displayed from top to bottom. The
speed of the scrolling is determined by the length of the fasttalk and
the Rasterop operation. The user can turn the fasttalk on and off by
turning the Fasttalk Off light button off and on, respectively. As long
as this light button is on, no fasttalk is spoken. In the View mode, the
user can play the voice annotations by turning the Play Voice light but
ton on. In our current implementation, voice annotations and fasttalk
are played back at normal speeds. To return to the other two modes,
the user selects the appropriate return light button.

4. Abstraction from Documents
Information abstracted from the documents consists of:

1. Signatures.

2. Miniatures.

3. Image Description.

52 Office Automation

4. Fasttalk.

In our system, we use a signature technique as an access method
for attribute and text values [TsCh831. The method is based on super
imposed coding [ChFa841. A fixed length signature, which is a bit
string, is created for the attributes. A separate signature is created for
each block of the body. These signatures within the block signature are
determined by taking each non-trivial word in the body or in the attri
butes, splitting it into successive, overlapping triplets of letters, and
hashing each triplet into a bit position. If the word is too short, addi
tional bit positions are created by using a random number generator,
which is initialized with a numeric encoding of the word. Thus, a con
stant number of bits corresponds to each non-trivial word. These bits
are set to one. The size of the signatures and the number of bits per
word can be determined in such a way that the performance of the sys
tem is optimized. (For more on this technique, refer to the companion
papers by S. Christodoulakis and C. Faloutsos')

To see whether a given word appears within a logical block of the
document, the signature of this block is examined. The same transfor
mation is performed on the word, and the bits determined by the
transformation are examined. If they are all one, the word is assumed
to appear in the document. Otherwise, the document is skipped. This
access method retrieves supersets of the qualifying documents. Parts of
words can also be specified in queries. More complicated query pat
terns (including conjunctions and disjunctions of words) can also be
examined.

The miniatures for the document are formed by first taking each
word within the document and representing it with a variable line thick
ness, to account for the ascenders and descenders in the letters of the
word. Then the bit-maps of the images are extracted, and an "n" factor
reduction is performed (Le., every "n" bits are reduced into one bit).
This reduction is sensitive to bits that are on. That is, if a majority of
the "n" bits are off then the one bit is turned off. Otherwise, the bit is
turned on. To complete the miniature, the reduced bit-maps are
merged with the corresponding textual portions of the document.

Simple image descriptions can be abstracted from the document,
such as the image types present in it (e.g., graph, table, bar chart etc.)
and their positions. This information will be automatically gathered,
since it is reasonable to assume that the image creation will be con
ducted with the aid of specialized image editing tools that are aware of
the image type being created.

In our current system, the fasttalk is created manually by the
user. It contains a short (one to two seconds of talk) description of the
document's contents, or an excerpt of the document. It is important to
use automatic techniques to obtain a fasttalk which highlights the voice

A Multimedia Filing System 53

annotation of a document.

5. Implementation
The Office Filing System outlined in this paper has been imple

mented using UNIXTM, and runs on a SUN computer [ThRi78]. The
SUN [Sun82] is an MC680IO based system that combines graphics, pro
cessing, and networking capabilities in a desk-top workstation. It has a
high resolution 0024 by 800 points) bit-map display that can show two
pages of text, and graphics of a reasonable resolution. A mouse (a
hand-operated device) facilitates input of graphical information. The
SUN UNIX™ operating system is based on the Berkeley 4.2 BSD ver
sion of UNIX™ and the ARPA IP/TCP protocols [Sun82]. The Ether
net local area network connection allows SUN workstations to share
resources and to access such services as electronic mail, file storage,
and printing.

We used the Instavox RA-I2 Rapid Access Audio Unit [Inst82]
for storing voice documents. Voice documents are stored on IS-inch
diskettes, each of which can contain about 27 minutes of speech.
Unfortunately, voice documents are stored in analog form, which does
not allow changes in playback.

The implementation of the Office Filing System is divided into
three processes.

Pipe 1
-'"' user / search

interface 1/
I" Pipe 2

Figure 3: The Office Filing System Implementation

The insertion process is used to add new documents to the docu
ment file. In addition, this process generates the information with
which the filter will be compared when the user is searching for docu
ments. The search process will search for documents satisfying a given
search filter. The user interface process, as we described earlier, is con
cerned with the specification of a tighter filter. It allows the user to

54 Office Automation

browse the miniatures through a game playing environment and view a
document in more detail.

Communication between the user interface and the search
processes is limited to two uni-directional pipes. The user interface
process passes the filter information, the directory indicating where the
files are, and the commands to change the search direction to the
search process along pipe 1. The search process, in turn, passes to the
user interface process pointers to the documents that meet the restric
tions of the filter, along pipe 2. In the remainder of this paper we will
elaborate on the insertion and searching capabilities of the system.

The user provides four files to the insert process. These four files
contain various pieces of the document (Le., text and attributes,
images, voice annotations, and the document's fasttalk). We assume
that a text editor has created the text and images portion of the docu
ment and a simple voice editor has created the voice files. The insert
routine processes the information contained in the four input files and
appends them to the appropriate files making up the document data
base.

The document data base consists of several files. The four input
files are appended to the corresponding four files of the document data
base. The remaining files of the document data base are created by the
insertion process. These are described as follows:

An ASCII file which contains the text and attribute components
of the document is provided as input. The insert routine gen
erates the signature entries for the text and attributes components
of the document and places them into the signature file of the
document data base.

A file containing the position and size information for the images
present in the document is provided as input. It also contains the
bit maps for these images and information about the image types.
Using the contents of the ASCII input file and this file, the minia
ture is created and placed into the miniatures file of the document
file.

Two more files contain the voice annotation and fasttalk portions of
the document. In this implementation, the files contain analog
signals of the corresponding voice annotation and fasttalk, and are
stored on a separate, direct-addressable audio storage device
[lnst82].

The last file of the document file is a pointer file. It contains
information about the other six files of the document data base.
Each entry in this file gives the location and size of each portion
of the document in the other files.

A Multimedia Filing System 55

The "insert" routine consists of the three subprocedures that
update the files of the document data base based on the input files
(refer to Figure 4). The insert routine also updates the pointer file
according to the information returned by the subroutines.

~
insert ~ext and attribute ril~
text

signature file ~

~ lmage QOSl tlon. type /
and bi tmao fi Ie

I--
i.nsert insert , f--

/ Image
'-/ mi niature file /

/ pointer file /

~
insert ~VOiCe annotation file/

/
vOIce

. rasttalk fi Ie /

Figure 4: Insert Procedure Outline

The "search" routine calls three search procedures to progressively
isolate the documents that satisfy the filter conditions. The sequence of
calls and inputs is shown in Figure 5.

Each document is passed through the three search procedures
sequentially and the respective medium restrictions specified in the
filter are checked. The documents that finally pass "search text" are
those that qualify under all the medium restrictions contained in the
filter, including the one for the text and attributes.

The "search image" routine first checks the entry in the pointer
file to see if the document contains the minimal number of images
required. If so, the routine verifies that the positioning of the images is
indeed within the minimum rectangle for the images and the types of
the images match those specified in the filter. The check is accom
plished by looking up the corresponding image file. If the absence res
triction is specified, the search process merely checks to see that there
are no images in the document.

The "search voice" routine requires only a search for the presence
or absence of voice annotations in the document.

The "search text" routine retrieves the signatures for the incoming
document and examines whether or not the document satisfies the res
trictions on the text and attribute values.

56 Office Automation

search
image

document satisfies
image restrictions

search
voice

document satisfies
voice restrictions

search
text

document satisfies
fil ter

l'
next

doc ent

l'
next

docJment

Figure 5: Search Procedure Outline

The result of the searches is a filtered subset which is passed to
the user interface for browsing. The miniatures for these documents
are displayed and the fasttalk portions are played. When the fasttalk of
a given document is played, the corresponding miniature of the docu
ment is highlighted by a box on the screen.

6. Architecture
Our prototype system's architecture is unsuited to the particular

task of filing large numbers of electronic office documents. If the docu
ments are filed directly at the users' workstations, e.g., in a SUN, the
storage space is likely to be exceeded, particularly if electronic docu
ments contain images and digitized voice. Moreover, the shared access
of these documents can be a problem. Locating the document filing

A Multimedia Filing System 57

functions on a host computer, e.g., a VAX 11/780, which supports the
user workstations as terminals, has the advantage of exploiting a power
ful operating environment. The available operating systems can sup
port a variety of software for Data Base and information retrieval sys
tems. However, these "traditional" tools may be not adequate in han
dling electronic documents containing different types of data (as text,
image, graphics and voice), and the performance obtained for large
volumes of documents compared to the cost would probably be unac
ceptable. This is because a general purpose environment cannot be
streamlined for a specific application. For example, since searching
through a large volume of documents is a 1/0 intensive activity, going
through a general purpose operating system can impede and slow key
I/O functions. Moreover the eventual use of special hardware can be
difficult to exploit. We should, therefore, look at other architectures
that provide office filing.

It seems best to build the office filing function on a special office
file server, accessible over a Local Area Network. The use of a file
server over a network allows the workstations to share the filing ser
vices. The file server can be built to achieve an optimum
cost/performance ratio. Most file servers available today are general
purpose, oriented to files handling. Electronic documents can be seen
only as ordinary files, the only type of document retrieval by address or
name. The advantages of a network file server can be enhanced if the
server is specialized for the filing and retrieval of multimedia docu
ments. With this approach, the document search by content can be
effectively implemented. In fact, by locating the filing and retrieval
functions on a dedicated server, it is possible to target the hardware and
software choices towards the specific task of document storage and
retrieval. Better cost/performance results can be attained, since the
decisions about the hardwarelsoftware architecture of the server can be
focused on the specific problem, and subsequent hardware and software
changes will not reflect on the rest of the system.

For example, instead of using a file management system as part of
a general purpose operating system, the document server could use spe
cialized software that implemented suitable access methods for best per
formance in document retrieval. Specialized hardware could also be
used for certain critical operations (Le. for a text scanning filter), if
found necessary for real-time performance (see the companion paper
on "Text Retrieval Machines"). Special storage devices for high data
volumes (Le. optical disks, improved technology magnetic disks) could
be employed in the server for more efficient storage of the different
document components (attributes, text, images, aUdio). However, the
main advantage of the document server approach is that all these deci
sions are in large measure independent from the rest of the system and
can be reversed, as technological improvements become available.

58 Office Automation

It should be noted that a shared multimedia document file server
will generate a considerable bandwidth requirement for the communica
tion network connecting it to the user workstations. The multimedia
documents accessed on the server will have to be transmitted for view
ing in the workstations. If many voicelimage parts are present, the bit
rates may be considerable. Suppose that the access methods of the
server are very fast. The performance of the total system may be lim
ited by the ability of the network to move the documents and the
workstations to obtain and display them fast enough.

A separate file server introduces the need for a separate worksta
tion to server interface. The query language as it was outlined in this
paper is user oriented. This obviously is not the proper interface
language between the workstation and the server. A compact form of
the query, which will not need extensive parsing by the server, should
be produced at the workstation. In this way different workstations hav
ing different user interfaces could be interfaced to the same server.
The document structure that the server uses and sends out should also
conform to certain standards for structuring and formatting documents.
In this way, documents can be viewed by different kinds of worksta
tions.

In considering the problem of filing and retrieving documents,
one can observe that the majority of documents filed in the office
environment are either never or only seldom retrieved. Only a small
minority are accessed regularly to be consulted, reviewed, annotated
upon, or modified. In this latter category we can include all the docu
ments corresponding to form blanks, letter templates, and document
types in general, which are frequently used to create document
instances. In fact, the typical life cycle of a document will involve a
period of frequent access during creation and perhaps for a short time
(in the order of a few months) following. After this initial activity, the
document is rarely accessed. Thus we can define two functional
requirements for the file server: the dynamic function and the archival
function. The former function is more concerned with handling those
documents which require a fast access time and which may require
modifications and annotations. This function also includes the handling
of fast growing files (intensive insertion of documents). The latter
function is more concerned with the handling of very large volumes of
documents. These documents are stable; that is, they are not likely to
be modified. Insertions are infrequent and generally in batches.
Longer access times (even in the order of one or more minutes) can be
allowed for searching these large volumes of archived documents. The
main constraint for the archival function is its cost-effectiveness. Strict
requirements on storage cost per document are imposed in order to
make feasible the goal of archiving a large quantity of data. The order
of magnitude for archival filing should be in the tens of gigabytes, while

A Multimedia Filing System 59

for the dynamic filing can be in the hundreds of megabytes. This
creates a need for large capacity storage devices which do not need an
update capability, e.g., optical disks. It is interesting to ponder whether
the dynamic and archival functions should be in a common server, or
on separate servers.

Office filing cannot be discussed in isolation. It has to take into
account the general office system architecture. As developed in our
discussion, the type of architecture that appears most suitable is a col
lection of modular functional components that are connected via a com
munications facility. Such systems adapt to changing needs in the office
by adding and removing components - a process which is assumed to be
quite simple (e.g., that requires no software modification). The kinds
of components needed for an office information system include:
communications facility

This is the link that binds together the entire system. The com
munications facility, in whatever form it appears, must allow the
flexible addition of components, and support the transfer of data
at the rates needed for audio and image.

file server

The file server performs the storage and retrieval of documents
used within the office. Considerations here are short retrieval
time and flexible query specifications. An important observation
of the information found in offices is that a large proportion of it
is not retrieved and most of it is not modified after it is created.
We envisage the file server as providing extremely fast retrieval
for those documents that are frequently accessed and undergoing
change. For the large proportion of office information that is sel
dom accessed or modified, there are less stringent response time
requirements. The main consideration in this case is the storage
capacity, which should be as large as current technology can pro
vide (for example, the optical disk would be an appropriate
medium).

user workstation

Each user is equipped with a workstation from which he can
access the facilities provided by the office information system.
There are a number of issues relating to the workstation, such as
processing capability, the need for local secondary storage, and the
type of peripherals needed for a good user interface.

special purpose devices

A number of devices such as OCR (optical character recognition),
digital image scanners, optical disk writers, network gateways, and
laser printers may be too expensive to be located at the worksta
tion and should be provided in globally accessible servers.

60 Office Automation

7. Experience and Future Directions
The following are the highlights of our prototype system.

1. It stores and retrieves multimedia documents.

2. It interleaves filtering and browsing for flexible document selec
tion.

3. It uses signatures as an access method for text selection.

4. It uses miniatures and fasttalk as abstractions to aid the user in
faster pinpointing of the desired documents.

5. It uses information about images in terms of their type and their
positioning.

6. It uses a game to improve user interaction and retain user
interest.

It should be noted that the selection in terms of attribute values
and text patterns is based mainly on filtering and appropriate access
methods. The selection in terms of voice and images is based mainly
on playing fast abstractions in a game environment. In this way, the
user's ability for fast and effective browsing is enhanced.

We have had many critical comments from the users of our sys
tem, mainly about the user interface and some of our design choices.
We discuss them because they provide important feedback on our
design. We should point out that certain techniques were severely han
dicapped by our implementation environment, with the result that their
benefits were left unexplored or unrealized.

The SUN was not a powerful enough workstation to implement
scrolling of images effectively. The lack of graphics processing power
ultimately eliminated the possibility of having variable scroll rates.
Note that the MC68010 is not only responsible for the graphics,
display, and input but also much of the operations of the workstation.
The competition for the processor cycles severely limited the attention
required to move bit-maps rapidly around the screen. As a result, we
were not able to exploit variable scroll speeds to aid the browsing of the
documents (Le., miniatures). In fact, the mediocre scroll rate obtained
was unbearable for browsing large numbers of miniatures. In this situa
tion, the idea of shooting the miniatures as they scrolled by was rather
cute but added very little to the effectiveness of the browsing. A fairly
powerful workstation with dedicated graphics processor was clearly
required. If the accessing had been effected by a separate file server
then the workstation may have been adequate for providing a proper
user interface.

If variable scroll rates were possible, the mouse would not be a
suitable input device for controlling them. To have supported this in
the current implementation would have required pressing the buttons

A Multimedia Filing System 61

repeatedly to incrementally step the scroll rate up or down. Although
this would have achieved the result, it would not have been as
effective. An isometric joystick or 2 axis joystick would be more
natural. Pressure or tilt along one axis would provide the information
for speeding up or slowing down the presentation of the miniatures.
Positioning of the cannon would be facilitated by moving along the
alternate axis (for 2D joystick). Squeezing the trigger would fire the
cannon.

The speed at which the Instavox unit played back the fasttalk and
voice annotation was also less than adequate. In some sense, this
should also have limited the rate at which the next miniature could be
made available (although we did not notice this much because of the
slow scroll rate). As a result, the short annotations that were used in
place of real fasttalk were restricted to a few tidbits of preselected infor
mation. If many documents which contained fasttalk were retrieved, it
would sound as if someone was very quickly turning the volume of a
radio up and down. Our system had only one talker for these mes
sages. If the fasttalk originated from a variety of voices it would be
even more disruptive.

One possible solution would be to play the fasttalk in a different
fashion. At the start of the fasttalk, the volume should be low, and it
should increase reasonably quickly (how fast we do not know) before
the distinctive phrase or tone is over. It should also decrease in
volume at the end. This would add some continuity to the sounds,
avoiding the abrupt silence-to-sound changes we have experienced.
Hopefully, this will not confuse the listener so that he cannot distin
guish between successive fasttalk messages.

The consensus opinion of users was that our fasttalk was not very
useful for identifying the documents and was more of an annoyance
than an aid. However, it was not clear that a different method of fast
talk would have been more useful. The lack of suitable voice hardware
for digitizing the speech left the applicability of the actual fasttalk con
cept unresolved.

The way in which the system currently presents the documents
(Le., miniatures) to the user only works effectively if those displayed
contain images and the images are quite different from one another.
However, if the displayed document is mainly textual, the miniatures
are not very useful. This requires that the user recall details such as
structure of text blocks. It also presumes that the user has seen the
document and knows what it looks like (quite an assumption). Many
documents with the same type and without distinguishing images will
appear the same, especially if they are all greater than a page in size
(currently we display only the first page). This situation is not that
disconcerting, however, since the selectivity technique for text is

62 Office Automation

powerful. The selectivity of image documents is weak; however, minia
tures supplement it to add to the performance and usability of the sys
tem.

It may be appropriate to have alternatives to our miniatures, for
presenting the abstractions to the user. Some possible schemes include:

1. less faithful miniatures (i.e., the data fields could be displayed in
full while the text portion is miniaturized)

2. display of certain fields only

3. a stack of faithfuilless faithful miniatures representing the entire
document if it is more than one page long

4. some indication of whether the document contains voice annota
tions

Clearly, there should be a number of alternate presentations from
which the user can choose. This would be like allowing the user
different ways of viewing numerical data (e.g., bar charts, pie charts,
line charts, mixed charts, etc.), as in spreadsheet applications.

Our miniaturization technique is inadequate. It overemphasizes
the "dark" regions of the document. Text and images whose bit pat
terns are predominantly ones (a bit on in the bit-map corresponds to a
dark pixel) tend to be the only distinguishing features of the minia
tures. Line graphs and other light "grey" areas show up very little, if at
all. We should use an algorithm whose threshold for dark regions is
higher than its threshold for light regions. In this way, the system will
try to maintain a higher ratio of "on" versus "off" bits for the light
regions of the miniatures, when compared with the original region in
the document, than for the dark regions. It might also preserve the
lines for the line graphs in the miniatures. In this way, the distinguish
ing features of the light regions will be preserved. The features of the
dark regions are expected to remain in the transformation even with
the higher threshold.

The interface of our system is based on the by-example approach,
combined with menus. The by-example approach [ZI0075, Zlo081l has
the advantage of being a non-procedural, two-dimensional language,
and so can mimic the physical objects of business and office environ
ments (e.g. forms, reports, papers). The user constructs his requests
by giving the system an example of a reply to a request. The menu
approach allows display on the screen of the full choice of options avail
able. Hence it prevents the user from making selections outside this
range. We found query formulation to be easy in this framework.
Furthermore, usage of the mouse allows the user to quickly point at
items in the menu area and to move them on the screen, as well as to
select the appropriate commands. However, the interface described
provides the user with few means to tailor the browsing process to his

A Multimedia Filing System 63

own needs. In fact, while query formulation is not a long process, the
browsing phase can take a considerable amount of time.

We have also received suggestions concerning the inclusion of
several useful ideas to the system. For instance, the system does not
give any indication of how many more documents are to come. This
information is not available when the display and selection work in
parallel, as in our case. However, we can solve this in part by using
progress indicators to show how many documents out of the total
number have been searched. The progress indicator may be updated
after each document is examined, or only when the current match
relates to the entire set of documents. This progress information, i.e.,
how far the search has proceeded and approximately how much longer
it will take, would be a valuable aid during the browsing phase.

The system does not allow the user to mark or set aside particular
documents for further perusal at a later time. One might wish to set
the documents aside for later reference as they are found. It is not
hard to incorporate a collection and naming capability for this purpose,
e.g., dossiers.

Another issue concerns query reformulation. The only way to
change the current query in our system is to add conditions to those
already expressed in the query, that is, to restrict the query. When the
user restricts the query, the search continues forward. However, it
would be desirable to broaden the query or change it dynamically by
deleting or modifying conditions. In this case the search would start
again from the beginning, but the documents already seen by the user
would not be displayed again. In the current implementation, the only
way of broadening the query is to exit from the browsing process and
specify again the filter with the modified conditions. This can be very
annoying, since the user has to see documents for a second time.

The game-playing environment was not found to be very
appropriate for an office environment. Games offer a challenge, the
possibility that the player might lose. A situation in which the user
would lose in our system would be missing a miniature and being
forced to interrupt the browsing to back up. This was found to be
counter-productive. If the challenge is not there in a game, the user
quickly becomes tired of it. The game loses its mystique and the user
may feel silly or simply hampered.

Our system has general shortcomings in content addressibility of
voice and images. The system in essence puts labels on voice and
images and associates them with specific locations on the documents. It
does not deal directly with their contents. There is no notion of con
tent addressibility in terms of voice and images. It is important to use a
small degree of voice and image recognition to provide rudimentary
content addressibility.

64 Office Automation

General voice recognition is not necessary. As a matter of fact, it
may be an overdesign for filtering. First the person will have to use the
exact word (s) mentioned, then, for most existing systems, a similar
pronunciation. We doubt that a user will find such an environment
useful. On the other hand, certain keywords may be adequate for filter
ing voice messages. The system can concentrate on these while drop
ping all other words. To help the system concentrate, the tone, the
volume, or any other indication can be used to emphasize the keywords
in the voice message. We feel that a limited voice recognition device
with appropriate software indexing tools may provide an adequate
degree of content addressibility. However, it should be pointed out
that the recognition is on-line.

Images present other problems and challenges. As with voice, we
do not need to solve the general image recognition problem to provide
image filtering. Images in an office environment are not random. They
are stylized; e.g., logos, graphs, etc. In addition, their representation
may be in graphical form rather than as a set of bit-maps. The input
devices may produce representations which are structured, and they are
amenable to searching and filtering. Even general images have colour,
background, and other characteristics which can be used for filtering
without the system fully recognizing the image's contents. However,
integrating stylized image filtering in a nice way will not be easy. There
may be many ideas which have to be tested to arrive at some comprom
ise between flexibility to the user and implementation difficulties.
There is much danger of overdesign. That is, we can incorporate many
clever filtering methods which in practice may prove useless. Experi
mentation is necessary.

In all our efforts regarding image and voice, we are hoping to find
compact representations of them which will be adequate for searching
purposes, in the same way that text signatures do not capture the
meaning of the text but are adequate for filtering purposes. Can we
find successful representations (signatures) for voice and images and
find out how they are best used? In the companion paper, "Office Fil
ing", many techniques relevant to this point are discussed. We feel that
limited recognition combined with compact representations for search
ing will be adequate for the degree of content addressibility we need in
an office environment. In addition, most images have associated cap
tions and many voice segments are annotations on documents. This
means that the content addressibility in terms of data and text will
always be the primary aid in locating the images and voice segments.

A Multimedia Filing System 65

8. References
[AhKW7S] [BaBrS2] [ChFaS4] [EHLRSO] [FeNDSll [FlUlSO] [HaskSl]
[lnstS2] [LoddS3] [MoRo79] [Redd76] [Salt SO] [SIKHS2] [SunS2]
[ThRi78] [TsChS3] [Wil1S3] [Zloo75] [ZlooSl1

4
Office Filing

s. Christodoulakis

ABSTRACT We discuss issues related to the development of a
multimedia information system for an office environment. Mul
timedia documents are composed of text, image, voice, and
attribute information. We describe the multimedia document
structure and its internal representation. Information may be
extracted from digitized documents for the purpose of enhancing
content addressibility and achieving better compression. Con
tent addressibility in this environment is achieved by specifying
conditions on attributes, text, images, and document presenta
tion format. An access method based on signatures is outlined
for attributes, text, and image objects. Query reformulation,
multimedia document formation, and communication are also
discussed in this environment.

1. Introduction
There is a growing interest among computer science researchers

about office information systems that handle complex data such as text,
attributes, graphics, images, and voice ([VLDB83a, VLDB83b,
VLDB84]). We will call the unit of multimedia information a mul
timedia document. Multimedia documents are composed of attribute,
text, image, and voice information. Some of the functions that these
systems may provide are creation and filing of multimedia information,
content addressibility of multimedia documents, automatic insertion of
documents in a paper form, and multimedia document transmission and
reconstruction in a different site.

68 Office Automation

There are several important problems associated with the develop
ment of such systems. Some of these problems are identified next.

1.1. Query environment
Queries in this environment may be different than queries in trad

itional Data Base Management System (DBMS) environments. Infor
mation required in offices is diverse in nature, may be coming from
diverse sources (letters, ads, publications, government statistics), and
has diverse formats [McLe83]. It is desirable that the insertion process
be completely automatic or at least semi-automatic. Thus it is impor
tant that a powerful query capability be used for content addressibility.
Otherwise the information may not be found by the users.

Users may only have a vague idea of what they are looking for.
Their understanding of what they want and how to specify it may
increase as they look at other documents. Their queries may prove to
be inaccurate. In that case they. may want to reformulate them. Other
users may want to enhance their retrieval capability by specifying
characteristics of the documents that have to do with the presentation
form of the documents rather than the content. Queries on the image
and text parts of documents are not often handled by traditional
DBMSs.

The users in this environment may vary considerably. Most of
them will be occasional inexperienced users. However, the system may
also be used by experts in certain fields, for filing specialized mul
timedia documents.

1.2. Content addressibility in various data types
Content addressibility in multimedia documents presents serious

problems.

Content addressibility in documents containing attribute value and
text information can be achieved by allowing the user to specify expres
sions involving the attribute values of the document as well as regular
expressions of words appearing within the text document ([AhKW78,
TsCh83]). Structures for efficient retrieval of formatted data from sin
gle and multi-file environments have been studied extensively for vari
ous retrieval request types and frequencies ([TeFr82, Wied83,
Chri84a]). Content retrieval from text files has also been studied for
various environments, and efficient methods have been described
([SaMc83, Rijs79, TsCh83, Lars83, ChFa84]).

Office Filing 69

Content addressibility of the image document and voice document
parts is much harder. One reason is noise. Significant information
(content) is hidden among irrelevant information, and has to be
extracted. Second, there is no clear distinction among patterns. Image
patterns may present a degree of similarity with other image patterns.
In contrast, text patterns belong to categories. Given a text test pattern
and a document the test pattern either exists in the document or it does
not. Finally, structural relationships of objects and parts of objects in
images may be very complicated. To recognize an object, recognition
of the parts of the object as well as of the structural relationships may
be required.

Picture recognition involves very expensive pattern recognition
routines ([ToG074, DuHa73]). In addition, picture recognition of gen
eral pictures is still difficult ([BaBr82, Pavl77]). Existing experimental
and commercial systems based on high-power machines (array proces
sors) can be successful only when much knowledge about the scene
presented in a picture is available.

Speech recognition presents similar problems ([Redd75, Redd76,
EHLR80, Elec83]). Currently, only speaker dependent, discrete
speech, voice recognition devices with a limited vocabulary of words are
widely available. The speaker has to train the voice recognition system
to recogaize the limited vocabulary. Typically, this involves repeating
several times each word to be stor.!d in the vocabulary. Discrete
speech (words are separated by a pause) is divided into words, and each
word is compared with the words in the vocabulary. If it matches
closely one of the words in the vocabulary the word is "recognized".
Some systems allow more than one vocabulary to be stored, but the
size of each vocabulary is further reduced. The storage requirements of
a vocabulary for speech recognition are very large, and the algorithms
for finding approximate matches are expensive.

1.3. Information Organization and Access
In an office information system environment good naming, struc

turing, consistency, and quality of information is not easily maintained.
Files in this environment are seldom static. The information is usually
diverse, and people do not like to spend time on organization and reor
ganization of information. In addition, errors may be inserted along
with information. Methods like automatic insertion, using an optical
character recognition capability, or a speech recognition device, or typ
ing secretaries, are error prone. The query capability and the access
methods used should be able to cope with these problems. Dealing
with these problems may have a significant effect on system perfor
mance. Performance may suffer because of the large volume of data,

70 Office Automation

its diversity and unstructured nature, and the requirements of the query
environment.

1.4. Query Interfaces
Users of office information systems may have very diverse back

grounds. The precise syntax required by many DBMSs may not be
appropriate for this environment. The high-quality screens, voice
input-output, and other sophisticated devices now available have the
potential for providing very effective interfaces. It is desirable that the
query interface facilitate the specification of user queries.

1.5. Information extraction and internal representation
In a multimedia document environment, several possible methods

of document creation exist. Multimedia documents may be interac
tively generated in a given station and sent to another station via com
munication lines. In the receiving station, additional editing of the
document may take place. Alternatively, documents may be in paper
form. A powerful image segmentation and OCR capability may be used
for extracting the information from the digitized documents. Content
addressibility in images may require additional information extraction.
Moreover, the information in various images may contain much redun
dancy. For example if an image of a document contains a simple
graph, this graph may be encoded in an internal representation form,
with much reduced storage requirements. Thus an internal representa
tion may be used to reduce storage requirements as well as communica
tion costs.

1. 6. Multimedia document external representation
In a multimedia information system, capabilities should be pro

vided for presentation of multimedia documents. A multimedia for
matter should combine attributes, text, images, and graphics in an
easy-to-use capability. The formatter may use existing information in
the system. Thus, information extraction from documents stored in
the system is needed. Moreover, since several editor formatters may
exist in the organization, there is a need for a mapping from the inter
nal representation of these formatters to the internal representation of
the office filing system.

Office Filing 71

In this paper, we present an approach to multimedia office filing.
We first describe the structure of multimedia documents. We discuss
internal representation and presentation. We then describe the infor
mation that is extracted from documents that come in the system in a
digitized form. Then we describe capabilities provided for content
addressibility of multimedia documents. We describe issues related to
user interface and query reformulation. Then we describe the access
method used. Finally we discuss multimedia document formation.

2. Structure of Multimedia Documents
In this section, we present the logical and the physical structures

of multimedia documents [Chri84b] (see also the companion paper by
F. Rabitti).

The proposed logical components of a multimedia document are
shown in figures la and lb. Multimedia documents have a type associ
ated with them, and they are composed of one or more of the follow
ing: a set of attributes, a voice part, a text part, and a set of images. In
addition, multimedia documents may have an annotation part. The
document type contains a minimal common information (a set of com
mon attributes) in a large number of documents.

Attributes have an attribute name, a type, and a value. The value
may be a repeating group of values.

The text part is composed of text sections. Each text section is
composed of text paragraphs. Each text paragraph is composed of text
words. Each text word is composed of overlapping parts of words. This
structuring of the text document allows queries to restrict retrieval, on
the basis of the proximity of words within the text document, as well as
to associate annotation with each of the text components.

An image is composed of an image type, a vector form, a raster
form, a statistical part, and a text part.

The image type can be:

graph
pie chart
histogram
table
statistical
picture

if it contains at least one graph
if it contains at least one pie chart
if it contains at least one histogram
if it contains at least one table
any of the previous
anything else

The vector form represents the image as a set of image objects.
Image objects may be regions, polyUnes, or text. They are represented as
a set of ordered points and a set of parameter values. Points are pairs of

72 Office Automation

Multimedia
Document

Figure la: Multimedia document structure

values indicating the position of a point within an image. Points may
be connected to form lines, polygons, polylines, etc. The parameter
values indicate important characteristics of regions, polylines , or text,
and can be used for content addressibility. Image objects may be
hierarchically structured. Regions may contain other regions, polylines,
or text. Hierarchical relationships can also be used for content addres
sibility. Image objects are described in more detail in the section on
information extraction.

The object caption is composed of object caption words. Object
caption words are of the type text, and are composed of parts of words.

The raster form represents the image as an ordered set of pixels
in two dimensions. The raster form of an image may contain overlap
ping raster objects, which are sets of adjacent pixels. Each raster object
corresponds to a distinct vector object of the same picture, which is a
closed polygon. The implication is that the set of pixels composing the

Office Filing 73

Values

Figure Ib: Multimedia document structure (image part)

raster object is defined by the boundaries of the vector object when it is
superimposed on the raster form of the image.

The statistical part of the image is composed of a set of tables.
Each table has a set of attributes. Attributes have a name, a type, and a
set of values. Tables within an image are independent of each other.
We do not allow joins among tables. Tables are used internally to store
the statistical information contained in images of the type graph, pie
chart, histogram, or table.

The image text part is composed of image text words. Image text
words are composed of parts of words. The image text part is text
related to a given image. The text part is formed by the following:

The image caption of a given image,

Text paragraphs related to the image,

Text annotation,

Object caption words of objects within the image,

Attribute names of attributes in the statistical part of the image,

Attribute values of attributes of the type text in the statistical part
of the image.

The voice document is composed of voice words.

74 Office Automation

Annotation is composed of text annotation and voice annotation.
Text annotation is composed of text annotation sections and voice anno
tation is composed of voice annotation sections.

Annotation may be associated with a text document, text section,
text paragraph, text word, and an image. Annotation is a further infor
mal explanation about the contents of a document, paragraph, word, or
image.

3. Internal Representation and Presentation Form of Mul
timedia Documents

The presentation form of the constituents of a document may be
different from the internal representation of the document, to allow for
better secondary storage and communication bandwidth utilization. A
typical typed page of text, if stored in an ASCII form, may require up
to four kilobytes of memory, while if stored as a compressed bit-string,
it may require in the order of sixty kilobytes of memory. Thus it is
important that documents use a compact internal representation. On the
other hand, we would like to maintain the presentation form of the docu
ments so that they are always shown to the users the same way. The
document descriptor provides the mapping of the internal representation
to presentation. The storage overhead required for the descriptor is
small.

The internal representation of an image does not need both an
object form and a raster form. It may have only one of the two. An
example of an image in which both forms exist in the internal represen
tation is a photograph where objects have been identified and stored in
the object form, for enhancing content retrieval. An example of an
image having only a raster internal representation is an un interpreted
photograph. An image having only an object form as internal represen
tation can be an engineering design. At the presentation level, how
ever, the object form may be used to display the design in a raster
display.

The internal representation of the object form of an image is a
collection of objects. With each object, it is stored information related
to its type (polygon, circle, etc.), its name, name display specifications
(font, size, position of display), shading information, and the coordi
nates of a set of points. Other information specific to the object type,
which enables the reconstruction of the set of points which compose an
object, is also stored.

The internal representation of statistical type images (graphs, pie
charts, histograms, tables) is a collection of tables. This information is
not displayed and , in fact, a duplication of information. The

Office Filing 75

information about the objects composing the presentation of these
images in a specific device is also maintained. The duplication is not
very large, and the approach facilitates both answering queries on the
image contents and presenting the image in a different form; or in the
same form but with different parameters, e.g., a different coordinate
system. In addition, it can be used to display the contents of the image
in devices which do not have graphics or bit-map display capability.

The presentation form of a multimedia document in an output
device will be called a physical document. With a physical document we
associate some default information (such as font, size, line spacing,
etc.), which is used for displaying the document in an output device.

The structure of a physical document is shown in figure 2. A
physical document is divided into physical pages. Each physical page is
composed of rectangles. A rectangle can be a text rectangle or an image
rectangle. Rectangles are identified by their location within a physical
page and their size.

Image rectangles correspond one-on-one to images of a mul
timedia document.

Text rectangles may contain information that is used for display
ing documents in an output device (alternative font, alternative
size,etc.). Since sequences of words may be displayed in a different
way, we also use word sequence rectangles, which are contained within
text rectangles.

Finally, the voice document and annotation document parts of a
multimedia document are not displayed in the physical document.
However, the voice part of the document, voice annotation sections,
and text annotation sections are mapped one-on-one to image rectan
gles and paragraph rectangles of the physical document. An indication
of their existence is a special symbol associated with the relevant rec
tangle, which may be optionally displayed in the output device. The
indication symbol can denote voice indication, voice annotation section
indication, or text annotation section indication.

A descriptor is associated with each created multimedia document.
The descriptor indicates the parts of the document, the internal form
for each part, and its mapping to a physical document. We have imple
mented a descriptor that makes the mapping from the internal
representation to a physical document, as described before [CVLL84].

Compression information may also be encoded in the document
descriptor. The compression method to be used in such an environ
ment depends also on the system workload and the devices used. In
addition, since there may be a variety of techniques that can be used
[GoWi77], the particular method used and its parameters may be
encoded within the descriptor. This may be more important for the

76 Office Automation

Physical
Document

r

Physical
Pages

,
Rectangles

Image Text

Rectangles Rectangles

,
Word

Sequences

Figure 2: Physical document structure

image part than for the text or attribute parts of multimedia documents,
due to the large number of bits in images. The simplest case is the
encoding of an image as a set of objects (and regions of uniform
shade). The image is expanded to a complete bit-map at presentation
time. A variety of other encoding techniques may also be considered to
achieve a good compression ratio.

4. Information Extraction
The purpose of information extraction is twofold: to achieve

better storage utilization and to enhance content addressibility. Some
multimedia documents will come to the system in bit-map form. Algo
rithms to separate documents in bit-map form into text sections and
image sections are presented in [WoCW821, and the experimental

Office Filing 77

results are satisfactory. Moreover, automatic recognition of text can be
successful for a variety of fonts. Thus the above techniques can be
applied to documents to extract the document parts and the information
that is necessary for reconstructing them. This information will be
stored in the document descriptor. For graphics information coming in
the form of a bit-map further information may be extracted to achieve
more compact internal representation.

We will treat bit-maps and graphics in a similar manner. Informa
tion is extracted from the bit-maps at document insertion time, using
an information extraction subsystem, and is stored with the document.
Thus, pattern recognition takes place once per document and not for
every query. This is essential for a large repository of information.
General purpose algorithms are applied to the bit-map in order to
extract information about the dominant regions of the bit-map. Region
expansion techniques provide such algorithms. The histogram of the
bit-map of an incoming picture is examined to evaluate the dominant
bit-map levels, on the basis of the peaks and valleys of the histogram.
This information is used to establish thresholding values that will give
an original segmentation of the picture into regions [BaBr82]. Split and
merge techniques can then be applied to decide the final set of regions
[HoPa74]. The technique is most successful in defining dominant
regions, not details. Further segmentation of the picture will probably
require knowledge on the content of the picture, and cannot be done
easily with general purpose techniques. Moreover, it may not be as
profitable (or desirable) for our environment.

Each region in a picture is defined by its surrounding boundary.
We recognize special types of regions that are often encountered in office
environments. Such regions are square regions, parallelogram regions,
circle regions, and ellipSOidal regions, depending on the shape of the sur
rounding boundary. There are two reasons for recognizing these special
types of regions. The first is better compression, as in the case of the
circle, where only its centre and radius have to be stored. The second
reason is faster content addressibility, since not all regions have to be
examined to see if they satisfy special properties. In the case of a
graphics editor being used to create images, the information about spe
cial types of regions can be very easily extracted without the need for
pattern recognition. In the case of images containing bit-maps, recogni
tion of special types of regions is necessary.

We also recognize user defined regions. These regions are defined
by users and stored in a defined image dictionary. For each of these
regions, a special code name and anchor point are defined in the diction
ary. These user-defined regions from the graphics editor can be used to
place a copy of the region in question within an image using the anchor
point (after adjusting the size of the region). The user can insert new
user defined regions into the dictionary at any point in time. The

78 Office Automation

search of the dictionary can be done by name (text words attached to
the definition of the region) or by browsing. Browsing is useful when
the user does not remember the name, or when the differences
between defined regions are very small (qualitative). In the latter case,
content addressibility in images becomes more important, because the
user cannot use appropriate words to define the properties of the image
that he is looking for. The search for the images that contain a user
defined region can be done by the code name of the region for images
created within the system. Information describing the region (parame
ters) is also extracted and stored with the definition of the region. The
purpose is to facilitate the search for images that have not been created
with the local graphics editor.

We associate region parameters with each region. In the case of
bit-maps, parameter values for these parameters are extracted after the
segmentation of the bit-map into regions. The purpose of the parame
ter values is to enhance content addressibility. The user can specify
certain images, using the defined-image dictionary, or extracting a
region from an image that he has seen while browsing through images
of the system, or by drawing the image that he wants (or a very loose
approximation of it) in his screen. The system will extract parameters
describing the specified image (or it will retrieve these parameters from
the defined-image dictionary). The user can specify the values of addi
tional parameters about the region by using a menu. The system will
try to match the parameters of the defined region with the parameters
of the images in the system.

Some region parameters are described below.

1. Elongation Descriptor

The elongation descriptor describes the axis of maximum length
of the object, its orientation, size, and position within the image, as
well as the maximum distance of a point in the perimeter of the region
from this axis (width). When there are two or more candidates of
approximately the same length for an elongation axis, the one that
separates the object most symmetrically is chosen for reasons of robust
ness. The elongation parameters are useful when the user cannot recall
precisely the description of the object. They also provide better selec
tivity in case the user does not want to allow rotation, translation, or
scaling of the object specified in his query.

2. Perimeter Descriptor

The perimeter descriptor describes the perimeter of a region in an
approximate way. This description is independent of rotation, transla
tion, and scaling of the object. We assume that the perimeter of the
region is first approximated to retain global characteristics and avoid
noise. Polygonal approximations can be used for this purpose [PavI77].
Then a set of parameter values which describe the perimeter can be

Office Filing 79

extracted. This set of parameter values can be used to achieve good
selectivity in the retrieval of qualifying images, provided the user has
adequately drawn the shape of the object. The user can also use the
defined-image dictionary, or the parameters of a region from another
retrieved image. The nature of these parameters and their use are
described in the section on the access method.

3. Texture Code
This code represents one of the texture patterns that are stored in

a library of textures known to the system. The graphics editor uses this
library to generate images in which certain regions are filled with a par
ticular texture. Texture codes are used for fast content addressibility
and for compression.

4. Shade and Colour Descriptor
If there is a unique shade or colour within a region (e.g., when

the image has been created with an image editor), the shade code and
colour code are stored within the shade and colour descriptor. For
images containing bit-maps, where every pixel may potentially have a
different level of intensity or colour, shade and colour codes do not
make sense. However, there are regions with approximately uniform
shade or colour. For example, sky in an outdoor picture or the back
ground of an artist's drawing. This type of picture may appear fre
quently in advertisements or expository material. There may also be a
clearly dominant but non-uniform shade or colour (for example sea
with white waves). Thus, within the shade and colour descriptor we
store information about the dominant shade range and dominant colour
range (and the percentage of pixels involved).

In addition to regions within an image, we may have polyUnes and
image text. Polylines are collections of connected line segments. User
defined po/yUnes are named polylines stored in the defined-image dic
tionary for reasons of compression and content addressibility, as was
the case with user-defined regions. Such polylines may represent, for
example, resistors, capacitors, or more complicated circuits. Polylines
and text may be inserted in images by using the image editor. When
images composed of polylines and text are created outside the system,
and inserted in the system in the form of bit-maps, extraction of the
text and polyline information may be simple. A po/yUne descriptor can
be defined in the same manner as the region descriptor, to abstract the
global characteristics of the polyline and allow retrieval based on the
similarity of two polylines.

Several regions, polylines, and text may be within an image. In
addition, regions, polylines, and text may be hierarchically structured.
Regions may contain other regions or polylines or text. The hierarchi
cal structure may be used in user queries to restrict the number of
qualifying images.

80 Office Automation

5. Content Addressibility
In our approach, multimedia documents are retrieved by specify

ing document content information instead of a unique document
identifier. The user will have some idea of the content of documents
that he wants to see (or not see), and will specify this information in
his query. The system will try to return all relevant documents to him.

The user may specify a document type. He can then specify con
ditions on attribute values of the attributes for this document type.
Conditions on the text part of multimedia documents involve Boolean
conditions of text words or parts of words.

We would like to avoid the general pattern recognition problem
associated with images in our system, and still provide as much content
addressibility as possible. In some cases converting image recognition
problems to attribute and text recognition problems provides us with a
powerful alternative. Image content addressibility can be achieved by
specifying conditions on the image text part and the image statistical
part, as well as similarity conditions on image objects. Similarity condi
tions are matched with the parameters of the image objects. These
parameters have been extracted and stored at document insertion time.
Thus, pattern recognition does not take place at query time (with the
possible exception of the extraction of information from a picture
drawn by the user).

Retrieving documents based on conditions on an image's text part
is different than specifying conditions on the text part of the document
[CVLL84]. The former specifies a document that has an image related
to the condition specified. The latter specifies a document related to
the condition specified.

An image may contain a number of statistical objects (graphs, pie
charts, histograms, tables). Each one of these has an internal represen
tation in the form of a table. The user can focus his attention on only
one of the statistical objects at a time [CVLL84]. We do not allow rela
tionships among tables. Conditions on tables may be very selective, so
that the size of the resp'onse is limited. The presentation of a docu
ment allows more than one statistical object (graphs, tables, etc.) to
appear in the same image.

Examples of possible queries on statistical images and the way in
which they can be formulated follow:

1. Give me any documents with images that have to do with IBM

IBM exists in the text part of the image

2. Give me any documents that have statistics on IBM

.image type statistical

.IBM in the text part

Office Filing 81

3. Give me any documents that have a graph related to IBM

.image type graph

.IBM on text part

4. Give me any documents with statistical figures relating IBM sales
and year

.image type statistical

.IBM sales and year are attribute names
(the user may specify partial match on the
attribute names if he is not sure about the
exact name of the attribute)

5. Give me all documents that have graphs in which all IBM sales
are greater than CDC sales

.image type graph

.attribute values of IBM sales greater than
attribute values of CDC sales

For images that are not of a statistical type and do not contain
image text, the user is still able to query directly on the image objects.
The user specifies his queries on images with the help of the graphics
editor, the special type images dictionary, the defined-images dictionary,
the texture dictionary, and the shade and colour dictionary.

The specification of the query can be done interactively by using
the image editor to draw objects and their structural relationships.
Alternatively, the user may extract and further edit images that will be
used as filters. The extraction may be from one of the dictionaries as
well as from a retrieved image during browsing.

The user can specify a texture directly, by using the texture dic
tionary. He can use the image editor and the menu to specify a basic
repetition pattern and the way in which this pattern is repeated. He can
also specify a shade or colour for a region, or a range of shades and
colours and the percentage of pixels of the region that should be within
this range.

The user may also want to allow flexibility about the objects that
he draws. He may indicate that rotation, translation, scaling, and mir
ror reversal is allowed. He may also indicate uncertainty about the

82 Office Automation

exact shape of certain corners or the relative length of an edge.
Finally, he may want to indicate the level of confidence in his
specification. If the user is not very confident about the shape of the
object, only general measures are examined for matching.

The system tries to match the user description of the object with
the descriptions of the stored objects. A similarity measure is com
puted, and images with similar objects are returned to the user. The
user may redefine the value of the similarity measure if he wishes. The
system also indicates to the user which object was qualifying from a
given image, so that the user is able to see a possible error or omission
in the specification of his query. If one or the other occurs, he may
want to further edit the image of his query or he may want to redefine
the image.

Region expansion techniques can be used to find the dominant
objects of an image. Structural relationships of objects are hierarchical,
so detection of relationships is easy. In the case of a more specialized
environment for a particular application, we can use application-related
techniques.

1. The general purpose region extraction techniques can be substi
tuted for or complemented by environment specific or semi
automatic region extraction techniques. The system will allow the
user to specify which algorithms are applied. The algorithms will
return to the system the points of boundary of each region in the
image. The system will then proceed to extract the parameters for
each region.

2. More application-specific information can be extracted and stored
with the image. The system still uses the general purpose rou
tines to access a superset of qualifying images. It then performs
certain procedures (from a set of user-defined procedures) on the
retrieved images, using the additional application-oriented param
eter values stored with the image, in order to further restrict the
size of the response to the query. A set of user-defined pro
cedures is known to the system, and the user can specify one or
more by name. The results of applying these procedures on the
stored images are compared with the results of applying the same
procedures on the query images.

3. Both the extraction method and the internal representation of the
system can be replaced by user defined methods. The system
only provides general support to the user: user interface support,
content addressibility on the text and attribute parts of the mul
timedia documents, and directory management.

In summary, the user is able to specify the following for content
addressibility:

Office Filing 83

1. Conjunctions of attribute values and attribute ranges.

2. Conjunctions of disjunctions of words or parts of words appearing
within the text document, text section or text paragraph.

3. Existence of voice.

4. Existence of images.

5. Approximate location of an image.

6. Conjunctions of words or parts of words (related to the image)
appearing within the text.

7. For statistical images (piecharts, graphs tables etc.), existence of
attributes, attribute values, relationships of attribute values.

8. Similarity relationships of image objects for non-statistical images.

9. Conjunctions of the above.

6. Query Reformulation
The user interface should provide a browsing-through-qualifying

documents capability for the user. Miniatures of qualifying documents
can be displayed on the screen in a way that simulates sequential scan
through qualifying documents. The user can interrupt the sequential
scan and look more closely at particular qualifying documents (see the
companion paper, "A Multimedia Office Filing System" [TCEF83,
CVLL84]).

In a multimedia information system environment, a user may not
exactly describe the information that he wants. For example, in text
retrieval synonyms, words with similar meaning, are allowed for con
tent addressibility. This is not typical of a Data Base environment,
where the information is well-structured and named, and attributes take
values from a fixed set of attribute values.

Dynamic query reformulation in image documents is very impor
tant. The information extraction process may fail to name all the exist
ing objects within an image. There may be several reasons for this:

1. The extraction algorithms did not identify the object.

2. In the case of semi-automatic extraction, the person extracting the
information was too impatient to be careful.

3. Certain objects may not be very clear within a given picture. This
will affect both manual and automatic extraction of information.

4. Certain objects were not known or considered important at the
time that the images were inserted in the multimedia document
repository.

84 Office Automation

It is possible that the user will feel the need for query reformula
tion at some point, as he browses through the documents. Something
in these documents may prompt him to better specify his query. He
may be receiving too many documents back. The query reformulation
may restrict the number of qualifying documents; also, it may expand
the query with a disjunctive term, or it may completely change the
query. We allow options for query expansion, using an environment
dependent thesaurus and query modification (more restrictions). The
search can continue forwards or backwards, or can restart without
displaying the documents seen so far.

For images, the query reformulation capability should allow the
user to extract a part of an image and use it for expanding his filter.
This will be useful when a user, as he browses through documents, sees
an object that he wants. It will be easier for him to extract this infor
mation from the image itself rather than redraw the image. It will also
likely result in a more accurate specification of the query.

A user may not be able to draw or specify his image objects very
well. Therefore, he starts by using text words to select documents that
possibly contain an image similar to the one he wants to use in his
filter. When he finds such a document, he extracts the information
that he wants and uses it as a new filter.

Thesaurus mechanisms have been used traditionally in informa
tion retrieval for replacing one word in a query with its synonyms. An
expansion of the thesaurus idea would be to use thesaurus mechanisms
that associate words with their pictorial representation in the defined
image dictionary.

7. Access Method
Multimedia documents coming into a station are stored in general

files. An access method based on signatures is used to achieve fast
response time to user queries. A signature of the multimedia docu
ment is much smaller than the multimedia document itself, and res
tricts the attention to a small number of qualifying documents (see the
companion paper, "Access Methods for Documents").

Information stored in the signature file contains signatures of text
image and voice data. The text signature scheme is based on superim
posed coding (again, see the companion paper, "Access Methods for
Documents"). A fixed-length-block signature is created for each block
of text data. Initially, all the bits of the block signature are set to zero.
The signature is constructed by taking each non-trivial word in the text
document, splitting it into successive overlapping triplets of letters, and
hashing each triplet into a bit position within the block signature.

Office Filing 85

These bits are set to one. If the word is too short, additional bit posi
tions are created by using a random number generator, which is initial
ized with a numeric encoding of the word. Thus a constant number of
bits corresponds to each non-trivial word. The size of the signature and
the number of bits per word can be determined in such a way that the
performance of the system is optimized (see the companion paper,
"Access Methods for Documents").

To see if a given word appears within a logical block of the docu
ment, the signature of the block is examined. The same transformation
is performed on the word, and the bits determined by the transforma
tion are examined. If they are all one, the word is assumed to appear
in the text document. This access method retrieves supersets of the
qualifying documents. Parts of words can also be specified in queries.
More complicated query patterns (including conjunctions and disjunc
tions of words) can be examined by reference to the signature. Infor
mation related to attribute values is also abstracted by means of a signa
ture technique. The only difference is that order-preserving transfor
mations are used to answer inequality queries. Further evaluation
shows that the approach is more appropriate for an information system
environment than word signatures [TsCh83, Lars83] or indexing tech
niques.

Important information regarding images, such as image type and
approximate location, is also inserted in the abstraction file, together
with an indication of the existence of a voice section in the document.

As we mentioned before, the user may ask similarity queries on
image objects. Similarity functions for image objects may be produced
in a variety of ways. Similarity functions for polygons and shape
numbers have been used in the past [Lee72, BaBr821. However, these
techniques are not robust in our environment. The number of polygon
edges that the user draws may differ from the number of edges that the
object has. Polygonal approximations do not control the number of
edges of the resulting polygon. Thus, for polygons with different
numbers of edges, it is difficult to define meaningful similarity meas
ures. Shape numbers pose a similar problem: the procedure that tries
to approximate the perimeter of the polygon with a given number, n, of
line segments (order of the approximation) is not guaranteed to
succeed. In addition, neither similarity measure is applicable for poly
lines. Fourier descriptors of the perimeter [GoWi77] seem more
appropriate for objects that are very similar.

We propose an access method that is based on signatures (projec
tions). Signatures for image objects share a common property with sig
natures for text words: the more signatures kept, the less information
lost about the image object or text word. In the limiting case of an
infinite number of signatures, the image object or the text word can be

86 Office Automation

perfectly reconstructed.

We have used a signature-based approach in the past to identify
locations of objects, for classification in a particular application environ
ment (chest X-rays) [KCBC75]. The office environment, however, is
much more general, and we need to define more general signature
extraction techniques and similarity measures.

Signatures of the perimeter of a region (or polyline) can be
obtained in four different axes, each of which coincides with one of the
edges of the rectangle that surrounds the image. This rectangle is
formed from the elongation axis and the width, and is normalized so
that the elongation axis is a unit. The signature in one of the axes is
formed from the histogram of the distances of the farthest points of the
object's perimeter from the axis. Information about the peaks of this
histogram is maintained.

The similarity measure takes into account the relative heights of
the peaks of the histogram, as well as their distance, in the histogram
line. The distance is important when objects have been drawn by users,
because the peaks of the two objects (the one in the document and the
one that the user draws) may not coincide. The similarity measure
should also take into account the relative area occupied by the object,
as well as the other options specified in user queries, e.g., elongation
parameters and shade. We are performing experimentation to tune all
this information into a meaningful measure.

The blocks of the access file are accessed sequentially. The
sequentiality of access, the use of large blocking factors, and the small
size of the access file result in a low cost for the access method.

8. Presentation and Communication of Multimedia Docu
ments

Documents may be interactively created, using the bit-map display
capability of a workstation. The text formatting software may provide
the same basic features seen in traditional formatters [FuSS82]. Alter
natively, the formatting software may be integrated with the filing capa
bility, so that new documents are synthesized from old ones. The page
browsing inter/ace, the extraction inter/ace, the comparative inter/ace, the
voice editor, the graphics editor, and the annotation editor are the primary
tools for interactive information extraction, multimedia document for
mation, and interactive document annotation.

A possible method of formatting multimedia documents, using
the office filing system, is the following: An office worker sits in front
of his terminal, specifies a query, then browses through miniatures of
qualifying documents to locate documents that seem relevant. When a

Office Filing 87

miniature seems relevant, he stops the document browsing interface
and uses the page browsing interface to look through the pageS of the
document for relevant information. If he finds relevant information,
he uses the extraction interface to extract this information (text,
images, etc.). Finally, when he is satisfied with the amount of informa
tion extracted, he selects the most appropriate pieces to synthesize a
new report, by means of the comparative interface.

The comparative interface differs from the sequential browsing
interface in that it subdivides the screen into several windows, so that
different pieces of documents are displayed at the same time. Thus the
user can compare the information for as long as he wants. He can
select, and replace the information that is least appropriate, until he is
satisfied. The comparative interface is well-suited for selecting the best
images for a report. A graphics editor can be used for further editing
or to change the presentation of these images (e.g., from a graph to a
histogram). Finally, the formatter can be used to put together the
pieces of the new document. A voice editor is used to add the voice
message and an annotation editor to add the annotation (text and
voice) at various places in the document. We are currently implement
ing a multimedia formatter, such as described above, that will be capa
ble of extracting information from existing documents, comparing it,
and using it to synthesize new documents.

The multimedia document formatter directly creates the docu
ment descriptor which makes the mapping of the internal representa
tion to presentation. However, it may not always be desirable or possi
ble to use this formatter to create new multimedia documents. Users
often have strong preferences, and they resent having to learn a new
formatter. There may also be particular applications within the organi
zation that are best served by specialized packages (e.g., a special statis
tics package that automatically creates graphs in a given format).
Finally, documents may be prepared on workstations that do not have a
bit-map display capability.

In all of these cases, different formatters may be used. If these
formatters are not known to the system, the only way that documents
can be reconstructed is if a bit-map of the document is transmitted to
the system, and information extraction and recognition take place.
Since these functions are expensive, we allow the possibility that the
system has some knowledge of other frequently used formatters. The
transformation software is a set of routines that maps documents derived
using these formatters to documents in the system, and vice versa. We
are implementing a transformation software package that supports docu
ments that have been formatted with a popular formatter like the
UNIX™ -ms troffmacro package and with the Pic package for graphics,
which are described with the document structure presented earlier in
this paper, using the transformation software. The presentation form is

88 Office Automation

stored within the document descriptor, as was the case with the docu
ments derived with the system formatter. We also provide the reverse
mappings.

The interactive image editor formatter assists the user in creating
images interactively, extracting information from other images already
in the system. It also manually edits digitized images, extracting the
information in them and possibly discarding the raster form of the
image, which is expensive to store.

The image editor is also useful for specifying or reformulating
queries that refer to non-statistical images. Thus the image editor
becomes an important part of the management system for multimedia
documents. It is useful for document formation, change of presenta
tion form, query specification, query reformulation, information extrac
tion for achieving content addressibility, and information compression.
The image editor should be powerful enough to support these func
tions. In addition it should provide a pleasing interface to the user.

The general objects that may be created are circles, ellipses,
polygons, arrows, points, B-splines, rectangles, and collections of line
segments. These are used as primitives for creating or editing more
complicated forms of images. Additional information is kept for statist
ical objects. Examples are location of axis, minimum and maximum
values in axis, graph points, histogram heights, pie chart sectors, and
table columns. The display coordinates may be automatically created
from the attribute values of certain attributes in tables. The user may
change these parameters while he is editing the image, in order to
obtain a different presentation.

9. Concluding Remarks
In this paper we have discussed issues related to the development

of a multimedia information system for an office environment. Docu
ments in this environment are retrieved on the basis of content. The
user can specify attribute value relationships as well as words or parts of
words that appear in the text part of multimedia documents. Image
content retrieval is achieved by allowing queries on the image text part,
statistical queries on images of the statistical type, and queries on simi
larity and spatial relationships among image objects. Some aspects of
the presentation of documents may also be specified in queries. We
presented issues related to information extraction, user interface, query
reformulation, access method, image creation, and multimedia docu
ment presentation and transformation. We described the internal
representation and the presentation form of multimedia documents and
the mapping between them.

Office Filing 89

We are implementing a multimedia information system for an
office environment based on the framework described in this paper (see
the companion paper, "A Multimedia Filing System", and [TCEF83,
CVLL84]). This is an on-going project, with many parts under imple
mentation or design. Our purpose is to examine in depth and experi
ment with many different ideas. It is possible that not all the ideas will
be incorporated in the final system. However, in order to decide on a
good set of options, we have to know the details of their implementa
tion, the advantages and disadvantages of the final result, and the addi
tional complexity that they will give to the system. In addition, we
should know how well these techniques can be used in an integrated
system. Finally, we will have to balance these factors with the require
ments and satisfaction of the users.

10. References
[AhKW78] [BaBr82] [ChFa84] [Chri84a] [Chri84b] [CVLL84]
[DuHa73] [EHLR80] [Elec83] [FuSS82] [GoWi77] [HoPa74]
[KCBC75] [Lars 83] [Lee 72] [McLe83] [Pavl77] [Redd75] [Redd76]
[Rijs79] [SaMc83] [TCEF83] [TeFr82] [ToG074] [TsCh83] [VLDB83a]
[VLDB83b] [VLDB84] [Wied83] [WoCW82]

Part III

Mailing

5
Etiquette Specification
in Message Systems

D. Tsichritzis
S.J. Gibbs

ABSTRACT We outline an environment in which communica
tion roles between persons, and the associated rules, can be
specified. Such an environment can serve for the specification
of an etiquette of communication which is enforced by the elec
tronic message system. The rules of communication are impor
tant in providing a management approach for an organization.

1. Introduction
As electronic message systems become more widespread, and

communication networks interconnect, a new set of problems is emerg
ing [Brot83]. We expect these problems to become worse in the years
ahead. We should, therefore, understand them and provide the neces
sary mechanisms for solving them.

The first problem is junk mail. It is extremely easy and quite
cheap to send a message to a long list of persons. In doing this, the
sender gets maximum visibility and has the feeling of not having
missed anybody. Unfortunately, the majority of persons receiving the
message have to "pay the overhead" of reading it. Junk mail can be
reduced only if the sender can pinpoint the appropriate recipients. At
the same time, the receivers should have an easy way of classifying
their messages that ensures protection against certain kinds. In current
systems, the receivers have to write their own sorting programs in order
to isolate the important messages. The rules which they use to sort

94 Office Automation

their messages are one-sided and unknown to other users.

In most systems, messages are presented in the order in which
they are received. Each new message deals with something new. The
recipient has to switch mental processes continuously, to bring in the
appropriate context for each message. The situation may be the reason
persons get upset and reply rudely. The user should be able to struc
ture and read the messages according to subject. In addition, within
each subject the previously exchanged messages should be readily avail
able to provide the necessary context.

A related problem is that the addressing space of message systems
is quite flat. There is a set of known addresses and the subsets pro
vided by distribution lists. Organizations on the other hand are not flat.
There are only certain allowed paths of communication in an organiza
tion. Electronic mail, the way it is used today, bypasses this hierarchy.
Top managers get unwanted details, and lower personnel embarrass
themselves by inappropriate use of electronic mail paths. The answer is
to account for the roles of people in an organization, and provide mes
sage paths only along carefully laid out management lines. This implies
that communication paths have well defined rules governing the mes
sages which can pass through them.

Messages in current electronic mail systems are exchanged
between mailboxes that represent individual persons. A person may
have several mailboxes, but they are related to physical locations of
machines and connectivity of networks, and not organized according to
the kinds of messages he receives. A user may easily end up having
three or more mailboxes which he has to manage continuously. If he
changes his physical address or logs in on different machines, he has to
write his own rerouting programs, or notify his colleagues about the
new method of accessing him. All these difficulties arise because mail
is exchanged and deposited according to physical and not logical proper
ties. There is a strict dependence between the message addresses and
the communication paths and eventual machines and mailboxes in
which the messages are deposited. The situation will improve only if
there is a clean separation between logical addressing properties and the
physical characteristics of the transport system that delivers the mes
sages.

It is the position of this paper that such problems appear because
there is no way to enforce an etiquette of communication. To whom
you can talk, what you can say, and in what way you can say it are
governed by important rules in human communication. In electronic
message systems there are no restrictions; the system transports the
wrong messages to the wrong persons. There need to be ways to
enforce certain formats of communication between parties. The rules
of proper message protocol will not be voluntarily followed in a broad

Etiquette Specification in Message Systems 95

community of impersonal users. There should be ways that the system
enforces certain rules of proper behaviour once everybody agrees on
them.

In the following sections, we will investigate the problem of for
mally specifying etiquette within message systems. Our goal is to
develop a specification language which can be used to describe the cus
toms of a particular user community. The message system will be
governed by these specifications and will automatically enforce the rules
described therein.

2. Etiquette in Electronic Message Systems
One definition of etiquette is "an item of behaviour prescribed by

rule or custom"l. Within many of the larger electronic message systems
are guidelines that are accepted and followed by most of the user com
munity. For example, on USENET [Hort81], members of newsgroups
(special interest groups that post messages to "bulletin boards") are
advised to:

avoid being rude or abusive

avoid sarcasm and facetious remarks

take precautions with possibly offensive jokes

These, and -other such admonitions (see [Schw83] for a complete list)
define what is acceptable behaviour on USENET, and so are clearly
examples of etiquette.

The above rules are concerned with the style and meaning of
messages appearing in the system. Without full natural language
understanding, there is little the system can do to enforce these rules.
It is not even certain that one would want a machine to automatically
flag such things as offensive jokes and sarcastic comments; such action
is a form of censorship and contrary to the idea of an electronic bulletin
board as an open forum.

Rules that are more amenable to automation are those that sug
gest the proper actions for particular, well-defined circumstances. For
example, suppose the sender of a message has incorrectly specified the
message destination, and the system has not detected this error but
delivered the message to an unsuspecting user. For users of the Laurel
electronic message system [Brot83], the recommended procedure is:

1 Webster's Third New International Dictionary

96 Office Automation
When you realize a message is not for you, use the Forward com
mand to send it back to the sender along with a polite comment
that the message has reached the "wrong number" ... Once you
have determined that you have received a "wrong number" mes
sage, stop reading it.

A second example from Laurel concerns the proper "publication" (Le.,
broadcast) of the responses gathered by an initial query for information
made to some public or semi-public forum (a bulletin board, news
group, distribution list, etc).

Messages should be considered "private" unless otherwise indi
cated. If your intention is to publish the responses, then by all
means make that intention clear in the same message that poses
the original question. If your message did not make the intention
clear, and you decide you would like to publish the responses, then
follow up each response, asking whether you may do so.

If the intention to publish is clearly indicated in the original
message, then publication of any response is fine, as long as the
response does not explicitly mention that it should be considered
private.

What we would like is to be able to describe such rules to the system so
that it can aid users in following the proper procedures.

Our description of message system etiquette will rely on four con
cepts: the messages themselves, roles, paths between roles, and rules.
We assume that messages consist of a body containing the part of the
message visible to the user and a header containing system information.
Both the header and the body consist of named message attributes. A
message type is a particular structure of message attributes. Roles are
the sources and destinations of messages in the system. When a person
is associated with a particular role, he is said to be playing the role.
This allows the user to examine all messages sent to the role, and to
send messages originating from the role. A path is a connection
between two roles. There may be many paths between roles, so a path
name is necessary. Examples of paths could be a "first class" path and a
"general delivery" path. The actions of the system will depend on the
path over which a message is sent. Rules govern the communication
between roles and therefore the behaviour of the message system. The
information embodied in rules includes such things as which roles a
user may play, what paths are available to a role, and what messages
can go through a path.

At this point, the reader may wonder about the difference
between authorization roles that persons have for security purposes,
and our roles for communication purposes. In both cases roles can be

Etiquette Specification in Message Systems 97

structured, and in both cases they govern access to information, e.g.,
records and messages. Authorization roles give potential access, while
communication roles provide alarms to perform access on the informa
tion. The real difference has to do with the purpose that is eventually
encoded in the rules associated with roles. The purpose of authoriza
tion roles is to guard the objects carrying information (records, mes
sages) against the agents accessing them. The purpose of communica
tion roles is to guard the agents (persons) against unwanted objects
Gunk mail). A person's authorization may vastly exceed his real need
for information. It is a philosophical point. Up to now we had an
image of persons starving for information. We may now be in a situa
tion where persons have to guard themselves against too much infor
mation.

Roles are not fully exploited in present message systems. For
instance, in current message systems, mail addressing is via physical
locations, person names, or sets of users. People, on the other hand,
communicate between roles they play and not simply as persons. The
use of roles, rather than the names of people, as message destinations
raises a number of issues. For example, a person may feel that he has
only one role (to be himself), or may want to assume many roles and
behave differently for each one. The system should not force users to
have a single role, but should make it easy for them to manage their
roles. Also, a message should be treated in accordance with whether it
comes from a person as a professor, teacher, advisor, consultant, hob
byist, athlete, etc. The fact that a particular person can play all these
roles is not important. First, he does not play them all at the same
time. Second, there are times that a role is generic and can be played
by more than one person. Finally, some roles are played by organiza
tional units, e.g., departments and companies, and not by persons. In
addition, a person may want to be accessible only in certain roles.
Being able to address him in one role does not necessarily mean one
can address him in another.

Similarly, rules are used only on an informal, ad hoc basis in
current message systems. For example, one user might follow a rule
that says, in effect, "messages with no subject line will be ignored".
However, other users are under no compulsion to follow this rule when
sending mail to the user in question, and may not even be aware of the
rule. As with roles, the presence of rules introduces many issues. For
example, certain rules may be specified within each role as part of the
role definition, and so be local to that role. A more interesting case,
though, is when a rule is shared among many roles. The system may
impose "meta-rules" on the sharing, such as a priority scheme among
the roles or an exclusion property between the roles. Rules can also be
defined for the communication between more than two roles. Finally,
the most difficult problem is to enforce properties of global behaviour

98 Office Automation

among many roles communicating indirectly. For instance, in a strictly
managed organization there may be a rule that a role cannot bypass a
lower level of management and communicate with its superiors. The
problem of specifying and enforcing global rules is very difficult. A
more realistic approach is to define loosely global rules. We then
specify sufficient local rules to obtain the desired overall effect. This
may overburden the local communications, but it is probably the sim
plest way to enforce global properties.

3. Role and Path Specifications
A role represents anything that can act as the destination (or

source) of a message. Thus, roles generalize the notions of mailboxes,
bulletin boards, newsgroups, and distribution or mailing lists found in
present electronic message systems. Typically the number of roles
present in a system will be larger than the number of users (users often
play more than one role). Since this can be a considerable number (on
the order of thousands) it is necessary to impose some structure and
organization on the roles. Our approach to role organization makes use
of role types and role instances.

Many roles with similar properties can be represented by a role
type. For instance, all teachers, all basketball players, all singers can be
role types. A type has properties which are characterized by attribute
values. For example, PROFESSOR could be a role type used by
university professors. For each type there is a different attribute value
for name and title, which identify a role instance of the type. More
formally we say that a role type consists of

N(Aj, ... ,An)

with N, the role type name and A j, ••• ,An its attributes. A role
instance is obtained by giving values for A j, .•• ,An.

Roles are interrelated by the "precedence" or CANPLAY relation
ship. For instance, a professor role CANPLA Y a teacher role. This
means that a person associated with the system in his professor role can
potentially have access to all messages addressed to his teacher role.
His own rules as professor may only affect his access. One can depict
this relationship in graph form by placing an arc from role r, to role r2
if r, can assume r2. By convention we will say that r, is a higher role
than r2.

The precedence relationship can be 1:1 between roles. For
instance a dean can also have a role as a professor. While he is a dean
he can also play the role of the professor and receive mail in either
role. However, no dean is two professors and no two deans are the

Etiquette Specification in Message Systems 99

same professor (usually)!

The relationship can be 1 :N, as from a professor role to a teacher
role. A professor can have more teacher roles, one for each course he
teaches. However, each teacher role relates to a particular professor
role.

The relationship can be N:l as from a set of athletes to a generic
team player for each team. Each individual athlete role is higher than
his role as a team player. However, no athlete can be a team player for
more than one team.

Finally, there may be an N:M relationship between roles, as is
usually the case with interest groups. Many person roles participate in
each interest group which plays a role of "any person interested in a
specific subject". However, each person can participate in many roles of
"interested party". Notice that in the two last cases a generic common
role groups a number of individual roles into one. When a message
arrives, any or all of the agents associated with the role can obtain it,
depending on the role's rules. In addition, when a person sends out
mail from a generic role his identity can be omitted. He is one of the
persons sharing the interest of the group.

The relationship CANPLA Y usually establishes a directed acyclic
graph (dag) of roles. The graph is directed because the relationship is
not reflexive. It is acyclic because a cycle would indicate that a lower
role can indirectly assume a higher role. In many cases this dag will
represent a hierarchy. There are high roles and low roles in the dag. A
high role is a role that no other role can assume. A low role is a role
from which no other role can be assumed. It is interesting to point out
the semantics of these two extreme cases. High roles usually
correspond to persons as private individuals. From that role they can
access any mail that is received in any other role they play. Low roles
usually correspond to either public persons, or generic roles. A person
publicly receives mail which can be accessed from other roles he plays.
A generic role is a role shared by many individuals that gives them a
way to exchange impersonal messages on a subject as a group.

One way to view a CANPLA Y hierarchy is as a collection of role
trees corresponding to the roles played by different users. Roles that
are shared by many users lead to connections between the trees. Role
sharing is very important between roles in different role trees. In this
way we can create common interest groups among persons, or assume
the responsibilities of someone else.

A link is a connection between two roles, and indicates that one
role may send messages to the other. Communication links between
roles on the same path of a role tree may not be needed. A superior
role can always communicate freely with its inferior roles. Communica
tion links between roles in the same hierarchy may be needed, although

100 Office Automation

the roles may be able to communicate through a common ancestor.
Links are represented by HASP A TH, an N:M relationship between role
instances. In graph form, HASPATH identifies all possible communica
tion paths in the system. The HASP ATH relationships are defined
independently of the CANPLA Y relationships. In the simplest case, all
edges in the HASP ATH graph are the same. More generally the edges
are coloured, and correspond to the different transfer protocols. For
example, one type of path may be used for high-priority messages, a
second type of path for messages that must be acknowledged. The
behaviour associated with a path type is specified in the same manner as
message type and role behaviour. In general each path type will have a
set of rules that describe communication over path instances. Distin
guishing path types allows a richer semantics. For example,
specification of paths over which messages must be acknowledged will
require referring to such things as original messages, acknowledge
ments, failed deliveries, and waiting periods. Thus, application level
concepts are introduced into the message system.

An interesting notion is the set of roles which can potentially be
reached from an existing role. We can take two approaches, a formal
approach and an informal approach. A role, a, can reach informally all
persons (and all roles they play) which are connected directly or
indirectly with it. We can obtain all these by taking the transitive clo
sure of all the role trees connected to the tree of the particular role a,
through communication paths. Any role in these trees can potentially
become aware of any information sent from the role a. We call this set
of roles the informal communication scope, because it assumes that indi
vidual persons play their roles rather loosely and transmit information
freely from one role to another. This situation should not happen in a
well-managed organization. We should look at a much more formal
approach to role playing. For instance, we can assume that sensitive
information received in a role is available only to its superior roles.
Under this assumption we should take the transitive closure of roles
not in terms of trees connected, but by going only upward in each tree
and taking connections. We obtain in this way a set of roles called the
formal communication scope of role a. These roles can potentially learn
information coming from a. They do so through communication paths
and role superiority.

Suppose a role, a, is related indirectly with a role, b, through a
chain of CANPLA Y and HASP ATH relationships. This does not
guarantee that anything role a sends through that chain will reach role
b. Role b can potentially get a message from role a. If all the rela
tionships are exercised, role b will receive the message. Here, very
important sets of roles are cut sets. If all cut set members choose not to
transmit along communication paths, the information will not reach a
particular role or person. For example, in a corporate organization

Etiquette Specification in Message Systems 101

administrative secretaries might preview messages, either of certain
message types, or sent from certain roles, or coming over certain paths.
Such messages would be forwarded to the president or executive at the
secretaries' discretion. Thus these secretaries could effectively block
certain messages and so form a cut set.

Now let us consider the mechanics of message transfer within a
system based on roles. In general, the system requires the following
information:
1. the sender role

2. the receiver role

3. the message type and attribute values
4. the path type

When a user inserts a new message, he does not need to specify
everything. His sender role is implicit unless he changes it. The
receiver role is explicitly specified, unless the system is able to deduce
the receiver from message attributes (such as the subject) [Tsic841.
Once both sender and receiver roles are known, the system determines
whether transfer is possible, by examining the HASPATH relationship.
The transfer is allowed to take place if there is a path (of the required
type) from the sender role, or any roles inferior to it, to the receiver
role. (If there is a path, but not of the type requested by the user, the
system informs the user of the alternative path.)

We will now present an example that illustrates many of the
above concepts.

Example 3.1 Business Roles

Suppose we have the following role types:

PrivatePerson
PublicPerson
UnionMember
UnionBulletinBoard
Consultant
CompanyEmployee
CompanyBul/etinBoard

PrivatePerson roles receive mail only from a small set of known
acquaintances, while Public Person roles have no such restrictions.
There is one instance of each of these role types for each user of the
system. Instances of the UnionMember, Consultant, and CompanyEm
ployee role types are in a 1:1 correspondence with union members,

102 Office Automation

consultants and employees. The UnionBulletinBoard role type encom
passes roles shared by all union members; analogously, CompanyBul
letinBoard roles are shared by company employees. Instances of a bul
letin board role type can be used to organize the broadcast messages.
For example, within Company Bulletin Board there may be instances
dealing with memos from the company, personal announcements from
employees, local entertainment, and so on. In general, these instances
will be created and deleted as interest in the corresponding topic
changes. The CANPLA Y relationship is represented schematically in
figure 1.

PrivatePerson

UnionMember Consultant CompanyEmployee

! ~! /!
UnionBulletinEoard PublicPerson CompanyEulletinEoard

Figure 1: A CANPLA Y relationship

We will use a single path type. The HASPATH relationships are:

Pri vatePerson --+ PrivatePerson
PublicPerson --+ UnionMember
PublicPerson --+ Consultant

CompanyEmployee --+ CompanyEmployee
UnionMember --+ UnionBulletinBoard

Company Employee --+ Company Bulletin Board
PublicPerson --+ PublicPerson

Here we have specified that only PrivatePerson roles can send to Priva
tePerson, while UnionMember and Consultant roles will receive from
PublicPerson or superior roles. The CompanyEmployee roles can only
communicate between themselves, and the HASPATH relationships

Etiquette Specification in Message Systems 103

here would follow the corporate structure. The two BulletinBoard role
types will only receive messages from their associated members. It is
important to note that a relationship at the type level induces relation
ships at the instance level. In many cases, such as the HASPATH rela
tionship between PublicPersons, the relationship holds for all pairs of
instances, so it is not necessary to store the relationship on a per
instance basis.

4. Rule Specifications
The semantics of roles, messages, and paths is expressed by rules

contained within role, message, or path type specifications. Rules are
intended to identify the suggested or proper course of action in a partic
ular situation. We require that the rules be represented in a form that
can be interpreted by a machine. We will restrict rules to the following
somewhat arti ficial structure:

rulename:
<context>
<action>

The <context> describes a prototypical situation that precedes invoca
tion of the rule. The information specified here includes the operations
that lead up to invocation, the performers of the operations, and a
description of the objects (messages, roles, paths, etc.) involved. An
operation may be performed by a user (either directly or through some
procedure acting on his behalf) or by the system itself. The <action>
lists operations to be performed if <context> occurs. We are not
interested in forming a general office procedure specification language,
and so will consider only those operations dealing with messages.
Specifically, these are:

Play(r)
Display(r)
Send(m, r, r', p)
GrantPlay(r, r')
RevokePlay(r, r')
GrantAccess(r, r', p)
RevokeAccess(r, r', p)

where m is a message, rand r' are role instances, and p is a path. The
Play operation is called when a user begins to playa role: it merely
establishes the user as the player of the role. The Display operation is
used to view the messages sent to a role. The operation of Display will

104 Office Automation

depend upon the user interface desired. It would, in general, allow the
user to browse through the set of messages that have been received by
the role.

The Send operation introduces a message to the system. Here the
parameters are the message itself, m, the source and destination roles,
and the path p.

The four operations - GrantPlay, RevokePlay, GrantAccess, and
RevokeAccess - are used to change the privileges of a role by modify
ing the CANPLA Y and HASP ATH relationships. GrantPlay allows a
player of role r to also play role r'; RevokePlay denies this privilege.
GrantAccess creates a path p, from role r to role r'. RevokeAccess
removes the path. Note the similarity of these operations and analo
gous operations for authorization access.

Notice the similarity of role rule specification, and rule
specification in an object environment (see the companion paper, "An
Object-Oriented System"). A role can actually be viewed as an object in
such a system.

We will now look at some examples of the rules appearing in role
and path specifications.

Example 4.1 Public Person Roles

A PublicPerson role has no restrictions on who may send to the role,
but can only be played by the person whose name is the same as the
name of the role.

role type name: PublicPerson
rules:

WhoCanPlay:
context Play(r); performed by u

r a PublicPerson
u a User

action continue if r.Name = u.Name
error otherwise

Example 4.2 Private Person Roles

As with a public person role, there must be agreement between the
name of a private person role and the name of the person playing the
role. A private person role differs in that it only receives messages
from an explicit set of roles (the acquaintances of the role). Needless
to say, the person who plays the role specifies its acquaintances.

Etiquette Specification in Message Systems 105

role type name: PrivatePerson
attributes: acquaintances
rules:

WhoCanPlay:
context Play(r); performed by u

r a PrivatePerson
u a User

action continue if r.Name = u.Name
error otherwise

WhoCanChangeAccess:
context GrantAccess(r, r', p); performed by u

r' a PrivatePerson
u a User

action continue if r' .Name = u.Name
error otherwise

WhoCanSendTo:
context Send(m, r, r', p)

r' a PrivatePerson
action continue if r E r' .acquaintances

error otherwise

Example 4.3 Public Bulletin Board Roles

Messages sent to public bulletin board roles can be read (displayed) by
any person. A public bulletin board also places no restrictions on who
may send to it. The only restriction is that bulletin boards may not ori
ginate messages.

role type name: PublicBulletinBoard
rules:

WhoCanSendTo:
context Send(m, r, r', p)

r a PublicBulletinBoard
action error

Example 4.4 Moderated Bulletin Board Roles

A moderated bulletin board will only receive messages from a specific
role - the moderator.

role type name:
attributes:
rules:

ModeratedBulletinBoard
moderator

106 Office Automation

WhoCan Change Access :
context GrantAccess(r, r', p); performed by r"

r' a ModeratedBulletinBoard
r" a Role

action continue if r" = r' .moderator
error otherwise

WhoCanBeSentToBy:
context Send(m, r, r', p)

r' a ModeratedBulletinBoard
action continue if r = r' .moderator

error otherwise
WhoCanSendTo:
context Send(m, r, r', p)

action
r a ModeratedBulletinBoard
error

Example 4.5 Mailing List Roles

A mailing list role can be played by any person on the mailing list. TI
role can only send to itself and will only receive from itself. The actule
mailing list is represented by an attribute of the role. al

role type name:
attributes:

MailingList
thelist

rules:
WhoCanPlay:
context Play(r); performed by u

r a MailingList
u a User

action continue if u CANPLA Y some r'
E r.thelist

WhoCanChangePlay:
context GrantPlay(r, r'); performed by r"

r' a MailingList
r" a Role

action continue if r" E r' .thelist
error otherwise

WhoCanBeSentToBy:
context Send(m, r, r', p)

r' a MailingList
action continue if r = r'

error otherwise
WhoCanSendTo:
context Send(m, r, r', p)

action

Etiquette Specification in Message Systems 107

r a MailingList
continue if r = r'
error otherwise

Example 4.6 Acknowledgement Paths

As a final example we will look at a path type specification. Here the
path is used for messages which must be acknowledged. However we
do not wish to generate an infinite stream of responses to responses.
We will use a special message type called Acknowledgement, instances
of which are not, in fact, acknowledged.

path type name: AcknowledgementPath
rules:

Send Acknowledgement :
context Send(m, r, r', p)

action

p an AcknowledgementPath
m not an Acknowledgement

Send(m', r', r, p)
m' an Acknowledgement

5. Implementation Considerations
The implementation of an environment providing roles, paths,

messages, and rules takes different directions, depending on the tools
available in a particular system. This also depends on the degree of
structure that we want to impose on roles and their communication.

Consider an environment where Data Base facilities are available,
including a capability for specification of office procedures. Such
environments were outlined in the papers, "Office Procedures" and "An
Office Filing System". In addition, they have been implemented in
many other projects, e.g., OBE [Zl0080). We will assume the existence
of a network and a set of addresses capturing the physical communica
tion between machines and mailboxes. The addresses correspond to
the electronic mail addresses as they are used in most existing systems.
For example, decvax!mcvax!ariadne!dt is a USENET address. The
communication path may be inherent in the specification of addresses,
or it can be given by a mapping relating address names to paths
[Tsic84).

Suppose we want to have a very strict structure of roles and their
communication. In that case, we will assume that all roles correspond

108 Office Automation

to role types, e.g., merchants, professors, companies, etc. Each role
type is an entity type and can be represented by a relation in the Data
Base system. Each CANPLA Y relationship between a pair of role types
will be represented by a Data Base relationship, and will be provided
either as a separate relation, or as a join of appropriate attributes of the
relations representing types. For instance, according to the example in
section 3, the role PrivatePerson will be represented by a relation PER
SON (ID, NAME, .. .), the role Company employee will be represented
by EMPLOYEE (PERSONNEL NO, CO, NAME, .. .). Their CAN
PLAY relationship is either a separate relation, PERSON-CAN-PLAY
EMPLOYEE or it is a join according to a common attribute, e.g.,
PERSON.lD. The HASPATH relationship can be represented in the
same way. In a strict structuring approach, each pair of role types will
have their HASPATH relationship represented by a different relation.
The rules associated with role types and their paths are encoded in pro
cedures which are associated with relation types. They are automati
cally invoked by certain relational operations, e.g., "insert a message"
will invoke the procedure which obtains the address of the appropriate
role name and the path to that address.

We assume the existence of mapping relations, mapping roles to
addresses, and mechanisms that map addresses to communication
paths. All of these mechanisms are transparent to the user, who sees
only roles, messages, logical paths and rules. It should be noted that
some of the role and path procedures are also invoked automatically by
the arrival of messages and not by a user operation. For that reason we
need triggers as in OBE, or any facility for office procedures that can be
automatically invoked.

A second approach using the same implementation tools, will not
distinguish very much between role types. We will have very few role
types, perhaps just one, and the different roles will be denoted by attri
butes of the particular role type. The CANPLAYand HASPATH rela
tionships can be encoded in one relationship each. All the rules regard
ing communication etiquette are captured by the procedures associated
with the single role relation and the relations representing CANPLA Y
and HASPATH relationships. In such an approach we have to have
fewer communication rules, or the procedures associated with the rela
tions will become very involved. To retain flexibility, we may need to
allow persons or groups of persons to associate rules with their own
hierarchy of role instances. In such an environment the roles and their
communication rules are more freely specified, but the users have to
encode their own rules.

The two approaches described so far correspond to the tradeoff
present in the design of Data Base applications. We may separate the
information space into many entity types, in which case names of enti
ties imply properties. In our environment, the communication rules are

Etiquette Specification in Message Systems 109

predefined and automatically associated with role type names and path
names. Alternatively, we may have very few generic entities, with the
interpretation of their properties explicitly stated. In our environment,
there is no role separation in types, and the communication rules are
explicitly stated.

Consider an environment in which an object-oriented system is
available such as Smalltalk-80, or the one that appears in the paper,
"An Object Oriented System", in this book. The roles can correspond
to objects and the role types to object classes. The CANPLA Y relation
ships are represented by the class-superclass hierarchy. The HASP ATH
relationships are represented by the acquaintances of the object class.
In this case the rules are directly associated with the roles as objects.
For example, the rules of a role type will be associated as rules of the
corresponding object class. There is no need to associate automatic
procedures capturing the rules, since they can be captured by the
objects themselves.

As in our previous discussion, we may choose to separate roles
into different object classes, or we may choose to have "one" object
class. It depends on whether or not we want to prepackage properties
and rules, and associate them with role names. The message-passing
capability between objects provides the notification of the arrival of a
mail message in a particular role. The mail message itself can also be
considered an object.

Such an environment gives us a very interesting choice. If we
view mail messages as objects, they mayor may not have their own
rules. In the first case, messages are completely passive, are manipu
lated directly by the roles, and obey the rules associated with the roles.
In the second case, messages may inherit rules from the originating
roles. From then on they are objects obeying their own rules. When
they arrive, for example, at a receiver role they do not obey the rules
of the role as an object. Instead, they obey their own rules. The paper,
"Intelligent Message Systems", by J. Hogg, outlines a system outlined in
which mail messages are active objects.

Our discussion points out that the implementation of a role model
depends on the underlying system capabilities. We can take a pro
cedural, or an object-oriented approach. Independently, we can insist
on a strict separation of role types and path types; or we may view roles
and their communication paths as generic and encode the differences in
complicated rules. It is difficult to argue the advantages and disadvan
tages of each approach, since it depends very much on the environment
we want to create. In addition, there are no strict boundaries, but a
continuum between the extreme cases. Future message systems should
give the choice to the application developer. In the same way that we
do Data Base design, we should be able to do role and communication

110 Office Automation

path design for a particular application.

6. Concluding Remarks
The use of roles outlined in this paper should help deal with

emerging problems like junk mail. A user can broadcast a message to
interested roles and not to groups of persons. In addition, a person can
give priority to his important roles and their associated messages, and
overlook his non-exclusive roles that receive much unsolicited mail.

It is interesting to note that roles can be set up without reference
to persons. A role can exist without an existing person, but only
through its connection to a hypothetical person. In addition, a role can
be set up very low in an organization, belonging to somebody having a
position high in an organization. In this way, an executive vice
president can also be a fictitious office worker, in order to check how
well his instructions filter from middle management down to the rank
and file. He can communicate freely in that role with other workers,
and exchange opinions about the company.

We should comment briefly on directories and files. At first
glance, structuring roles resembles structuring names of files in direc
tories, or structuring names of mailboxes. However, the intent and
semantics are different. We structure role names for communication
purposes, not for filing purposes. The way one files things has to do
with the way one wants to structure his information. The way one
structures roles is the way one wants to be perceived by others for com
munication purposes. The former is inward-looking and the latter
outward-looking, in an organization.

Finally, in none of our discussion did we emphasize geographic
separation and physical transport of messages. In terms of implementa
tion it should be. obvious that the specifications outlined will be parti
tioned into many sites, and copies should be kept consistent. We chose
to ignore for the time being the physical distribution problems of com
munication, and concentrate instead on the logical properties.

It should be pointed out, however, that the information relating
to roles, paths, and their rules does not change very fast. Hence, we
can distribute the data base containing this information more easily
than a transaction-oriented data base. The problem of transporting mail
messages geographically is not novel. Communication networks and
name servers are solving many of the problems of physical communica
tion and routing.

The most important aspect of rules of etiquette is the ability to
provide a management approach. Modern management deals more
with issues of communication than with issues of control. It is not

Etiquette Specification in Message Systems 111

important whom you can order around, but to whom you can talk and
under what constraints. For example, the power of a vice-president
stems from the fact that he can talk to other vice-presidents, the
president, and certain other powerful persons in an organization. If we
accept that position, specifying the rules of etiquette and role structure
in an organization is very important. It defines the management struc
ture of the organization. Strictly managed organizations will have a
very strict, hierarchical role structuring. At the same time, they may
allow informal communication connections and groups to move infor
mation up, down and sideways in the organization. Free role structur
ing is very important for communication between persons belonging to
different organizations. It hides many of their important roles, and
they present only a substructure of roles to the world. It is interesting
to ponder the difficulties that might arise when different role structures
have to be merged. It may take some time for persons in one structure
to become familiar with the roles of persons in another. The situation
is illustrated in the merging of companies: people have to learn to get
along with each other.

We feel that organizations are essentially run by transmitting
information along their role structure. They have established rules of
behaviour within their role structure. A management structure is
defined indirectly by the communication structure. It is rather interest
ing that organizations that pay a great deal of attention to management
introduce electronic mail, which can change their methods of manage
ment so dramatically, without any study of its effect. Finally, it is easy
to explain why current electronic mail systems do not impose rules or
etiquette. They have been designed with an emphasis on free exchange
of ideas, mainly between researchers who abhor any notion of control.
Etiquette, however, does not imply control, but simply good manners.

7 . References
[BrotS3] [HortSl] [SchwS3] [TsicS4] [ZlooSO]

6
Intelligent Message Systems

John Hogg

ABSTRACT An intelligent message is an active object that
interacts with its recipients and, on the basis of the responses
that it col/ects, decides whether to route itself to further reci
pients or terminate. A prototype system has been developed in
a single-machine environment. When intelligent messages are
implemented in a distributed environment using multiple copies,
problems arise in coordinating the actions of these copies and in
communicating between them. Solutions to these problems are
proposed.

1. Introduction
An office has been defined as "a mechanism that maintains the

state of the business" [EINu80]. An essential component of this state
maintenance is communication: communication between people, com
munication between systems, and communication between people and
systems. Traditionally, inter-personal communication has relied on a
wide variety of media: personal contact, the telephone, memos and
papers. In the comparatively new field of office automation, several
new media have appeared, such as electronic mail and voice messaging.

Personal contact and the telephone are "real-time" or "two-way"
methods of communication, while the other media listed allow com
munication from the initiator to the recipient only; any reply must be a
separate message. The distinction is important. Messages are sent for
two reasons: to deliver information and to request it. Those in the first
category are complete in themselves. Messages which collect informa
tion, however, must be followed up by an explicit action on the part of

114 Office Automation

the recipient. This is not difficult to obtain in face-to-face or voice
communication, but other message types are more likely to be ignored
or filed away for "future action". The more complicated the response
required, the more likely this is to happen. As an illustration, the
University of Toronto database group circulates lists of technical report
abstracts under a cover sheet instructing recipients to mark those
reports that they wish to acquire, and to pass the list on to any col
league who has not yet checked his or her name off. These lists take
weeks to make the rounds of the department!

Like all message systems in use today, the database abstract lists
are passive messages. They are strictly data and perform no actions
themselves. This is also true of current electronic mail (email) sys
tems, the only difference being that in the latter case delivery can be
faster, cheaper, and more widespread. However, with the increasing
interest in object-based systems, it is not difficult to envisage an active
message, which would collect responses from recipients and then for
ward itself to other recipients as required. The basic idea is simple yet
potentially very exciting, and is the subject of this paper.

Section 2 of this paper explains the central concepts of an intelli
gent mail (imail) system. Section 3 describes a prototype system that
was constructed to demonstrate the feasibility of these concepts and test
out ideas. Section 4 explains the problems that are encountered when
the imail concept is extended to large networks, and builds a framework
for solving these problems. Finally, Section 5 describes ongoing and
future work in the area of intelligent messages.

1.1. Previous Work
The concept of an intelligent message, or object-based, communi

cation system is not a new one. Vittal [Vitt81] has described a system
called R2D2 (for Research-to-Deveiopment-Tool for Message Process
ing) in which messages are capable of performing certain actions on
their own. In particular, messages can tailor their interactions with a
user, depending upon the responses they receive from that user. Con
ceptually, Vittal considers an active message to be a single self
modifying entity. He does not discuss the problems and power associ
ated with multiple copies or dynamic routing.

Byrd, Smith and deJong [BSdJ82] describe an actor-based pro
gramming system within the context of SBA [Zlo080]. Using a
modified version of PLlI, actors can be programmed to perform tasks
such as calendar scheduling. These actors interact with SBA boxes and
are not primarily intended to increase the power of person-to-person
communication.

A System For Intelligent Messages 115

2. Imessage Concepts and Terms
An imessage is basically a special type of object [Robs811 This

means that we can propose imessage systems that have all of the capa
bilities of object-based systems. While this would mean that the power
of an imessage is tremendous, it would also make our problem area so
large that useful statements would be difficult to make. We have there
fore adopted a more restricted view of what an imessage is and what it
can do.

An imessage is a script, made up of a list of questions. It is run in
tum by various recipients. The running of a script by a single recipient
is called an interaction. In the example given above, of an imessage for
inquiring about the procurement of technical reports, an interaction
might involve a list of questions of the form, "Do you wish a copy of
this report?", followed by the question, "Can you suggest any additions
to the recipient list?" After each interaction the imessage may be
shipped to additional recipients. The entire lifespan of the imessage is
called its execution and may involve a number of interactions and
moves before the imessage is terminated. At termination, the imessage
returns to its sender with the information that it has collected.

An interaction is composed of a series of questions. Each ques
tion begins with the printing of a query on the user's terminal after
which a response from the user is collected. This is followed by a list of
commands from a small but fairly powerful language. The commands
may process responses, cause questions to be skipped over, repeated or
slightly altered, or cause the imessage to be shipped to additional reci
pients or terminated. This format of query-response-processing may
seem overly restrictive. Before building our prototype system we built
a tiny (less that 100 lines of C Shell [Joy80]) proto-prototype system in
which imessages were arbitrary shell scripts. We found, however, that
this additional power was not necessary. The question interface was
sufficient for almost all useful imessages.

It would clearly be possible, and potentially useful, to allow
interactions with not just users but also their databases, and with other
imessages. The concept of such a general-purpose object is a very
exciting one with a bewildering number of possibilities and
ramifications. Some of these are discussed in the companion paper by
D. Tsichritzis, "Objectworld". In this paper, however, we only consider
objects that interact with human users.

Imessages are intelligent in that their actions may vary according
to their state, or memory. This memory is initially set by the sender,
and may thereafter be altered according to the responses received from
recipients. Both phases of an imessage's execution, interaction and
shipping, may depend upon the state. During an interaction, questions
may be skipped or repeated, depending upon answers given by the

116 Office Automation

current or an earlier recipient, and, at the end, the message may be for
warded to various users that the recipient directly or indirectly sug
gested.

This dynamic routing [Maze83, Tsic84] is in contrast to the static
routing associated with conventional email systems. Most systems pro
vide for static, single-hop routing only, in which the sender specifies
one or more recipients to whom the message should be transmitted.
The recipients may in tum send further messages to other users, but
this is a separate action on their part; the original message covers only
the one hop. The next stage up from this is multi-hop static routing,
where the path that a message will take is predefined by its initial
sender. When the path is defined by the message itself as it visits its
recipients, as in imail, the routing is dynamic.

This routing may be in parallel (as in our example) or in series,
with new destinations being added to the end of the list. More compli
cated combinations of these two routings are of course possible in
theory, but were not considered worth investigating.

Up to this point we have been treating an imessage as a single
entity. In a centralized environment, this is a simple and feasible
approach, and was the one used in our single-machine prototype sys
tem. Clearly, however, if an imessage is to run on a loosely-coupled
network, it will require multiple copies to achieve reasonable con
currency in parallel interactions. These copies must work together and
can communicate through the use of meta-messages (MJa45). It should
be stressed that these communicating copies together make up one
imessage. Different imessages do not interact with each other.

A side effect of the dynamic nature of imessages is that we must
rethink our concepts of ownership. Conventional email belongs to its
sender as it is being composed, the system it is on while it is in transit,
and its recipient after it has arrived at its destination. Once sent, a
message cannot be recalled or redirected. (This has on numerous occa
sions been cause for grief after sober second thought.) This ownership
policy is inappropriate to imail. After an interaction, the imessage must
forward itself to further recipients; it cannot remain in the possession
of the previous recipient. More strikingly, an imessage which has com
pleted its task (e.g., the finding of a volunteer for a task) should ter
minate and return to its sender. Even if other recipients have noted
the presence of the imessage in their mailboxes, it is not theirs;
although they do not know it, they do not want to see its contents.
Therefore, it must be pulled out "from underneath them". This
difference is in itself neither good nor bad.

At each interaction, zero or more recipients are added to the
imessage's list of destinations. Instead of thinking of these as being
additional destinations for a particular copy, it is convenient to think of

A System For Intelligent Messages 117

a number of new copies being created, each with a single destination.
This gives us a "family tree" of copies, with each interaction resulting in
the spawning of a (possibly empty) set of children. The advantage of
this is that a copy has a very limited lifespan and set of tasks to per
form.

3. An Imail Prototype System
In order to assure ourselves that the concept of imail was feasible

and useful, we constructed a prototype system [HMGT83, HoGa841.
Since we were working in a UNIX™ environment we made the inter
face as similar as possible to UNIX™ mail [Shoe791.

There are four stages in an imessage's life: composition, sending,
the execution phases of repeated interactions and shippings, and the
final return to the sender. Execution is the simplest from the user's
point of view. Little knowledge is required to receive imail, so we will
cover this aspect first.

3.1. Receiving Imail
On typing the command imail, the recipient is given a list of

headers giving, for each imessage, its number, the sender, the sending
date and a subject. At this point he or she can specify an imessage
number and one of the commands r(un), q(uit), or d(elete). A simple
carriage return will cause the next remaining imessage to be run. Thus,
any user who knows the command name can receive imail.

The "d", or delete, command is a way of getting rid of junk imail.
(Junk mail of one form or another seems to be a hazard of any cheap
form of communication.) A deleted imessage will never be seen again.
The command "q" will drop the user out of imail but will leave the
mailbox as it was at that point. The default is "r", which causes the
script to interact with the user. The interaction may be aborted in stan
dard UNIX™ fashion with the RUBOUT key, which will cause all
responses received up to that point to be deleted. The imessage
remains in the mailbox and may be started again.

All responses given by users are stored in an imessage's history.
We also chose to store the times and dates that each user was sent the
imessage, saw its header, ran it but quit part way through, and ran it to
completion or deleted it. At any point during an imessage's execution,
its owner can check out its status and history. We do not claim that
this is a good feature in an office, as opposed to a research environ
ment. Historically this information has not been available to message

118 Office Automation

senders, and it may be considered to be "snooping". This is purely a
matter of custom, which does not mean that it may be ignored.

Clearly, problems could arise if two recipients simultaneously try
to run an imessage which is offering an item to the first taker, and both
request it. The obvious answer is to lock the imessage in some way so
that such an incident cannot occur. Ideally, we wish to maximize con
currency, and allow two users to run an imessage simultaneously if the
script is such that they cannot adversely affect each other. However,
that requires some knowledge by the system of what the imessage actu
ally does. For our simple system we chose the simple expedient of
locking the entire imessage. Users' mailboxes do not actually contain
the imessage itself; they contain a notification of the imessage, of which
only one post-office copy actually exists. Possession of the lock for this
copy guarantees that no other user can simultaneously run it. A
request for an imessage that is being run results in a polite request to
try again later. As part of the discussion of imail distribution, we will
discuss the problems of concurrency more deeply.

3.2. Sending and Receiving Back Imail
An imessage is sent off by its creator by being given as input to

imail, together with an optional subject (which appears in the recipient's
header line), a timeout, or time at which to terminate if it has not done
so already, and a list of initial recipients. The script language is
described in the next section. It is translated into C Shell, and this C
Shell script is what the recipient actually executes. Other options would
have been to build an interpreter for the script language, translate
directly into executable code, or design some other intermediate
language and build an interpreter for it. Using C Shell as a target
language, however, considerably simplified our task. The translator
itself was built using the Lex lexical analyzer [LeSc75] and the Yacc
compiler-compiler [John 7 51.

An imessage may terminate for three reasons: it may time out, it
may run out of destinations to ship itself to, or it may explicitly ter
minate itself after accomplishing some task. When any of these situa
tions occurs, UNIX™ mail is used to return the results of the execution
to the sender.

It is possible to process responses in two places: "on the fly" dur
ing interactions, or "after the fact" when the imessage has terminated.
The latter approach is more suitable for complicated statistical queries,
but the former may be essential just to allow the imessage to be "intelli
gent". We therefore support both. Commands for simple processing
exist, but all responses and the values of variables (explained below)

A System For Intelligent Messages 119

are returned to the sender, who may process or discard them as
required.

3.3. Creating an Imessage
Imessage scripts are written in a special imail language. A script,

as mentioned earlier, is a series of questions. Each question starts with
a line beginning with ">" and optionally containing a one-word label.
The text of the query follows. On all except possibly the last question,
this is followed by a response collection. The text making up the query
starts in the leftmost column, but the response collection and all
further commands are indented one or more tab stops. If commands
may be used to conditionally perform certain commands; their scope is
denoted by a further one-stop indentation, and ifS may be nested in a
similar manner.

The response collection is of the form "get <number> <type>"
where < number> is an optional upper and/or lower bound on the
number of items in the reply and < type> may be numbers, words, logins
(UNIX™ user ids), or text. Examples are "get words", "get 2- numbers"
and "get 1-2 logins". Along with other languages purporting to be easy
to use, the get will automatically reprompt for incorrect numbers or
type of responses.

A list of commands to process the replies may also be present.
Apart from the previously-mentioned if, print will print a message. Ship
will add a login to the list of imessage destinations if the imessage has
not already been there, and reship will send the imessage back in any
case. terminate will terminate a message immediately. Next takes as an
argument the number or label of a question and causes it to be per
formed next.

The remaining command is set, used to set variables, of which
there are three kinds: response, local and global. Any of these may
appear on the right side of a set, which is an assignment supporting
simple arithmetic and concatenating operations. A response variable
cannot appear on the left side. One response variable exists for each
question and is given the value of the reply to that question. It is indi
cated by a "#", followed by the number of the question, its relative
number, or its label. For instance, "#2" refers to the response to the
second question, "#-2" to the response to the question before the pre
vious one, and "#who" to the response to the question labelled "who".

Local and global variables are indicated by words prefixed by"!"
and "?", respectively. Both may be assigned initial values at the begin
ning of the script. A local variable is reset to this value at the begin
ning of each interaction, while global variables retain their values

120 Office Automation

between interactions. Besides appearing in set commands, variables
may appear in the text of queries or in if,ship,reship, or print com
mands.

3.4. Examples of Imessages
To show what this looks like in practice, the following is an imes

sage to perform the technical report questionnaire we have been using
as an example.

login ?mailingList = dt fred oscar mazoo hogg
>
Which of the following technical reports
would you like CSRI to acquire?
(Answer yes or no for each.)

Ellis & Nutt, "Computer Science and
Office Information Systems",
Xerox P ARC SSL-79-6.

get 1 boolean
>
Johnson, "Yacc: Yet Another Compiler Compiler",
Bell Labs TR-32.

get 1 boolean
>
Smith, "Function of the Orgasm in Higher Molluscs",
CSRI-999.

get 1 boolean
>
The present mailing list is: ?mailingList.
Can you suggest any other names? (yIn)

get 1 boolean
if #4 = no

next end
>getnames
Who would you suggest? (Iogins, please)

get 1- logins

>end
Thanks!

ship #getnames
set ?mailingList = ?mailingList + #getnames

A System For Intelligent Messages 121

For the purpose of illustrating the next command only, the last
two questions were separate. However, in the next example, to find
three volunteers, we can just as well accept a null reply and ship the
imessage to no new recipients.

number ?vols = 3
>
CSRI needs ?vols more volunteers to
assist in testing a prototype system.
Would you be willing to do this?

get 1 boolean
if #1 = yes

?vols = ?vols - 1
print Thanks!

I'll get in touch with you.
if ?vols = 0

terminate
> others
Do you know anybody else who might be interested?

get logins
ship #others

>
Thanks.

Earlier it was stated that processing could be done at two times:
"on the fiy", or after the imessage had terminated. By processing the
responses during an interaction, we can decide whether an imessage has
found a solution to a problem. Our last example is an imessage which
performs some statistical calculations to determine whether it has col
lected an acceptable set of responses.

In a Delphi experiment [Brun75], a number of recipients are
presented with a question and some sort of previous consensus on the
answer to it, and are asked to give their opinions. The consensus is
modified by these answers, and the question is repeated to the same or
perhaps other subjects. This continues until a termination condition
occurs. Given current trends in polling, it could be claimed that a
modem election is a type of Delphi experiment, with the termination
condition being election day. However, a more interesting variety from
the point of view of message behaviour is one in which a question is
asked repeatedly, until the expert opinion offered converges to a narrow
range. More precisely, we can repeatedly ask recipients a question until

122 Office Automation

the standard deviation of their answers falls below some threshold
level.

The following imessage does just this. It is sent out to a number
of recipients. Whenever forty of them have replied, it recalculates the
average and variance of their opinions. If the variance is less than 0.1,
the imessage terminates. Otherwise, it reships itself to its entire reci
pient list. (Those recipients who did not answer the previous iteration
will not receive two copies of the imessage; the later one will replace
the earlier')

number ?n = 0
number ?sum = 0
number ?sqsum = 0
number ?maxvar = 0.1
number ?itresps = 40
number ?avg = 4.0
number !var = 0
>
What do you think the inflation rate for next year will be?
The last average prediction was ?avg.

=0

get 1 number
set ?sum = ?sum + # 1
set ?sqsum = ?sqsum + # 1 x # 1
set ?n = ?n + 1
if ?n = ?itresps

set ?avg = ?sum / ?n
set !var = ?sqsum / ?n - ?avg x ?avg
set ?n = 0
set ?sum = 0
set ?sqsum

if !var > ?maxvar
reship
next last

print Thanks. Goodbye!
terminate

>last
Thanks!

A System For Intelligent Messages 123

3.5. Experience with the Imail Prototype
The imail prototype was an interesting exercise and yielded many

useful insights into the concept of an active message system, but it was
certainly not suitable for use in a real office environment. Regardless
of the value of the underlying ideas, a successful office tool must have
an interface that office users (as opposed to computer users) can easily
manipulate. This was realized at the time that imail was designed, and
an attempt was made to keep the set of commands reasonably simple;
however, the result is basically a programming language. While all pro
gramming languages from about FORTRAN on have been described as
"English-like" and "easy to use", they all require training and a certain
approach to understanding problems, and algorithms which may not be
intuitive to non-computer specialists.

This has not worried us overly, since the object of the exercise
was not to investigate interfaces but rather to test out the underlying
concept and gain insight into what an active message system can do. A
procedural interface is sufficient for a programmer's test-bed, and might
in fact be the best way to build complicated imessages. Most imes
sages, however, fall into a small set of simple categories (surveys,
searches, etc.). This suggests that a menu-based system could be used
to modify one of a small set of templates, to make it perform the
desired task, without requiring a naive user to do more than make sim
ple selections and provide text. These templates, and any complicated
imessages, would then be written in the underlying imail language.
This is analogous to many database systems in which casual users use
packages written by database specialists. If we are to have specialists,
then the underlying language need not be simple, so long as it is power
ful. It would actually be possible to have a number of different
languages, ranging from our script language to one or more conven
tional programming languages. The only restriction would be that they
must all compile to a single target language.

A "by-example" interface [Zlo080] is another option which may
hold promise, but it is not clear precisely how this approach would be
used. While this may in the end be the best approach to take, we are
not pursuing it at this time.

Imail did suffer from a small number of users. For an email sys
tem to be a success, it is essential that it be used regularly by a large
number of users [Tuck82]. If a certain "critical mass" is not reached,
users will not check for mail. Our site does in fact have well over this
critical mass of email users, and if imail had been integrated into that
system there would have been no problem. However, as a small test
system, we were reluctant to modify the operating system to check for
imail in the same way that it checked for email when a user signed on,
so users had to make a conscious decision to put such a checking

124 Office Automation

routine into their startup file. This automatically limited the circle of
people who were aware that they had been sent an imessage.

Imail is not a replacement for conventional mail. Many if not
most messages need no reply. Of the remainder, most will not need the
full power of imail; they will be messages sent from one user to
another to collect a single reply. This means that in order to use it
most effectively, imail must be integrated into a conventional mail sys
tem, so that a user has a full spectrum of message types that are acces
sible in a coherent, uniform manner.

4. Distributing Imail

4.1. The Motivation for Distribution
As computing power becomes cheaper and computers physically

smaller, there has been a trend to distribute this power throughout an
organization. "Office of the Future" scenarios invariably envisage a per
sonal workstation on every desk, connected by a local area network
(LAN) or private branch exchange (PBX). This architecture can
represent a challenge to application designers, since applications involv
ing cooperation or sharing must be distributed.

Shoch and Hupp [ShHu82] have described an experiment in dis
tribution in which a "worm" program moves itself around in an Ether
net [MeB076] environment, begging time on idle machines. While
their results are not directly applicable to distributing imail, they do
indicate the potential of mobile "intelligent" objects.

While imail has not yet been extended to a LAN or PBX environ
ment, there is no reason why this should be difficult. The bandwidth of
these systems is more than sufficient to allow one central machine to
function as the "post office". As in our centralized version, notifications
of mail can be put in the users' mailboxes, and a locking scheme of
whatever desired complexity can be used to ensure that two conflicting
interactions do not occur. The key point is that the network communi
cation time is so small as to be totally invisible to the human user.

A far more difficult situation arises when we attempt to spread
imail, not across an office or building but across one or more corpora
tions that may have many sites spread across a continent or a planet.
While each site may have a high-speed local network, if the internet
work communication is slow, it will no longer be possible to rely on a
central, unreplicated imessage copy. A good current example of such a
network is USENET. It contains upwards of a thousand different

A System For Intelligent Messages 125

machines, mostly running UNIXiM , connected over dial-up lines in a
fairly arbitrary topology that is centred in the United States but reaches
out to Australia, Korea, and Japan in one direction, and Crete in the
other. The end-to-end transmission time is measured in days. Real
time coordination is clearly impossible.

Another growing trend is the use of single-user machines con
nected to no network, but able to dial up any other machine at will.
Here we have, within a local dialing area, a population of machines
which can for some purposes be assumed to be infinite and which are
all able to talk to each other.

4.2. The Problems of Distribution
In attempting to distribute an imessage across either of the net

works above, we find that we are lacking information both about the
imessage and about the network on which it is executing.

The imessage itself will be made up of multiple copies. These
copies may in turn spawn other copies. While knowing the location of
a brother is not a difficult problem, knowing where cousins are is
another matter entirely. As we move down the generations, the prob
lem gets worse. If we allow an arbitrary number of generations, then
synchronizing in the obvious way through ancestors may require arbi
trarily long meta-message paths, and thus be arbitrarily difficult. The
other obvious method is to use a central coordinator, some site which
all the copies will agree to send MMs to whenever they spawn off chil
dren. This ceases to be cost effective when the net reaches a certain
size; coordinating copies in Korea and Crete by passing messages to
Saskatoon is not only expensive, but also so slow that when MMs
arrive they will no longer reflect the state of their copies. Eventually
we must face the fact that copies cannot have complete information
about other copies, i.e., we cannot know the exact number or locations
of all the copies at one time.

Not only can we not know the locations of all the copies, but, in
some cases, the network itself may be only vaguely understood.
USENET is an amazing example of totally decentralized administration:
nobody is running the show. A new site connects to it by finding a
neighbor willing to pass mail and news on. It announces itself to the
net as and when it pleases, and as a result, there is no accurate map of
the net anywhere, some sites haven't bothered to proclaim their
existence. A limiting case of this is the non-net formed by a number
of personal computers. The topology is in one way simple: the net may
be represented by a complete graph of size N. The problem is that N is
very large, and we do not know more than a small subset of the nodes'

126 Office Automation

addresses when we initiate a new imessage. So again, we have an
indeterminate number and location of sites.

Ideally we would like to hide the existence of the net entirely
from its users, barring the additional delay required to pass messages
along. As we will see, this is not, in general, possible, except at the
cost of losing all concurrency entirely and making the total execution
time the sum of the individual interaction and shipping times. We are
therefore interested in coming as close to this ideal as possible, while
minimizing the costs of coordination in imessage execution time and
MMs.

An issue which we will not concern ourselves with here is the
routing of copies during shipping, and MMs during coordination. That
is, we will assume that if a copy knows of the existence of its destina
tion, it will also know an effective way of getting itself there. This can
be a major problem in itself [Tsic84J, but it is treated elsewhere.

The correctness of the underlying centralized imessage is another
issue that will be assumed in this section. While it is a very important
problem, it is more of a programming-language one. We assure our
selves that a program does what we think it does by proving that certain
properties hold in the formal language description of the program. As
we do not feel that our language is the best model for future systems,
there is little point in trying to suggest how scripts written in it could be
shown to be correct.

4.3. Coordination in Distributed Databases
Much work has been done in the past on ensuring correctness in

database systems that are operated on by multiple processes, in both
the centralized and distributed states [EGLT76, KuR081, BeG082]. It
is natural to ask whether the lessons and techniques of databases apply
to imessages; after all, a copy can be thought of as a small part of a
database that happens to move across the network.

The most useful concept from distributed database theory is prob
ably that of serialization. A database is presumed to be altered by a
series of transactions. Before a transaction, the database is assumed to
be in a consistent state. A transaction will alter the database and may
temporarily make it inconsistent, a simple example being the temporary
"disappearance" of money when it has been removed from one account
but not yet deposited in another. When a transaction finishes, how
ever, the database will once again be consistent. Thus, if a number of
transactions are run serially, the database will be consistent when they
have all finished.

A System For Intelligent Messages 127

To maximize throughput and minimize response time, we wish to
overlap transactions as much as possible, while still maintaining the
consistency property. A number of techniques to do this exist; a good
tutorial is [BeG082]. In essence, they all delay or roll back operations
on the database to ensure that the order of operations will generate a
final database state equivalent to that for some schedule of operations
in which the individual transactions were performed serially.

This is also a key property for imessage executions. We wish to
hold up the various interactions as little as possible, yet at the end have
a result equivalent to running the interactions serially, and stopping to
coordinate the copies completely between each interaction.

Unfortunately, techniques such as two-phase locking [EGLT76]
and transaction certification [KuR081] are not directly applicable.
Imessages are not databases, and the "transactions" involve humans
interacting with them in real time. Two-phase locking involves delay
ing a transaction until enough locks have been obtained to guarantee
that no other transaction can interleave its operations in any way that
will cause an inconsistency. A human will not wait several hours for
this. Certification takes another approach: it assumes that transactions
will seldom affect each other and lets them start at any time. When
they are ready to write, it check,s whether this writing will cause an
inconsistency. If so, the transaction is declared invalid and restarted.
This checking may also involve the passing of MMs over great dis
tances and has the additional disadvantage that humans do not like
being told that the interaction they have just completed is invalid and
must be repeated.

4.4. lnaessage States
We must now try to decide exactly when two copies may undergo

interactions in such a manner as to cause an inconsistency in the state
of the imessage. First, let us consider a case in which no inconsistency
can ever result. Suppose that we wish to find a number of people wil
ling to sign a petition. Our approach will be the typical imail one of
starting with a small set of likely signatories, and asking them all to add
their names and suggest other people who would be willing to do the
same.

In this situation, each copy can act independently. Ignoring the
problem of multiple copies being sent to one individual (which is easy
to solve), we find that any number of copies can simultaneously be
interacting with different users. No problems will occur.

Now, let us consider a very similar problem: that of obtaining
exactly N signatures, for any N. Suppose that N-I have already been

128 Office Automation

obtained. Then if any copy finds a willing recipient, all copies should
simultaneously terminate. Furthermore, if any copy is interacting with
a recipient, all other copies should wait until it is finished, since it may
be successful. In other words, the only way that we can guarantee seri
alizability is by coordination of our copies so that serialization actually
occurs! Why is there such a difference between these two situations?

It was earlier claimed that in the simple case of a single, central
ized imessage, the actions taken during or after an interaction would
depend only upon the state of the imessage and the responses it
receives. This state is composed of a memory, or set of variables.

In the distributed case, the imessage is composed of a number of
copies, which may have difficulty communicating with each other. As
the copies spawn different children at each interaction, they will
develop local states which differ from each other. What we were refer
ring to earlier as the state of the imessage now becomes the global
state; it is the sum of all the local states.

Our goal is to conceal the existence of the distributed nature of
the imessage from its users, insofar as is possible; to do this, the vari
ous copies must work together. That is, their actions should depend
upon the global, and not the local, imessage state. There are two basic
ways of solving this sort of problem in distributed database situations:
either all processes read all database copies and write to their own (the
database itself is distributed) or, alternatively processes write to all
copies and read from their own (the, database is replicated). Maintain
ing correctness is then a matter of ensuring that reads and writes are
scheduled in such a manner as to result in a consistent database state
after all transactions have finished.

We can initially adopt either approach in handling imessages as
well. A copy can read from its local state and write to all other copies'
local states, or write to its own local state only and read all copies'
states. The first alternative of read-local, write-global has certain
advantages, as we will see. Initially, assume that there exists some sort
of global communication technique that has a non-trivial but affordable
cost. We will later describe where this will actually be necessary and
how to accomplish it.

Assuming that the cost of each read or write to or from a local
state is similar, global reads and writes will cost about the same. How
ever, a local read can be completed much more quickly (Le., in real
time) than a global read. A global write, on the other hand, will take
longer than a local write to complete, but may be initiated very quickly.
This makes an interaction with an imessage a self-contained and there
fore real-time proposition.

A System For Intelligent Messages 129

4.5. Variable Categorization
Up to this point we have been assuming that a copy's local state is

a single monolithic entity. This, however, will not, in general, be the
case. A copy's state contains a number of variables, some of which
may be used only by the copy itself. Examples are responses to particu
lar questions, or a variable containing the number of hops that the copy
and its direct ancestors have traversed (this can be used as a measure
of the distance of a particular recipient). These private variables do not
need to be propagated from one local state to another, and thus no
coordination is required.

The other end of the scale is the monolithic shared variable, of
which the "done" flag in the single volunteer search above is an exam
ple. When this flag is set, all copies must immediately stop interacting.
This type of variable obviously requires coordination between copies, if
correctness is to be maintained. In between these two types of vari
ables, however, there is a third type: the decomposable shared variable.
Consider the imail script to find three volunteers that was given in the
previous section. If a copy knows that only one volunteer has been
found to date, it can safely go ahead and interact with a user, provided
only that two other copies do not first find willing recipients.

We can assign one token for each of the volunteers to the imes
sage as a whole, then require that a copy obtain a token before it
interacts with a recipient. There are many useful imessages which can
use this token approach; any imessage which is searching for a number
of entities can have them represented by tokens. (The same is true for
an imessage attempting to give things away - this is equivalent to
searching for a recipient.) If the number of tokens relative to the
number of imessages is large, each copy can "carry" one or more. If
there are few tokens, then the imessages must be split into groups
which can share a token. This may still be a great improvement over
the case in which all tokens are represented by one global variable,
because we may be able to use the locality of sets of recipients (e.g., at
the same site), to allow communication between the copies sharing the
token to be done at interaction time. That is, all the copies can offer
themselves to recipients, and lock themselves only when another copy
in the group is actually interacting.

Using tokens means that, provided our shared variables are
decomposable, we can use our slow or expensive communication paths
for relatively few and time-insensitive messages, i.e., only those MMs
concerned with the distribution and management of tokens. This
management is of course a problem in itself.

130 Office Automation

4.6. Copy Coordination
Earlier we stated that it was convenient to view an imessage as a

family tree, with each copy having only one destination and spawning
off children as the last step of its interaction. This has the advantage of
keeping the operations performed by a copy simple. However, it also
means that a considerable amount of coordination between copies may
be required. As mentioned earlier, each copy's actions are determined
by its local state, which must represent the global state. This state is
comprised of the copy's destination, its results, and any tokens that the
script requires. Results must be returned, and destinations and tokens
may have to be matched between different copies. We will examine the
latter problem first.

4.7. Token-Destination Matching
Consider first an imessage with only one type of token. (We can

generalize this to several types of token if we wish.) When the imes
sage is created, it will have n initial destinations and m tokens. As time
goes on, the number of tokens will decrease, while the number of des
tinations may decrease, remain steady, or increase. Our problem is to
find a way to assign tokens and destinations to copies.

In the absence of tokens, the obvious approach is to merely create
one copy per destination, as mentioned above. However, if tokens are
present, the problem becomes more difficult. A copy cannot interact
without a token, just as it cannot interact without a destination. A cer
tain symmetry is present; if tokens are plentiful and destinations are
rare, it makes sense to "carry" several tokens in a copy and divide them
amongst child copies. However, if tokens are rare but there are
numerous destinations, it will be simpler to carry the destinations as a
variable and create one child for each token.

We cannot, in general, rely on either situation being the case. An
imessage with a set number of tokens to give out to willing recipients
may initially be token-rich (i.e., have more tokens than recipients), but
later become token-poor as they are gradually accepted. The ratio can
thus vary over time. A greater problem is that it may also vary over
space. One branch of an imessage family tree may find many token
acceptors but few additional destinations; another branch may find the
opposite to be the case. Clearly, the destinations and tokens must be
brought together through some coordination process.

If the underlying network has very strong connectivity, (i.e., pass
ing a message from any node to another node is a cheap and fast pro
cess) then we can set up a central "matchmaker", or central coordina
tion station, to accept surplus tokens and destinations and pair them up.

A System For Intelligent Messages 131

(A "surplus" destination is one given to a copy with no tokens, while a
surplus token belonged to a copy which was provided not with new des
tinations.) However, if our network has slow links (e.g., USENET) this
will not be feasible. We must still use some sort of matchmaking pro
cess, but it must have greater locality.

The next step is to set up several local coordination stations that
can easily be reached by copies with tokens or destinations to be
matched. The limiting case of this occurs when every site at which a
copy has interacted becomes a coordination station for the copy's chil
dren. At this point, however, we find that the coordination stations are
no better: they too can run dry of either commodity. We must start
passing tokens and destinations up the tree.

The use of tokens is reminiscent of the use of semaphores in
operating systems [HGLS781. In order to obtain access to a resource
(one of a number of imessage-dependent items) we must first "stake
our claim", and avoid conflict between two or more copies (independent
processes) by obtaining a token. In designing an operating system, it is
crucial that if two processes simultaneously request a token, exactly one
of them receives it. If we can produce code or hardware to coordinate
the process of obtaining or releasing a token that is safe from race con
ditions, then we need not worry about race conditions occurring else
where in critical parts of processes.

This is a well-understood problem in operating systems design.
At least one indivisible "test-and-set" instruction is provided in the basic
hardware, and from this it is simple to construct a semaphore which
will always be in some consistent, legal state. In moving from a single
machine to a local network, the problem is complicated somewhat, but
the same general solution may be adopted.

Applying these techniques to imessage copy coordination, how
ever, is not so straightforward. In operating systems work, the time
required to send a message from a process to a semaphore is compara
tively small. The semaphore itself can therefore be put in some single,
stable location. Increasing the speed of token distribution by carrying
tokens along with copies, and distributing them without going back to a
single central location, means that just finding the location of the
tokens is a non-trivial matter.

The simplest way of having copies know where to go to coordi
nate with other copies is, in fact, to use the imessage "family tree" to
specify the coordination locations. In this case, when a copy dies it
does not disappear completely, but rather it becomes dormant, so that it
can perform coordination actions for its children. It will only truly die
when all these children (and their descendants in turn) have died.

Now, a copy interacts with a recipient and produces zero or more
children, with one or more tokens to divide between them. If either no

132 Office Automation

new destinations are supplied by the interaction or no tokens are left
over afterwards, the remaining commodity should clearly be passed up
the family tree to some ancestor which can receive them, and the copy
can die. However, if children are spawned and given tokens which they
can in tum give to their descendants, the copy must go dormant, so
that it will be available to coordinate tokens or destinations that its des
cendants cannot use. The problem arises when these tokens or destina
tions are returned. Should the dormant copy pass them, in tum, to its
parent, or should it hold onto them in the hope of receiving the other
commodity from some other descendant?

Models and strategies for making this tradeoff are currently being
investigated. The length of time one has to wait for commodities to be
passed up from descendents depends upon the speed of connecting
links, the expected response times of recipients, and the probabilities of
tokens being consumed and new destinations being generated.

5. Conclusions
Communication by intelligent messages which perform their own

response collection and routing is feasible and valuable. Our prototype
system points out the need for a friendly interface, for such a system to
be successful in a working environment. The use of various layers of
interfaces, with a simple menu-driven one at the top level, seems desir
able. This environment could be built today for a centralized or LAN
system.

Distribution of imail over loosely-coupled networks is a much
more difficult problem, upon which we are currently working. As com
munication between office workers tends to have considerable locality
(those we wish to speak to tend to be those closest to us), problems in
distribution do not preclude a practical and valuable production system
from being built.

Imail is interesting not only as a problem in itself, but also as a
very restricted part of the Objectworld described in the paper by Tsi
chritzis. Techniques for coordinating widely-separated processes, in a
network whose nodes are controlled by a large number of owners with
attitudes varying from friendly to indifferent, are needed in
Objectworld. The imail project thus involves a spectrum of work, from
the short-term and practical to the long-term and conceptually exciting.

A System For Intelligent Messages 133

6. References
[BeGoS2] [Brun75] [BSdJS2] [EGLT76] [EINuSO] [HGLS7S]
[HMGTS3] [HoGaS4] [John75] [Joy SO] [KuRoSl] [LeSc75] [MazeS3]
[MeBo76] [RobsSl] [ShHuS2] [Shoe79] [TsicS4] [TuckS2] [VittSl]
[ZlooSO]

Part IV

Procedure Specification

7
Office Procedures

J. Hogg
O.M. Nierstrasz
D. Tsichritzis

ABSTRACT This paper outlines an effort to introduce automa
tion into forms-oriented office procedures. The system allows its
users to specify a set of operations on electronic forms. Actions
are triggered automatically when certain events occur, for
example, when forms or combinatifms of forms arrive at partic
ular nodes in the network of stations. The actions deal with
operations on forms. The paper discusses the facilities provided
for the specification of form-oriented automatic procedures and
sketches their implementation.

1. Introduction
Office automation implies that procedures followed in the office are

understood, specified, translated into programs, and performed
automatically by computers and communication devices. There are
many problems, however, in accomplishing any degree of automation
in the office.

The first difficulty is that most offices follow many procedures at
the same time. Studies have indicated that thousands of different pro
cedures are inherent in the operation of each office, and they are
different among offices. In addition, the procedures are not always well
understood and leave much flexibility for human intervention. It is a
very difficult task to capture the procedures in any meaningful model
which can later be used to guide the procedure specification.

138 Office Automation

The second difficulty is related to the nature of office procedures.
Unlike regular data processing, office procedures have many exceptions.
In fact, the whole office function seems like an exception-handling
activity. Usual programming environments are very good at specifying
repetitive procedures on vast amounts of data. They are not appropri
ate for specifying exceptions, especially when the exceptions are not
well tabulated.

The third difficulty relates to the decision-oriented aspects of
offices. There are many decisions in an office, even mundane ones,
which involve vast amounts of knowledge and experience that are
beyond the capabilities of any computer system. When office pro
cedures are dependent on such decisions, they require human interven
tion. When human intervention is predominant, the automation
aspects vanish. User interfaces and database access tools are more
helpful than the specification of the procedures themselves. Only a
very small part of the decision-oriented procedures can be fully
automated.

Finally, office procedures are better understood at the local level.
Individuals or offices know more about what they are doing than outsid
ers. The specification of their procedures may be feasible. When pro
cedures specified at the local level are combined they may have
difficulty 'achieving overall goals, or satisfying well-accepted constraints.
Manual procedures are linked by humans who have much versatility in
ironing out problems and incompatibilities. Automated office pro
cedures do not show the same flexibility.

There are basically two design choices for a facility for office pro
cedure specification. First, we need to decide what capabilities to pro
vide in the specification. Second, we need to decide on the way of
presenting this facility to the user. The generality of the specification is
closely related to its goal. If it is mainly a requirements specification
facility, without plans for implementation; it can be very general and
powerful, for example, OSL [HaKu80J. If an implementation is desir
able, then some of the generality needs to be sacrificed. For example,
the specification language used in SCOOP is less general, but it has
been implemented [Zism 77J.

There is also a choice of implementation environment. If the
facility is implemented in LISP or some other powerful artificial intelli
gence tool, then a powerful specification environment can be put
together with a reasonable effort. The problem of such an approach,
however, is to achieve an acceptable level of performance on a small
workstation. If the facility is implemented in a regular software
environment, then the implementation effort is considerable. As a
result, the facility is rather limited, but the performance is acceptable.

Office Procedures 139

The second design choice relates to the user environment. If the
specification facility is used by programmers, then it can resemble a
programming language. If the specification facility is mainly geared to
office workers with minimum programming expertise, then it should
incorporate a very simple user interface. In the end, the size of the
manual is as important as the functionality of the system.

In the rest of the paper, we outline an office procedure
specification facility related to forms. Forms are used to specify pro
cedures relating to form processing. Two kinds of procedures can be
specified. Queries can be stated in relation to information on forms
which are present in many different workstations. The query pro
cedures are automatically executed in a distributed fashion and they
return the cumulative results. The second kind of procedure deals with
coordination of forms arriving at a single workstation. Depending on
the specification, actions related to forms are automatically triggered
and performed.

The specification and automation of forms-oriented procedures is
realistic for two reasons. First, forms structure information in a
manner which is easily amenable to computerization. Second, forms
oriented procedures are well understood, and carefully designed in an
office environment. This design includes not only operations on forms
at the local level but flow of forms among different office sites.

The specification facility is provided on top of OFS, a passive
form-processing system. OFS is an electronic forms management sys
tem [Cheu79, Gibb79, Tsic82, TRGN82]. It provides an interface to
MRS, a small, relational database system [Hudy78, Korn79, Ladd79].
OFS and MRS were written in C, within the UNIX™ operating system
[KeRi78]. They have both been distributed widely to organizations.

An OFS system consists of a set of stations distributed over a
number of machines in a network. Each user has a private set of forms
residing in his station. A user may only manipulate those forms which
he temporarily "owns", in the sense that they are part of his database.
Communication and interaction between stations is achieved by allow
ing users to mail forms to one another.

A distinction is made in OFS between form types, form blanks,
and form instances. A form blank is simply the form template used to
display a form instance. A form instance corresponds to an actual filled
form, represented as a tuple in the database of forms. Its fields may
have values assigned to it, and it always has a unique key assigned at
creation time by the system. A form type is the specification of a form
blank and a set of field types. A form file is a relation used to store all
forms of the same type, belonging to a station. The collection of form
files for a station is a form database. Figures I and 2 show a form blank
and form instance, respectively, for the form type called order. Note

140 Office Automation

that some fields of the form instance need not have values associated
with them. The key field must have a value which is automatically
assigned by the system.

ORDER FORM Key: ____ _

Customer number: _____ _
Customer name: ________ _

Description: ________ _
hem : _____ _
Price: _____ _

Quantity: _____ _
Total: _____ _

Figure 1: An order form blank

Form fields may be of six different types. Manual fields of type 1
may be inserted or modified at any time, type 2 fields may be inserted
at any time but not modified, and type 3 fields must be inserted at form
creation and never modified. Automatic fields of type 1 are key fields,
always the first of a form; type 2 are date fields, and type 3 are signa
ture fields, bearing the station's name if the preceding field is filled in.

ORDER FORM Key: 00001.00000_

Customer number: 354'--___ _
Customer name: CSRI-'-_____ _

Description : Office Forms System_
Item: 254 ___ _
Price: 200.00 _____ _

Quantity: 2 ____ _
Total : _____ _

Figure 2: An order form instance

Form operations are creation, selection, and modification. Forms
may also be attached to dossiers. Dossiers are lists of forms which are
not necessarily of the same form type, but which have something in

Office Procedures 141

common that the user wishes to capture.

Forms may not be destroyed, although they may be mailed to a
"wastebasket station", which conceptually shreds the electronic form.
The wastebasket station may in fact archive rather than erase a form,
depending upon the needs of a particular application. Form instances
are unique, and must always exist at exactly one location in the system.
They are either in a form file or waiting in a mail tray. Forms may be
mailed from one station to another. They must wait in a mail tray, and
be explicitly retrieved in order to be placed in the receiving station's
form file. Copies may be made of forms, but they are assigned a
unique key, consisting of the key of the original form together with a
system-generated copy number distinguishing the copy from the origi
nal.

Form files may be accessed as a whole, using a relational MRS
interface. However, in this case, no protection is provided against ille
gal operations such as destroying a form or creating a form with a key
that is already in use. Therefore, the MRS interface is not meant to be
used except by privileged users.

OFS is basically a passive system, that is, the user has to initiate
every action. The only automatic form processing that OFS will do
occurs if a form is mailed to a special automatic station. Such a station
periodically reads its mail and submits the forms as input to an applica
tion program. These programs must be written so as to preserve the
integrity of forms files. Consequently, the specification of an OFS
automatic procedure requires a great deal of knowledge of the inner
workings of OFS, and is therefore not intended for naive users. In the
rest of the paper, we will discuss automatic procedures which have been
implemented on top of OFS.

2. Distributed Queries
Some office activities may require information which is spread

over more than one station. We will discuss how a station user
specifies a query which is automatically performed on different stations,
and how the result of a query is presented to the user.

As the first step in query specification the user selects the form
type on which the query is to be performed. The form template is then
displayed on the screen. A query sketch is next created by partially
filling the template. This serves as an example, and informs the system
of the kinds of forms qualifying for the query. This approach has been
used in QBE, SBA, and OBE [deJ080, Zlo080]. The user may fill in
zero or more fields of the template; values entered into the fields are
interpreted as selection conditions. For example, if the user enters

142 Office Automation

"> 10" into a field, then all forms which satisfy the query will have
values greater than 10 in this field. In addition to ">", one can also
specify "<", or "=", etc., as well as a pattern match. Such a condition
is known as a simple condition. For each field, it is possible to specify
a field condition which is a disjunction of simple conditions. The forms
that satisfy the query will satisfy the conjunction of all field conditions.

Once a query sketch has been created, the user next specifies the
scope of the query. The allowable choices are as follows:

Local: In this case the query is performed on the station database of
the issuing station.

Group: In this case the query is performed on all station databases on
the same node as the issuing station.

Global: In this case the query is performed on all databases in the net
work (this includes the mailboxes at the control node).

Explicit: In this case the user lists the station names of the station data
bases that are to be searched.

After specifying the scope, the query can be processed automati
cally. The results are stored in a temporary database belonging to the
issuing station. This database contains images rather than objects; the
objects themselves still reside in their respective station databases. A
form image differs from a form, in that it is temporary and read-only.
It is also invisible to other automated procedures that process forms.
The tuples from this temporary database may be displayed by the sta
tion. When this occurs, the identification of the station database in
which the form was found is also indicated.

Each query involves a single form type. It is not possible to
directly specify operations involving more than one form type. How
ever, arbitrarily complex multiple-type joins may be performed by first
individually constructing complete temporary databases. The station
user can then invoke a relational database system, and express his
query (now over the local temporary database), using a high-level set
oriented relational query language.

An example of a query sketch is shown in figure 3. This query
will search for meeting announcements from "Vassos", on the subject
"office automation" or "database". If this query is performed with a
local scope, then the meeting announcements sent to the station user
(or at least residing at his station) will be searched. If this query is per
formed with a global scope, then all meeting announcements in the sys
tem will be searched. By using the "Response" field of this message
type, it is also possible to determine who has replied to the meeting
announcement.

The strategy for processing a query automatically is determined by
the scope of the query. Again we distinguish the following cases:

Office Procedures 143

MEETING ANNOUNCEMENT

To: Key: __________ _
From: Vassos ____ Date: _____ __

Subject: *office automation*l*database* _____ _
Remarks: ______________ _

Meeting Date: ______________ _
Meeting Time: ______________ _

Location: ______________ _

Response: ______________ _

Figure 3: A query sketch

Local: In this case the query manager is not used, and the station pro
cess itself performs the query on its station database.

Group:
In this case the station process sends the query to the query
manager for the node. It then waits for an answer from the query
manager.

Global/Explicit:
In this case the station process sends the query to a control node
manager. The control node manager then passes the query to all
query managers within the scope of the query. This may include
the query manager on the control node. The various query
managers perform the query on their nodes, and send the answer
back to the control node manager. The control node manager
assembles the answers in a temporary database, and may also per
form the query on the mailbox if it is included in the query's
scope. Finally, the control node manager sends the temporary
database to the station process which issued the query.

Two problems arise in the automatic processing of queries: con
currency control of interfering global or local operations, and control of
data movement due to mailing operations. Two algorithms, the central
ized concurrency control algorithm and the centralized movement con
trol algorithm [TRGN82], are used to circumvent these problems.

The concurrency control problem refers to the scheduling of
operations which may conflict with queries. There are two such sources
of interference, local updates and other queries. The system gives

144 Office Automation

precedence to local updates. Stations are allowed to modify, create, or
copy forms, even while queries are in progress. In addition, separate
queries can operate concurrently. However, in this case, scheduling of
the queries is required. For example, suppose data item X on station i
initially has value a}, and then is changed, by a local update operation,
to value a2' Similarly, on station j, the data item Y is changed from b i

to b2. If we have two queries qi and q2, it is possible that qi will see X
as al and Yas b2, while q2 will see X as a2 and Yas bl . Whether we
consider qi as occurring before or after q2, this result is inconsistent
with the history of X and Y.

The source of this problem is that two distinct queries with over
lapping scopes may be performed in different order on different nodes.
This problem can be solved by having the control node manager serial
ize query requests. Each query, when accepted by the control node
manager, is given a progressive sequence number: Seq (query). This is
similar to the use of timestamps. However, since the Seq numbers are
generated from a single node, any sequential ordering can be used.
Queries are sent by the control node manager to the satellite nodes in
this order. The network protocol ensures that the order of queries sent
from one node to another is equal to the order received. Since there is
a single query manager at each node, the queries are performed in this
order, i.e., of their Seq numbers.

The movement of messages from one station database to another
also introduces difficulties with query processing. In particular, the f 01-
lowing pathological situations must be avoided.

The message M is missed by a query:
1. The query is performed on node i while the message M is on

node j.
2. Message M is transferred to node i.

3. The query is performed on node j.
The message M is counted twice:
1. The query is performed on node i where it sees the message M.

2. Message M is transferred to node j.
3. The query is performed on node j where it again sees the mes

sage M.

We handle these problems by carefully orchestrating the order in
which queries are performed. We also pay attention to the movements
of forms in the mailboxes. A query is first performed on the station
databases by the query managers, and then on the mailboxes by the
control node manager. For messages that are transferred, it is neces
sary to keep track of the sequence number of the last query that has
seen the message.

Office Procedures 145

3. Form Procedures
The main automation facility deals with procedures that handle

forms arriving at a station, and it is provided by the TLA system
[Hogg81, Nier811. (TLA stands for "Three Letter Acronym", and,
unlike most acronyms, requires no apologies.) The user interface is
presented in terms of objects with which the OFS user is already fami
liar. Specifying operations within a procedure corresponds closely to
performing those operations within a manual system. A user who is
editing an automatic forms procedure manipulates sketches of forms.
Sketches are form-like objects representing the forms that the procedure
will eventually manipulate. The same form template that OFS uses to
display form instances is used quite differently in TLA, to describe
preconditions and actions in office procedures. The specifications are
non-procedural and have a simple syntax.

TLA does not assume any knowledge of the system state other
than what is available to the user in his (or her) form file or mail tray.
This corresponds to the notion in OFS that users can only manipulate
the forms that they "own". Anything happening outside a user's own
workstation does not concern him. The domain of automation is that
of the individual workstation. The complexity of determining when to
trigger a procedure is thereby considerably reduced.

An automatic procedure is meant to capture the notion of an
office worker collecting forms at his desk until a "complete set" is com
piled. He can then process the forms and file them or send them on
their way. Processing of the collection of forms may cause forms to be
modified or new forms to be added to the set. Reference tables and
calculating tools are made available through an interface to a local
library of application programs.

The other aspect of automation supplied by TLA is that of "smart
forms", which automatically fill certain fields using previously filled-in
fields as arguments. The domain here is that of the form alone, so
triggering takes place whenever a form is created or modified.

There are two types of automatic fields. The first type is filled in
only if all its arguments fields have values. The other type accepts null
values, and is filled in even if some arguments fields are missing.
Fields are initially filled in sequence. When an automatic field is
reached, an application program written in a conventional programming
language (usually C or the UNIX™ Shell) is executed. The output
from this program is assigned to that field. If any of the argument
fields is subsequently modified, the automatic fields which use it are
also updated. Typical applications are arithmetic operations, such as
sales tax calculations, or database queries, such as filling in a
customer's address.

146 Office Automation

"Smarter forms" with fields that change value depending upon
time conditions, the state of the system, or any other variable, were not
implemented. Some "smarter form" problems can be solved with
TLA's automatic procedures.

Automatic procedures have preconditions and actions, but no
postconditions in the usual sense. Satisfying all preconditions guaran
tees the successful completion of all actions. There is only a very lim
ited sense in which a procedure may "fail". For example, it may never
be triggered, because missing forms do not arrive. Postconditions may
be interpreted in terms of the preconditions of another procedure to
which control of the forms is passed.

Automatic procedures run concurrently with the manual functions
of the users. Conflicts can arise over the form manipulations. Forms
being collected by an automatic procedure can be modified or shipped
away manually. They can even be "stolen" by a competing automatic
procedure. This implies that when a complete set of forms is gathered
for a procedure, it has to be temporarily "removed" from the system.
This operation safeguards the forms until they are processed.

4. Interface
The specification of an automatic procedure in TLA bears some

resemblance to SBA and OBE [deJ080, Zio080]. The precondition seg
ment of a procedure bears a resemblance to a QBE query, with forms
instead of tables as the data objects. In the simplest form of a TLA
precondition, putting a value in a field of a precondition indicates that a
form is to be found with a field matching that value. The action seg
ment of the procedure is similar. The simplest operation is to assign to
a field the value specified in an action.

The order in which forms needed by a procedure arrive is not
important. The order in which actions are performed is not specified in
detail. TLA merely ensures that the procedure be logically consistent.
The specification is non-procedural. The user indicates what forms are
to be collected, and what is to be done with them. He does not specify
how they are to be collected or how the actions are to be performed.

Preconditions in TLA describe what, when and where. For each
procedure there is a working set of forms. The working set may include
forms that come only from certain workstations, forms local to the sta
tion specifying the procedure, or forms that have just been processed
by another automatic procedure. One may also specify a procedure to
run only at certain times or ranges of times.

A TLA procedure is a collection of "sketches". A sketch resem
bles a form, but is to be distinguished from form blanks, form types or

Office Procedures 147

form instances. A precondition sketch indicates a request to the system
to find "a form that looks like this". An action sketch indicates a request
to modify a form that has already been obtained. In either case, a
sketch describes a form instance before or after processing by the pro
cedure. The medium of specification of a sketch is the same form
blank that is the template for the form instance being described.
Actions and preconditions which do not refer to information found on a
form are specified by pseudo-sketches of "pseudo-forms". For example,
the condition that a procedure process only forms coming from user
'John" must be indicated on a special source pseudo-sketch.

Sketches are used to capture the restrictions referring to values
that appear on the face of the forms in the working set. Local restric
tions are constant field values, sets or ranges of values, and relations
between values of the fields on a given form. The local restrictions
refer only to the values appearing on a single form in the working set.
TLA tries to determine whether a given form satisfies the local restric
tions (including the source condition) for a sketch in some automatic
procedure. If it does, TLA notes the information and attempts to
match that form with other forms to obtain a complete working set for
that procedure.

Figure 4 is an example of a precondition sketch instructing TLA
to watch for order forms requesting "Veeblefetzers". Since this infor
mation can be found right on the order form, it is a local precondition.
A sample procedure including such a sketch might perform the single
action of returning a form that says "We stopped making those things
years ago!"

ORDER FORM Key: ____ _

Customer number: _____ _
Customer name: ________ _

Description: Veeblefetzers ___ _
Item: _____ _
Price: _____ _

Quantity: _____ _
Total : _____ _

Figure 4: A precondition sketch

Global restrictions on the working set of an automatic procedure
are the join conditions between values of fields appearing on different

148 Office Automation

forms. One expects all the forms in a procedure's working set to be
linked by certain common field values. Matching field values are there
fore probably adequate to model many applications of automatic pro
cedures. However, simple inequality restrictions may also be specified.

Figure 5 shows how a link is made to find an inv form for the
item requested on an order form. Each sketch in a procedure has a
name assigned by the user. This name is a prefix to the field name. In
this way a field of a different sketch can be referenced within a sketch.
Note that one could alternatively have placed the restriction
"=inv.item" in the item number field of the order precondition sketch.

INVENTORY RECORD Key: ____ _

Item: =ord.item __
Price: _____ _

Quantity in stock: _____ _

Description: ________ _

Figure 5: A global Ooin) precondition

We can also restrict the source of mail being processed by an
automatic procedure. Suppose, for example, that the accounting
department receives an order form from the order department. This
may be interpreted as a request to forward a customer's address to the
warehouse so that the order may be filled. If, however, the order form
arrives from the warehouse, this may indicate that the order has gone
through, and that an invoice should be mailed out. Figure 6 shows an
origin pseudo-form sketch for such an application. Forms may thus be
processed differently depending upon their point of origin. Alterna
tively, the special field not may be filled in to indicate that only forms
coming from stations not listed in the pseudo-sketch should be pro
cessed by the procedure. The pseudo-station me is also available to
indicate that forms must (or must not) come from within the station's
own files.

All form modification actions are indicated on action sketches.
Every form manipulated by a forms procedure has a precondition
sketch and an action sketch. Actions which do not concern themselves
with field values must be expressed via pseudo-forms.

The action sketch indicates all insertions and updates to the form.
The values to be inserted may be constant values, e.g., an authoriza
tion, copied field values, or possibly function calls to application

Office Procedures 149

ORIGIN PSEUDO-SKETCH
Stations:

NOT:_

orderinl;>-g _________ --__________ _

Figure 6: An origin pseudo-sketch

programs. We distinguish, therefore, between the original and the
updated values of any field. A field that must be copied to another
form may itself be modified, and the wrong value must not be used.
Furthermore, the function calls may access both the original and
updated values of fields. In fact, the original value of a field will often
be one of the arguments to a function call update to that field.

The action sketch in figure 7 illustrates several features. The price
of an item is filled in by copying it from an inv form. A program called
"mult" is called to calculate the total. Finally, the original value of
quantity is accessed, whereas the updated value of price is used. Note
that the symbols "#", "?" and "!" are used to respectively access func
tions, original field values, and updated field values. If none of these
symbols is used, a constant string value is inserted.

ORDER FORM Key: ______ _

Customer number: _____ _
Customer name: ________ _

Description: ________ _
Item: _____ _
Price: ?inv.price __

Quantity: _____ _
Total : #mult !price ?quantity

Figure 7: An action sketch

150 Office Automation

Some analysis is needed to ensure that every updated file ulti
mately depends only upon values originally available on the working set
of forms. It is clearly incorrect to update each of two fields by copying
over the updated value of the other. Suppose that the price field of the
order form were updated to "!inv.price" and the price field of the inven
tory form were updated to "!order.price". No order of execution could
make sense of the request.

Field constraints must be obeyed. Procedures that create forms
must fill in certain fields. Procedures that modify forms must only
modify fields of an appropriate type. Implied actions must also be
evaluated, if a procedure modifies or inserts a field which is an argu
ment to an automatic field.

After all form modifications are completed, zero or more copies
of each form are made. Each form or copy may then be left in the
user's files, inserted into a dossier or shipped to another station. The
mechanism used to specify these operations is the destination pseudo
sketch; an example is shown as figure 8. Copy 0 is the form manipu
lated by a procedure, and one additional destination pseudo-sketch is
filled in for each copy of that form. The operations available are leave,
ship and dossier. The first of these requires no where argument, but the
others require the name of a station or a dossier, respectively. This
may be given as a simple constant or a field function value, just as in
action sketches.

DESTINATION PSEUDO-SKETCH COPY: 0 __
Operation: ship, __________ _

Where: accountin&g _______ _

Figure 8: Destination pseudo-sketch

A weak sort of postcondition is available by employing a function
call to decide the operation, dossier name or shipping destination.
General postconditions can only be achieved by cooperating form pro
cedures that accept different cases of the working set of forms. Sup
pose, for example, that the processing of an order causes the quantity
of an item in stock to dip below a certain acceptable level. We may
wish, at this point, to send a memo to the manager, initiating an
increase in the production of the item. The procedure which processes
the order is incapable of conditionally producing this memo as a
postcondition to inventory update. It could unconditionally produce
such a memo and then functionally decide to mail it either to the
manager or to a garbage collection station. A cleaner approach, though,

Office Procedures 151

is to have a separate procedure that searches for low inventory items,
and then sends the memo.

With this approach, individual tasks are clearly identified.
Automatic procedures are simple and completely devoid of control flow.
Furthermore, the implementation is simpler, because postconditions
correspond to separate procedures. The low inventory checker, for
example, is only invoked when an inventory form is updated.

5. Implementation
An automatic forms procedure in TLA is specified by a collection

of sketches, and consequently describes what is to be done rather than
how to do it. The sketch representation is very convenient for the
user. This format, however, is wholly unsuitable for implementation.
The specification must be analyzed and translated for greater run-time
efficiency.

We cannot predict when the forms required to trigger a forms
procedure may arrive. The processing must, therefore, be broken into
distinct parts. The specification, in terms of sketches, contains infor
mation of four basic kinds: local (form) constraints, global (working
set) constraints, duplicate form types (so that one form is not used to
match two sketches within a single working dossier), and actions. The
execution of a forms procedure makes use of these four specifications
at different stages. It is convenient to process these specifications at
procedure definition time, and translate them into formats that require
no further run-time analysis.

Suppose that TLA is notified of the availability of a form for
automatic processing. It first checks whether the form matches the
local conditions of any precondition sketch for that form type. The
local conditions are comprised of the source restriction and the field
constraints. If a form does not match the local constraints of any
precondition sketch, then TLA assumes that no procedure is prepared
to handle it. Suppose that a form does match the local constraints of
one or more precondition sketches. That form is then a candidate for a
working set for a number of procedures. It is immaterial whether or
not a working set including that form is complete. There is always the
possibility that at some time the missing forms of the working set could
arrive.

The form instance in figure 10 matches the local condition of the
precondition sketch in figure 9, i.e., quantity>O. There may not neces
sarily be a global match if there is no order form with the same item
number. Even if there is an order form with the same item number, it
may not satisfy the other constraints of its precondition sketch.

152 Office Automation

Nevertheless, TLA notes that a local match has been made, and waits
for the rest of the working set to arrive.

INVENTORY RECORD Key: ____ _

Item: =ord.item __
Price: _____ _

Quantity in stock: >0, ____ _

Description: ________ _

Figure 9: Precondition sketch

INVENTORY RECORD Key: 00001.00000_

Item: 465 ___ _
Price: 16000.00, __ _

Quantity in stock: 12, ____ _

Description: Workstation ___ _

Figure 10: Form instance matching local preconditions

TLA checks the local constraints of a form, records its findings,
usually determines that the form does not complete a working set, and
then waits for more forms to arrive. Further processing may not occur
for some time. All local constraints for forms of the same type are
extracted from all procedures and stored in a common file. This file is
opened to check the local constraints of a given form for all procedures.

After the local constraints have been matched for a form, TLA
checks link conditions between the corresponding sketches of the pro
cedure. The link conditions are stored in files by procedures. Suppose
that, in the previous example, TLA found an order for item 0002. It
would note that the link between the inventory and order form precon
dition sketches was satisfied by these two form instances. If the work
ing set consisted of only these two forms, then the procedure actions
would be performed. Otherwise, TLA would wait until forms were
found to match the remaining links of the procedure.

Office Procedures 153

Even if forms arrive together, the processing of the forms is
sequential. TLA treats each form individually. A locking algorithm
guarantees that two forms cannot be processed at once at a given
workstation. Generally, forms will not arrive simultaneously. One can
expect a considerable delay between the establishment of local con
straints and the evaluation of links between forms.

Actions are performed only when a working set of forms has been
compiled. Actions are stored in a separate file. TLA preprocesses pro
cedures, to check the legality of actions and to determine a legal order
of execution if one exists. No further run-time analysis is performed.
Actions run to completion.

The example in figure 11 implicitly requires that price must first be
copied from the inventory form before its value may be mUltiplied by
the quantity. This establishes a legal order of actions for that sketch.

ORDERFORM Key: _______ _

Customer number: _____ _
Customer name: ________ _

Description: ________ _
Item: _____ _
Price: ?inv.price __

Quantity: _____ _
Total : #mult !price ?quantity

Figure 11,' Ordering of actions

An admittedly unlikely case is captured in figure 12, which is trig
gered if TLA detects two inventory forms for a single item. Since there
are two precondition sketches in the procedure, TLA assumes that they
refer to two different forms in the working set. Otherwise, any inven
tory form would trivially satisfy both precondition sketches, and thus
trigger the procedure. When the procedure is written, TLA notes
immediately that two precondition sketches describe forms of the same
type. It performs a key comparison of those forms in any working set
identified to guarantee that they are not one and the same.

The TLA automatic procedure interpreter is triggered upon
receipt of mail, form creation and form modification. Since the last two
are the responsibility of the user, triggering in these cases involves only
the spawning of a new interpreting process. In the first case, however,
the interpreting process is initiated by the user who sent the mail.

154 Office Automation

INVENTORY RECORD Key: ____ _

Item: _____ _
Price: _____ _

Quantity in stock: _____ _

Description: ________ _

Precondition sketch inv1

INVENTORY RECORD Key: ____ _

Item: =invl.item __
Price: _____ _

Quantity in stock: _____ _

Description: ________ _

Precondition sketch inv2

Figure 12: Duplicate/orm types in a procedure

Automatic procedures are meant to run regardless of whether the
user to whom the corresponding station belongs ever signs on after the
procedure is written. Mail in the system is routed through a host con
trol node. The sending station sends a message to the host consisting
of the contents of the form tuple and the name of the station which is
to receive the mail. The host then stores the form, updates the receiv
ing station's mail tray and sends a message to the recipient's station.
At the recipient's station machine, the interpreting process is started. It
communicates with the host, asking for images of each new form in the
recipient's mailtray. The interpreter maintains files of form images for
each form available for automatic processing. It deletes the images
when the forms have been processed either automatically or by the
user. The images are copies of the contents of each form for use by
the interpreter alone, and are stored just as forms are stored. The user,
however, has no access to the images as forms. They may not be
modified, shipped away, or otherwise manipulated. They are not prop
erly forms or copies of forms, but merely images of forms.

Office Procedures 155

Mail may arrive while the interpreter is running. It, therefore,
continues to process all mail until it discovers an empty tray, in a
manner similar to that of the line printer deamon in UNIXTM. Only
one interpreter may run at any time for a given station. In this way we
eliminate interference problems between interpreters. A lock is placed
on the running of the interpreter for a given station.

6. Sketch and Instance Graphs
The working set of a form procedure is abstracted in terms of a

sketch graph, with the sketches as coloured vertices, and the matching
conditions as edges in the graph. The form-gathering algorithm must
find corresponding forms, and satisfy matching conditions of the sketch
graph. An instance graph is associated with the forms retrieved. The
interpreter tries to match the sketch graph in the instance graph.

Consider the precondition sketches in figure 13. A link between
the account and order forms is established across the customer number.
A link between the order and inventory forms is captured by two global
conditions, one by item number and the other by quantity.

The corresponding sketch graph is shown in figure 14. Each
sketch is represented by a labelled/coloured node. Each collection of
global conditions between a pair of sketches is represented by a single
edge.

When a form is passed to the interpreter, it first reads the file of
local constraints for the forms of that type. Whenever a match is
found, the interpreter notes which sketch of which procedure is
matched by the form, and it enters a tuple consisting of the form type,
the form key, the procedure and the sketch matched into a relation
(called "NODE").

The file of global constraints for the matched procedure is then
read. For every link concerning the matched sketch, the system estab
lishes whether the current form satisfies the join conditions with any of
the forms previously recorded in the NODE relation. For every new
link found, the system inserts a tuple into another relation called
EDGE. EDGE records the form keys, types, sketch names, and the
procedure name of every link established.

The NODE and EDGE relations describe an instance graph, with
forms as vertices or nodes and links between them as edges. The ver
tices are coloured according to which sketch the form matches. If a
form matches two or more distinct sketches in one or more procedures,
it is multiply represented, once for each sketch. Procedure names par
tition the instance graph, since there can be no links between sketches
of different procedures. For each partition, we wish to match the

156 Office Ar=uc:,.::to::,:m:;:a;::.tio:::,:n"--_____________ ---.

CUSTOMER ACCOUNT
Key: _____ _

Customer number: =order.number __ _
Credit rating: ________ _

Balance: ________ _

ORDER FORM Key: ____ _

Customer number: _____ _
Customer name: ________ _

Description: ________ _
Item: _____ _
Price: _____ _

Quantity : ~inv.quantity_
Total : _____ _

INVENTORY RECORD Key: ____ _

Item: =order.item_
Price: _____ _

Quantity in stock: _____ _

Description: ________ _

Figure 13: Precondition sketches of a procedure

sketch graph that describes the working set of forms for that procedure.
Nodes are assigned a unique colour for each sketch, and the
corresponding colours are used in the instance graph. An instance of
the sketch graph, then, must be found within the instance graph.

Figure 15 shows the instance graph for the procedures of figure
13. Forms have been found to match each of the precondition sketches
of the procedure, but there is no complete working set. When a

Office Procedures 157

account order inventory

o~------------~o~------------o

Figure 14: A sketch graph for a single procedure

working set is found, it is processed and disappears from the instance
graph. Note that most of the disconnected subgraphs of the instance
graph are in fact subgraphs of the sketch graph. In the last case, how
ever, there are two orders for a single item, and the relationship is not
that simple. The first account form to complete either working set will
complete the "copy" of the sketch graph to be found in the instance
graph.

account order inventory

o o~------------o

Figure 15: The instance graph for a procedure

The relationships between the forms in the working set of a form
procedure are usually best expressed in terms of the join conditions.
The sketch graph will generally be connected. The instance graph,
however, will more often consist of several partially complete working
sets of forms, and so will usually be disconnected.

158 Office Automation

If the join conditions imposed on the working set of forms are
"nice", then each connected subgraph of the instance graph will also be
a subgraph of the sketch graph. It is conceivable, however, that two
forms satisfying a precondition sketch may each satisfy a join condition
with a third form satisfying a second sketch in the same procedure.
This anomaly will occur if the imposed join conditions are "not nice
enough". In this case, the connected subgraphs of the instance graph
are not as simply related to the sketch graph. Thus, establishing when
a complete working set of forms has been compiled requires careful
analysis.

When the system has finished processing a form, we know that
the instance graph contains no copies of the sketch graph. If a copy of
the sketch graph is identified, then a working set has been found, the
procedure is executed, and the corresponding nodes and edges are
purged from the instance graph. No more working sets remain. When
a new form arrives, a working set of forms may be completed only if
that new form is included. The analysis of the instance graph, then,
need only concern the connected subgraphs that include nodes
representing the new form.

Join conditions giving rise to sketch trees seem natural, since the
"cheapest" description of the relationships between sketches would con
tain no cycles. If A is related to B and B is related to C, then one
would hope not to find any other relationship holding between A and
C. In practice, however, things may not be that simple. Join condi
tions might give rise to cycles, or even disconnected sketch graphs.
Suppose that the warehouse, for example, has a single value form at its
workstation, keeping track of the total dollar value of its stock. The
procedures which update it would include a blank precondition sketch
for a value form. Since there is no confusion about which value form is
needed, there are no local or global conditions to be specified for it.
The corresponding sketch graph in figure 16 is therefore disconnected.

account order inventory value

o o o o

Figure 16: A disconnected sketch graph

Office Procedures 159

7. Graph -Chasing
The algorithm which searches the instance graph for a copy of the

sketch graph employs a list of potential working sets. Initially there
exists a single such set, containing only the key of the newly added
form. Edges are traversed in the instance graph and keys are added to
each set until all edges and nodes in the sketch graph have been
checked.

We start at the node of the sketch graph corresponding to the new
form. We traverse edges leading out from that node, and check off any
new nodes that we reach. We may follow any previously untraversed
edges leading from any node we have thus far reached. Edges will lead
back to old nodes wherever cycles occur. If the sketch graph is discon
nected, then the subgraph containing the first node will be traversed
first. Edges not in that sub graph cannot lead from old nodes until an
edge is traversed which checks off two new nodes.

The sketch and instance graphs in figure 17 will be used to illus
trate the graph-chasing algorithm. The example contains both cycles
and disjoint subgraphs.

f g

a c

h

0

b d ,
" ,II

0

p m 1

Figure 17: Sample sketch and instance graphs

Sketches 3 and 5 are sketches for the same form type, but
represent distinct forms in the procedure. The terms {a,b,c, ... p}
are keys belonging to forms that match the local conditions of the

160 Office Automation

sketch graph. Form a, for example, matches sketch 1. Edges in the
instance graph represent joins. Forms c and f, for example, satisfy the
global conditions between sketches 2 and 3.

The addition of form p results in the completion of the working
set (a, c ,J, h ,p) where previously no complete working set existed.
The algorithm presented here will identify this set of forms.

As we trace a path through the sketch graph, we try to mimic our
actions nondeterministically in the instance graph. If we follow an edge
in the sketch graph, we attempt to follow that edge in the instance
graph for each set in our list. For each success, we add a new key to
some set, and for each failure, we delete a set. Suppose that several
edges may be traversed in the instance graph for a given edge of the
sketch graph. We then split the current set and add a new node for
each copy. The closing of a cycle in the sketch corresponds conceptu
ally to a select on the set list. In this way we ensure that links actually
exist in the instance graph for the two relevant forms represented in
each set.

Figure 18 describes the steps followed in locating the working set
in our example. If at any point all working sets are eliminated, the
algorithm halts, with no working set of forms identified.

The sketch and instance graphs are described as follows: The
sketch graph is G '(N ; E " where N'= {I, ... n} is the set of colours
and E' is a subset of N'x N ' containing no (i,j) such that i = j. F is
the set of form keys. The instance graph is G(N,E), where N is a
subset of N'x F and E is a subset of Nx N. Furthermore, we adopt
the convention that if x=(i,k) belongs to N, then x'=i and xl/=k,
and if e=(x,y) belongs to E, then e '=(x;y ,.

In the example,

N' = {1,2,3,4,5}
E'= {(1,2),(2,3),(3,5),(2,5)},
F = {a ,b,c ,d,J,g,h,l,m ,p},
N = {(1,a),(1,b), ... (5,p)}, and

E = {«(1,a),(2,c)),«(1,b),(2,d)), ... «2,c),(5,p))}.

We note, then, that for each x in N, x' must belong to N; and
for each e in E, e' must belong to E' - i.e., nodes and edges in the
instance graph correspond to nodes and edges of the sketch graph.

Suppose that finding a complete set of forms is equivalent to
locating an instance of the sketch graph within the instance graph. We
can express this as follows: We seek all subsets N 1/ of N such that

1. {x'lxEN'} = N'

Office Procedures 161

potential
working sets
1 2 3 4 5

p p is a new form matching sketch 5.
f p From node 5 in the sketch graph we can reach
g p node 3 along edge (3,5). The edges

«3,j),(5,p)) and (0,g),(5,p)) in the instance
graph are followed, and the potential working
set is "split".

c f p
The edge (2,3) is now followed, splitting the

d f p
first set of the previous step.

d g p

a c f p
b d f p Follow edge (1,2).
b d g p

a c f p Edge (2,5) completes a cycle. Perform a select
on the sets resulting from the last step. Since
«2,d),(5,p)) is not in the instance graph, two
potential working sets are lost.

a c f h p All the edges in the sketch graph have been
traversed. A form that matches sketch 4 must
be added.

a c f h p Check that form f differs from form p.

Figure 18: Finding a working set of forms

and

2. for each (i ,j) in E; there exist x and y in N" such that x '= i,
Y '= j and (x;y) belongs to E - i.e., for each node and edge of
the sketch graph, there exist unique corresponding nodes and
edges in the spanning graph G tN t
In the example,

N "={ (I,a), (2,c), 0,1), (4,h), (5,p)}.

The algorithm for finding all such subsets N" makes use of the
knowledge that any working set of forms must include the most
recently added node, say x. Furthermore, there are two checklists,
node and edge, with slots for each element of N' and E; respectively.
These record whether or not the edges and nodes have been inspected.
All are initially set to false, and a set list, D, is initially set to empty.
Each set has n slots to hold all the keys of any working set of forms
found by the algorithm in figure 19.

162 Office Automation

Let x in n represent the newly added form.
Add a set to D, with slot x' set to x'~ x must belong to the working
set.
Set node [x 1 to true: check off node [x 1 of the sketch graph.
for each e = (; ,j) in E' such that edge [e 1 is false do

if both node [;) and node [j] are false then
for each set in D do

for each (y ,z) in E where y '= i and z '= j do
copy the set
set slot i to y '; slot j to z "

end for
delete the original set

end for
else if exactly one of node (j] and node [j] is false then

/* without loss of generality, node [i) */
for each set in D do

for each (y,z) in E where y'=i and z'=j and y"is
already in slot i of the set do

copy the set
set slot j to z "

end for
delete the original set

end for
else if node [;) and node [j] are true then

for each set in D where (y ,z) is not in E and
y '~1, z "=j do
delete the set

end for
end if
set edge [e 1 to true
set node [i) to true
set node [j] to true

end for
Check that forms of the same type are different.

Figure 19: The graph-chasing algorithm

If D is empty when the algorithm is finished, then no working
sets were found. If D is not empty, then the "first" set containing no
duplicate keys is chosen as the working set.

The station's owner may attempt to move some of the forms in
the working set while the interpreter is running. Each of the forms
must therefore be set aside. Each form in the working set is deleted
from the system so that the only copy is the interpreter's image of the

Office Procedures 163

form. If any of the forms cannot be found, then the interpreter
restores all the forms retained thus far, and aborts the forms procedure.

If all the forms are successfully obtained, then the interpreter per
forms the set of actions. In the translation phase, the legality of
actions, implied actions, and a legal order of actions have already been
determined.

Actions may "fail" if a string is too long to be inserted in a given
field, or if a form is mailed to a non-existent station. In the former
case, TLA chooses to insert the null string by default, with the under
standing that both humans and procedures are intelligent enough to
interpret this, not as a value, but as a non-value. In the latter case,
OFS (and consequently TLA) returns the mail to the sending worksta
tion. Since TLA procedures are capable of recognizing the source of
mail, it is presumed that this anomaly could be appropriately dealt with
if a user felt it necessary.

8. Concluding Remarks
Our form-processing facility captures, in some sense, what is

meant by an "automatic forms procedure". The context of OFS limits
the range of possible actions upon forms. There are also many things
that persons can do with OFS which have not been modelled in TLA.
Automatic procedures, for example, are not smart enough to expect the
timely return of a form which has been shipped away.

Form flow is determined by the particular configuration of pro
cedures across the system. It is the responsibility of the users and an
office administrator to model and analyze so that there are no undesir
able side effects resulting from a particular combination of automatic
procedures. Such analysis should be performed within a reasonable
complexity bound, and it should be performed mechanically if at all
possible (see the companion paper, "Message Flow Analysis").

The complexity of interpreting automatic procedures and form
gathering clearly depends on:

1. the size of the working set for a procedure,

2. the number of automatic procedures running at workstations, and

3. the number of form images "waiting" in the instance graphs of a
workstation.

The complexity of identifying a sketch graph within the graph grows if
the sketch graph is not merely a sub graph of the instance graph. Obvi
ously, whatever factors contribute to this complexity must be con
sidered in any "good office design". However, exactly what constitutes
"good design", and to what extent it is feasible, is not easily established.

164 Office Automation

Partly completed working sets of forms mayor may not have a
particular meaning in terms of exceptions and errors. If forms are
"missing" from a working set, the present forms may also be part of
another working set. The missing forms would determine which pro
cedure is to be activated. There is no way of telling which procedure
forms are missing until they arrive. Missing forms may never arrive.
There is no way of interpreting their absence as an error, except by
placing some arbitrary time limit upon form-gathering.

Forms may satisfy partly completed working sets for a number of
procedures. There is a need for some convenient way of displaying
these sets. Users could interpret what is "missing", and possibly act on
this information. Instance graphs could be quite complicated. Several
partly completed sets may overlap in a single instance graph. A graphic
display would present this information in a much better fashion than
lists of form keys.

A simple feature that would increase user interaction with
automatic procedures would be a function whose value is determined
by the user. When the interpreter sees this function assigned to a field
in an action sketch, it holds all the forms in the working set. It then
notifies the user when he next signs on, and waits until the user makes
a request to inspect the working set. At that point the user is allowed
to assign a value to the field (or possibly abort the procedure), and then
execution will resume.

Form flow between stations in TLA is determined by the interplay
of automatic procedures. Flow of execution could be made more expli
cit by passing control between procedures in different stations. One
should then also pass working sets of forms between procedures. In
this way one could explicitly determine the order of operations. Pro
cedures could then be called from other procedures without the need
for form-gathering. Decision points could be modelled by branching
rather than by a variety of similar working sets of forms. Which pro
cedure is to be called could be decided by evaluating a function whose
arguments are field values from the working set.

Many office automation systems have been strongly influenced by
the SBA [deJ080] and OBE [Zlo080] systems and Officetalk [ElNu801.
The most noticeable exceptions are SCOOP [Zism 77] and BDL
[HHKW77], which are, however, more office-systems programming
languages than office workers' languages. TLA uses forms that are
manipulated at workstations, like Officetalk; the non-procedural inter
face for defining procedures was in large part inspired by the work of
deJong and Zloof. However, TLA takes a somewhat different approach
from either.

A goal of the TLA project was to provide a facility for automating
office procedures, which could be used by office workers, as opposed to

Office Procedures 165

computer professionals, with a minimum of training. As a result, there
was an emphasis on providing familiar concepts and a highly uniform
interface.

The form is a very familiar concept to all office workers. There
fore, the idea of a sketch is an easy one to teach. By contrast, the SBA
notion of boxes is both useful and powerful. However, it has no analog
in the office of today, and therefore requires a more expert office
worker in its use.

In TLA, "conditions" (constraints) appear within a form itself.
This reflects an underlying philosophy in the TLA project that the user
interface should be as uniform as possible. There are no separate con
dition boxes attached to forms within the underlying manual system,
and therefore there are no separate conditions attached to sketches.
Information that absolutely cannot be obtained from the form fields
(such as the source of the form) is specified using pseudo-sketches that
resemble forms as closely as possible.

Our form specification facility, like its base systems, OFS and
MRS, runs on very small computers. Most of the development was
done for an LSI-1l/23. It will essentially run on any UNIX™-oriented
workstation. This means that the hardware required for TLA is
affordable by any office large enough to benefit from automation. At
the same time, incremental growth can be easily achieved by adding
additional machines, of a wide range of sizes, to a local net.

OFS, MRS, and TLA have been implemented on machines run
ning under UNIXTM. Compatibility with OFS was maintained in TLA.
Changes to code, and the internal representation of an OFS system
were mostly additions to modules and UNIX™ file directories. Where
existing files and code were modified, compatibility was maintained, so
that OFS would simply ignore the added TLA features. Conversion
costs from an OFS system to one that supports TLA are negligible, and
any TLA system can be run with the OFS subset. In essence, OFS,
MRS and TLA are completely integrated.

9. References
[Cheu79] [deJoSO] [EINuSO] [Gibb79] [HaKuSO] [HHKW77] [HoggSl1
[Hudy7S] [KeRi7S] [Korn79] [Ladd79] [NierSl1 [TRGNS2] [TsicS2]
[Zism 77] [ZlooSO]

8
An Object-Oriented System

O.M. Nierstrasz

ABSTRACT Applications in Office Information Systems are
often very difficult to implement and prototype, largely because
of the lack of appropriate programming tools. We argue here
that "objects' have many of the primitives that we need for
building OIS systems, and we describe an object-oriented pro
gramming system that we have developed.

1. Introduction
One of the great difficulties in implementing office information

systems and prototypes for testing new OIS concepts is the unavailabil
ity of appropriate programming languages. A great deal of effort is
therefore spent "re-inventing the wheel" whenever a new prototype is
developed. In this paper, we discuss our efforts to address this problem
by developing a simple, object-oriented programming environment. We
argue that "objects" are a natural primitive for programming many OIS
applications (see the companion paper, "Objectworld"). They are far
more appropriate (if they can be implemented efficiently) than a high
level language such as C or Pascal.

In papers such as [HaSi80, EINu80, HaKu80, Morg80, SSKH821,
office behaviour is described as being event-driven and semi-structured.
Office activities exhibit a great degree of parallelism and "bursty"
behaviour, meaning that activities alternate between running and
suspended states. Activities may have to coordinate several documents,
or even synchronize themselves with other activities. Messages and
documents are sometimes highly structured, especially in the case of
forms. Typically these documents also have certain constraints and

168 Office Automation

functional capabilities not generally associated with databases. Many of
these issues are addressed directly by object-oriented programming
[ABBH841.

Objects bear comparison to abstract data types [Gutt77], actors
[Hewi77], and SBA/OBE boxes [deZl771. Many of the properties of
our object model are also exhibited by Xerox' Smalltalk system
[GoR083, Gold841. Objects combine data and program by allowing the
programmer to specify the nature of the data that the object may hold,
that is, its contents, and also the allowable set of operations valid for
those data, that is, the object's behaviour. The object construct there
fore exhibits several "nice" properties, among them modularity, encap
sulation (of data and operation), strong typing, and duration. The last
is important, since objects typically have a longer lifetime than the exe
cution of most programs. In addition, our object model allows for spe
cialization of objects, and automatic triggering of the object's rules
(operations) wherever appropriate. Finally, because the operations are
explicitly bound to the data, an extra measure of security is achieved,
without any loss of generality. The object model appears to be as
powerful as more traditional machine models that separate data and
program.

In the following section we shall discuss our abstract object
model, and we will demonstrate some of the power of objects. The
remaining sections deal with the implementation of our prototype
object-oriented programming system, called Oz. Specifically, we discuss
the user interface, the internal system design, and the details of object
management.

2. The object model
In this section we shall describe in some detail what we mean by

the term "object", and how it can be used as a programming tool.
Specifically, we discuss the relationship between the data and the pro
gram elements of objects (called rules), and we explain under what cir
cumstances the rules may be executed.

2.1. Object classes
Perhaps the key distinguishing characteristic of objects is encapsu

lation. An object, like an abstract data type, forces us to describe our
data, and the operations that manipulate them, together. Once we have
completed our specification of an object class, we can be certain that
instances of that class will not be abused by anyone's attempt to

An Object-Oriented System 169

perform invalid or inappropriate operations on them.

An object is responsible for anything that happens to it. Further
more, in our object model, we give objects the responsibility of execut
ing that part of their behaviour that is to be automatically triggered
whenever pre-defined conditions are met. Any object can therefore
become active at any time, if the right conditions arise to cause it to
spring into action.

Objects are divided into object classes, which are comparable to the
notion of types. Any object is an instance of some given object class.
The classes are characterized by their specifications, and the instances
are characterized by their values. As an analogy, we may compare
object classes to database schemata, and object instances to values in
the database (such as relational tuples).

Objects have both data and "program" components. We refer to
these as contents and behaviour. The contents of an object can be
described by a set of instance variables. The values of these variables
will characterize any given object instance. The behaviour of an object
is given by a collection of rules. These "rules" resemble the procedures
or subroutines of a program, with the exception that there is no "main"
program to call them. The rules are invoked by other objects, or
acquaintances, that the object agrees to deal with.

Rules may contain local (temporary) variables, and executable
statements that modify the instance variables, just as a subroutine
might, but they may also contain a set of triggers or preconditions on
the execution of the rule. If anyone trigger condition fails, then the
rule may not be executed. A common trigger condition is to restrict
the allowable object classes of the object invoking the rule, as in the
following example.

In the simple example in figure 1, we define part of a customer
object. It is defined to be a specialization of an office object. name and
owner are instance variables, and set_name is a rule. The invoking
object (indicated by the special symbol "-,,) must be an office object
whose owner is also the owner of the customer object. The name vari
able may be manipulated by other rules as well, specifically, it may be
initialized at the time of creation.

2.2. Events
If a rule b of object B is invoked, then there must be an invoking

rule a of an acquaintance A. Rule b can fire if and only if both it and
rule a are completely satisfied, that is, all their trigger conditions are
met. For example, the ch_name rule in figure 2 invokes the secname

170 Office Automation

customer: office {
/* instance variables */
name, owner : string,

/* rules */
set name (n) {

/* invoking acquaintance */
- : office,
ri : string,

/* a trigger condition */
-.owner = owner;
name := n;
}

Figure 1: A simple object specification

rule of figure 1. Both rules must be satisfied for an event to fire.

ch name {
c : customer,
m: memo;

m.creator = "legal";
m.oldname = c.name;
c.set_name (m.newname);
m.omega;
}

Figure 2: an invoking rule

Furthermore, rules a and b may invoke other rules in yet other
objects. All of these rules must be satisfied before any of them may
execute. This is what we call an event. If any rule participating in an
event has a trigger condition that fails, then the event fails. If all the
rules are satisfied, then the event may fire, and all rules participating in
the event are executed.

A rule is allowed to invoke itself. The trigger conditions within
such a rule then monitor instance variables or an acquaintance. The
ch_name rule in figure 2 is self-triggering, and monitors the arrival
(creation) of a memo object from the legal department, indicating a
change-of-name. In this example, the memo object could not invoke
the set_name rule directly, since it is not an office object. When an

An Object-Oriented System 171

event occurs that alters the instance variables or those of the acquain
tance, the trigger conditions must be checked to see if a new event
must be fired. The firing of one event may therefore "cascade", and
cause other events to (eventually) be fired.

Trigger conditions may dictate the allowable message classes of
acquaintances invoking a rule, the type of value passed by a communi
cating acquaintance, predicates over those values, and predicates over
the instance variables of the object itself.

There are two special rules included in the behaviour of any
object. The alpha rule is used to create new object instances, and the
omega rule is used to destroy an existing object instance. The alpha
rule may thus be used to specify the conditions under which objects
may be created, whom they may be created by, and what instance vari
ables should be initialized to when they are created. Of course, any
side effects of object creation can also be included by causing the alpha
rule to invoke other rules in acquaintances. The alpha rule for the cus
tomer object might be used to initialize the name variable. Once an
object is created, other rules in its behaviour may be triggered.

omega {
: user,

-.owner = owner;
J

Figure 3: an omega rule

The omega rule, given in figure 3, ensures that only the owner
may destroy the object, and the act must be performed directly by the
user, not any subordinate office object. Another possible use of the
omega rule is to keep a log of the circumstances under which an object
was destroyed.

2.3. Specialization
New object classes may be created from old ones by the process

of specialization. A specialized object class is a subclass of some parent
superclass. The subclass may have:

1. more instance variables: the existing instance; variables are inher
ited from the superclass, and new variables are made available to
instances of the subclass

2. more rules: the existing rules are inherited from the superclass
and new rules are available to instances of the subclass

172 Office Automation

3. restricted domains: instance variables are inherited from the
superclass, but they may assume values only from subdomains

4. restricted rules: rules are inherited from the superclass, but they
may have additional trigger conditions to further restrict the cases
under which they may fire

The definition of specialization given here is very similar to that
used in the Taxis system [GrMy83].

Specialization is important, in that it ensures that new classes
derived from some superclass have at least the properties of the super
class. All office objects might thus, for example, be defined to have
owner variables set at creation, and rules that prohibit destruction by
anyone other than the current owner. An important open issue is how
much alteration of existing behaviour should be allowed in subclasses.
If a specialized office object has altered behaviour or additional
behaviour that completely undermines the behaviour of the unadorned
office object class, then the fact that it is a "specialization" is virtually
meaningless.

2.4. Expressive power
As described in [NiMT83, Moon84, Twai841, Oz objects can

easily be used to capture the behaviour exhibited by event-oriented
models such as finite automata and Petri nets. The state of an automa
ton can be easily described using the instance variables of an object,
and the rules for changing states can be captured in the general
language of the object's rules. In addition, one may associate additional
side effects with the state transitions given by the underlying model. A
typical application would be to implement augmented Petri nets, as
described by Zisman in his dissertation [Zism77, Zism78]. In this for
malism for specifying procedures, Petri nets are augmented by addi
tional preconditions and actions that refer to the world outside the
model.

Office procedures, as described in a companion paper in this book,
can also be implemented using objects. Trigger conditions in the office
procedures translate directly into trigger conditions of a procedure
object, and actions similarly translate into object rule actions.

Objects can also be used to easily capture electronic forms. An
electronic form would be represented by a single object class. Form
instances would correspond to object instances, with each field of the
form being represented by a single instance variable. Additional, "hid
den", instance variables might also be used to maintain internal infor
mation about a form, such as who created it, or when it was last
modified. All form types could therefore be implemented as

An Object-Oriented System 173

specializations of a standard form object class, with a few minimal pro
perties. Since a form's behaviour is entirely determined by the rules of
its object class, there is no danger of corrupting existing forms by
adding new applications to a system. These new applications would still
be forced to make use of the form interface defined by the object's
behaviour.

A wide variety of important field types [Geha82] can be imple
mented with comparative ease. Some of the possibilities are fields that
must be supplied when a form is created, and then may never be
changed, fields that must be filled in a particular order, fields that func
tion as locks on other fields, and signature fields that are automatically
filled when a particular action is performed. Restricted views can also
be implemented, since the identity of an acquaintance must be made
available before an object will release any information. Since the
language for specifying actions is general-purpose, there is virtually no
limit to the kinds of fields that can be implemented.

Intelligent messages, as described in the companion paper, "Intel
ligent Message Systems", are implementable using objects. In this
scenario, messages are objects that not only store information, but carry
procedures with them for dynamically altering the content of the mes
sage, and for altering or refining their destination. Since arbitrarily
complicated procedures can be encoded in the behaviour of an object,
intelligent as well as passive messages can be designed using the object
formalism. For a discussion of various "flavours" of interesting objects,
see the concluding paper of this book.

Finally, objects provide an elegant mechanism for ensuring data
security and integrity. Roles, as described in the companion paper, "Eti
quette Specification in Message Systems", can be implemented with
objects. A trivial example of this is the use of the owner variable in
office objects. In the hierarchical object world described in the conclud
ing section of this paper , objects could be equipped with instance vari
ables that are themselves role objects. The role objects may be arbi
trarily complex (or as simple as the owner variable), and they may be
thought of as authorization currency in object transactions. Since
objects cannot be forged in an object world, the possession of a particu
lar kind of role object may be used to guarantee certain powers or capa
bilities.

3. User Interface
Our prototype object-oriented programming system makes use of

an explicit user object class to represent users. Whenever a user
interacts with the universe of objects in any way, he does so under the

174 Office Automation

guise of a user object. The system was designed in a highly modular
fashion, so that one would not necessarily be forced to use one particu
lar user interface. One interface might be appropriate for system
developers and another, more appropriate for naive users who do not
do their own programming. We describe here a simple, but general,
interface that is adequate for illustrating the power of our system. The
material discussed in this section is covered in greater detail in chapter
4 of the M.Sc. thesis by Twaites lTwai841.

3.1. The user object class
The user interface is a "back door" into the system that allows us

to make instances of the user object class appear to spontaneously ini
tiate events. The user object class has its own predefined behaviour just
as all other object classes do. In addition, there is a special io rule to
enable us to exchange information with other objects, and a facility to
allow users to temporarily create new rules. This latter capability is
necessary if we do not wish to limit our actions to what is set out in the
user specification. Of course, any given implementation of a user inter
face may choose whether or not to allow arbitrary interactions between
users and other objects. Programmers might require a general, unres
tricted interface such as is provided by Oz, whereas applications might
present highly specialized interfaces. The kinds of objects that a user
may create and interact with can be explicitly governed by his user
specification. Furthermore, it is possible to provide a variety of user
specifications corresponding to a variety of roles to be played by the
users of a system. System administrators could thereby control the
valid interactions between roles. (See the companion paper, "Etiquette
Specifications in Message Systems", for a discussion of roles.)

The predefined user behaviour would normally include an alpha
rule, restricting authorized users to creating new users, as well as rules
for keeping track of login passwords, and so on. This predefined
behaviour may naturally be specialized to restrict or extend the power
of certain users.

The io rule is used by objects that require human intervention for
the completion of events. As an example, consider the ok_user rule in
figure 4 that checks whether a password is valid before allowing an
object to change state and continue communicating with a user.

The io rule is used to print a message and retrieve a value. Only
if the value returned is acceptable will the rule and the event fire.
Since a response must be received before the condition may be tested,
io rules are handled in a slightly different manner from other rules.
Events including io rules must be suspended, pending the user's

ok_user {
/* acquaintance must be a user */

: user,

/* print message and test response */
passwd = -jo ("password: ");

U := -; /* remember the user */
ok : = TRUE; / * change state * /
}

An Object-Oriented System 175

Figure 4: using the io rule

response. If, in the meantime, anything happens to disable the event
(such as the object being destroyed), then the event simply dies.

Temporary rules are used to expand the automatic behaviour that
is predefined for user objects. This facility is provided because it is not
possible to predict everything that a user may wish to do. Users can
therefore "tailor" their user objects by temporarily adding new rules.
Temporary rules may be used, for example, to create new object
instances, to query existing objects (through their rules), or to modify
objects.

3.2. System commands
The current user interface presents the system through a screen,

as shown in figure 5. Commands are entered in the first area. The
second area is used to indicate the current mode. The interface mes
sage area is used to display messages pertaining to the user interface.
The object manager message area is used to display messages from
objects using an io rule. These messages mayor may not require a
response. A message that is purely informative requires no response,
and is not blocking any waiting event.

Whenever an object class or a temporary rule is being edited, the
user interface screen is replaced by that of the editor, until the editing
function is completed.

There are five top-level commands in the system, each with a
one-letter name. The commands are all in prefix order, with the opera
tor preceding the operands. The commands are:

h: Help facility.

I : Logout.

176 Office Automation

Enter Command = = >

m [message number] :

+- command line I current mode
+- interface message area (transla

tor, help, debug, and logout
messages)

+- object manager message area

Figure 5: Screen layout

The specified message in the object manager message area is
displayed, and a response to the io rule may be made.

t [[<] temporary-rule-name] :
The specified temporary rule is executed. If preceded by a "<",
the user is placed in the editor, and the new or existing rule may
be edited.

c [object class] :
The user may edit the new or existing object class definition.
Upon exit from the editor, the definition may be translated and
(upon error-free translation) added to the universe of object
classes.

A BNF grammar for object classes and rules is presented in the
appendix of this paper.

4. System Design
The Oz system is written in the C programming language

[KeRi78], and runs on a VAX 11/780 under the UNIX™ operating sys
tem. The current implementation consists of under 4000 lines of C
code. The V AX was chosen for the UNIX™ program development
environment and for its availability rather than its size. The Oz system
could easily have been developed on a smaller, stand-alone system such
as a Sun workstation (which also runs UNIXTM). One of the goals of
the project was to allow users to share the same object universe. We
decided, therefore, to have one process per user, plus a single process
dedicated to object management. The system interface is via the user
processes. Requests and commands that affect the object universe are
then passed on to the object manager, which updates the database of
objects. Conversely, when events take place that affect users, the
object manager notifies the appropriate user processes. The division of
labour between system interface and object manager is intended to be

An Object-Oriented System 177

transparent to users.

One of the difficulties in using UNIX™ as an environment for
implementing Oz is that processes cannot share memory. The com
municating processes would be forced either to pass information
through temporary files, or to make use of UNIX™ "pipes", which are
buffers for passing streams of data. For the sake of speed, the latter
approach was chosen.

A related difficulty was that processes may not communicate via
pipes unless they are "related", that is, they have some common ances
tor. This problem was solved by introducing a special "host" process
that babysits the pipes and spawns new user processes. Whenever a
user wishes to enter the system, the host process is signaled, and a new
user process is created. (Signals may be sent between arbitrary
processes, provided they have the same "group id", and the process
identification of the receiver is known.) The new process inherits the
pipe from the host, and communication with the object manager is
enabled. The host is only retired when there are no more user
processes connected to the object manager and the object manager has
exhausted its current list of work to do. The next person entering the
system will (transparently) create a new host and a new object manager.

Finally, we had to decide whether to make use of pipes in either
direction, between the object manager and each of the user processes,
or have just two pipes (one for data traveling in either direction) shared
by all the user processes, or use some further variation. For
simplicity's sake we decided to use just two pipes. There appeared to
be no realizable efficiency gains by having multiple pipes, since the
object manager could read messages from ten pipes no faster than from
one. Whenever a process places a message on one of the pipes, it
notifies the receiving process by sending it a signal. Reads and writes
are guaranteed by UNIX™ to be atomic actions, thus ensuring the
integrity of the messages. Signals, however, are not queued, so a read
ing process must always check the pipe after reading a message, to be
certain that the pipe is empty.

Since processes are blocked if they attempt to write to a full pipe,
write-request, write-ok, and receipt-acknowledgement signals are used
to inform processes about the status of a pipe. The object manager
makes sures its messages are received before attempting to send new
messages to other user processes, and user processes must request a
free pipe before they attempt to send a message to the object manager.

Although these considerations may be of interest to someone
implementing an object-oriented programming environment, they do
not have a direct bearing on the object model as described in the previ
ous section. They do, however, illustrate the gymnastics one must go
through in order to implement objects in an environment with an

178 Office Automation

architecture that is better suited to supporting processes, files and
stream i/o.

The messages that are sent between the user and object manager
processes are all of a standard format. Each message consists of four
pieces of data: the message type (represented by a short integer), the
process identification of the sender (for acknowledgement purposes),
the length of the message (in bytes), and the message body (generally a
character string). User processes currently may send the following
messages:
login request:

sent if a user wishes to log into the system
change class definition:

sent if a user wishes to add, change or delete an object class

temp rule:
a temporary rule is being sent for immediate execution (and sub
sequent disposal)

instance manipulation:
the user wishes to manipulate an object instance (currently han
dled through temporary rules)

reply to message:
the message body is the response to an outstanding io rule mes
sage

logout request:
sent if a user wishes to exit the system.

There is a corresponding set of messages that may be sent by the
object manager

logout:
acknowledges a logout request; the user process may exit, die,
and return control to the calling program (usually the UNIX™
shell)

changing user contents:
a change has occurred in the user object corresponding to the
logged-in user; the user process maintains a consistent version

io rule message:
a message from another object is sent to the user object via the io
rule; a response may be in order

response to previous user message:
a response is given to a previous temporary rule, an object class
definition change or a logout

login successful:
used to inform the user process that an attempt to log in has been

successful
An Object-Oriented System 179

5. Object Management
The object manager is responsible for storing and retrieving

objects, and it must find and execute events. Object storage is divided
into two components. Since all objects of the same class share the
same behaviour, it is only necessary to store that behaviour once.
Object instances of the same class are distinguished only by their con
tents. Thus only the instance variables are actually stored for each
object instance. Object rules and the variable declarations are stored
separately, in a structure that supports the notion of object specializa
tion.

5.1. Storing and retrieving objects
In the compilation and translation of object definition, the

instance variable names are converted to integers which serve as indices
into a table of information about the variables. The correspondence
between the variable names and the indices is stored in a symbol table.
The information about the variables includes:

1. whether the variable is an instance variable or a temporary vari-
able

2. the type of the variable

3. if the type is object, then the object class

4. the location of the value held by the variable

Of course, only the permanent (instance) variables are stored.
Temporary variables exist only when events are being fired, and storage
for them is provided at that time.

Similarly, a certain amount of processing takes place when rules
are translated. Rule statements accomplish four things:

1. they may establish conditions which, if false, cause an event to
fail

2. they may assign values to temporary variables

3. they may pass information to an acquaintance

4. they may update the value of an instance variable

The first three of these functions are done while events are being
assembled. The last may only be performed if the event does not fail.
It is, of course, possible to update an instance variable to some value
sent by an acquaintance in a single statement. Statements are therefore

180 Office Automation

decomposed into simpler statements that fall into just one of the above
categories, and assignments to instance variables may be translated into
two statements: an assignment to a new temporary variable, and reas
signment to the instance variable only if the event succeeds. The
simplified rule statements are then stored in a list structure and inter
preted at run-time.

Specialization of object classes is implemented by storing rules
and variable declarations in an m-way tree [HoSa76]. Nodes in the tree
correspond directly to nodes in the specialization hierarchy. To deter
mine which rules and variables, or which versions of rules and variables
apply to a given specialization, one simply searches up the tree to the
root. One therefore inherits the closest version of a rule or a variable.
If the rule or variable does not apply to the given specialization, then
the search ends with failure at the root of the tree.

5.2. Event-searching
Rules may either be explicitly invoked, or they may be self

triggering. The self-triggering rules wait for some condition to become
true, and the triggered rules wait to be invoked by another rule belong
ing to some acquaintance (possibly another rule in the same object).

Event execution begins with self-triggering rules. A depth-first
search algorithm is used to build the event. Whenever a call to a rule
in an acquaintance is made, a branch is made in the tree, and execution
continues at that level. If execution successfully completes at a certain
level, control returns to the level above, and eventually to the self
triggering rule. If it does, an event will have been constructed, and the
tree will be traversed to update the instance variables.

If at any point a rule fails, the backtracking of the depth-first
search algorithm takes effect, and an alternative acquaintance is sought.
This process continues until an event is constructed, or all possible
acquaintances at some level are exhausted.

In addition, if an io rule is encountered, the event is suspended
and the event-tree is saved, pending a user response. In this imple
mentation, the objects in the tree are marked, and not used in other
events until a response is received.

Since the event construction always starts with a self-triggering
rule, a queue is kept of all such rules. The object manager repeatedly
attempts to construct events starting with these rules until it succeeds.
Although far more efficient schemes were initially considered, the sim
plicity of this approach made it quite adequate for the purposes of the
Oz prototype. An alternative is outlined in the following section.

An Object-Oriented System 181

Note that no synchronization problems ever arose, since the
object manager would never attempt to execute more than one event at
a time.

6. Observations and Conclusions
The Oz system served primarily to demonstrate that certain ideas

about programming with objects were workable. Not only is the object
model powerful enough to capture interesting behaviour, but it appears
to be quite workable as an implementation language. Our experience
with Oz leads us to several conclusions about what is required to pro
duce a useable object-oriented programming language. In addition,
there are a number of open questions and philosophical puzzles con
cerning the proper way to implement such a language (see also the
companion paper, "Objectworld").

6.1. Basic requirements
First of all, one would need to get rid of processes and files. They

are not only conceptually incompatible with object-oriented program
ming, but the overhead they introduce could only serve to slow down
an implementation by an order of magnitude (say). Instead, one would
need a large, permanent, virtual memory. The address space required
would certainly be larger than the host computer's primary storage, and
would have to include at least all of available secondary storage. Since
files will not exist, all of secondary storage will be available for the
storage of objects (although "files" could be made available through the
object interface). The virtual memory provided could be very simple.
There would be no notion of objects associated with pages of memory
at this level, although the pages themselves could be viewed as objects.

An object manager would use the virtual memory to permanently
store objects. It would have to be able to bring any object into main
memory quickly, given a unique object identification (id), and it would
have to "swap out" inactive objects intact. An important requirement
would be always to keep the object versions on disk at least coherent,
and as up-to-date as possible. The object manager would also include
(or work in tandem with) an event manager that would decide what
objects were currently of interest. Requirements for the event manager
are discussed the next section.

Certain objects would function as interfaces to device drivers.
These objects would include the disk drive, the terminal, a communica
tions network, and so on. A uniform object interface to everything

182 Office Automation

would be desirable, so that even the operating system kernel, and pages
of memory, could be dealt with as objects, by privileged programs.
This is important if the language is to have any credibility as a systems
implementation language.

6.2. The event manager
Events trigger other events. An event that has failed once will

always fail, unless something happens to change the state of one of the
objects involved in the event. It follows, as a consequence, that it is
only necessary to check whether or not events are fireable, when vari
ables mentioned explicitly in trigger conditions are altered by other
events.

It suffices, therefore, to keep track of a queue of recently altered
(and created) objects. For each object in the queue, one must deter
mine what new events may be triggered as a consequence of the state
change, and then attempt to construct an event. If no new event is
found, the object is removed from the queue. Otherwise an event is
found, and all altered participants are added to the queue. Of course,
the queue need not be handled in a strictly sequential fashion. It is
only necessary to ensure that all objects in the queue are handled even
tually, and preferably before any objects that are added later. True con
currency may be achieved if several events are searched for at once.

To construct events, one would need to keep track of who is
acquainted with whom, and determine which objects may initiate an
event involving the one in the queue. It is open at this point to what
extent one may intelligently choose possible events. To a large extent,
this depends on how carefully the language is designed. The event
manager should be presented with a clear list of possible acquaintances,
to eliminate random searching. The event mechanism should be
presented to the object programmer in such a way that it is clear how
costly it will be to search for events, depending on how objects are
designed.

Obviously, one would save time by checking only events that
have a reasonable expectation of succeeding. A good language design
can eliminate a great deal of fruitless event-checking, by making it pos
sible at compile-time to note which events might trigger other events.

An Object-Oriented System 183

6.3. Object domains
A more sophisticated way of organizing objects is needed. A flat

object universe makes event-searching a horror if there are many
objects. One may easily organize objects hierarchically into domains.
Each object is then an instance variable of some parent object, which is
its domain. Conversely, all objects- are the domains for their instance
variables.

Parents are automatically acquainted with their children, and vice
versa. It immediately follows that children can (ultimately) only
become acquainted with anything in the outside world - and even with
other siblings - through their parents. A parent may access its chil
dren through the instance variable names, but all other objects must do
so through the children's id5. An id may thus be thought of as an
indirect reference to an object. Once an object becomes acquainted
with other objects, however, it becomes a free agent. A parent may
choose, of course, to be protective, and always act as a middleman for
certain of its children. The only other object that would necessarily be
acquainted with all objects in the system would be the object manager.
System objects or other privileged objects could then learn the identity
of any object through the object manager, even when the parent is
reluctant to reveal it.

Instance variables save space for objects. This is consistent with
our intention that everything be an object. In Oz, only primitive
objects (strings, etc.) were instance variables, but, in general, instance
variables can hold any object. A parent may create a child object by
saying to the system, "create an object for me, and put it here'. If the
object is destroyed, the space may be reused. Note that an object may
only create another object if it has a place to put it. Otherwise it must
find an acquaintance who is willing to be a parent.

Since one does not necessarily know the classes of all objects that
one will become acquainted with, there should be some facility for dis
covering the class of an acquaintance. Similarly, an object would need
to be able to discover what rules are valid for that acquaintance, and be
able to dynamically address an arbitrary rule. Both of these problems
may be addressed by supplying default rules to all objects in the
language for revealing class and behaviour information, and for access
ing rules dynamically using, say, strings composed of rule names. This
is comparable to facilities in languages such as APL, LISP, and Snobol,
that allow one to compose strings of commands and execute them
through an interpreter.

184 Office Automation

6.4. Rules and instance variables
A wider variety of instance variables is needed. Instance variables

could be primitive objects, such as integers, characters and object ids, or
they could be complex objects. One would naturally want to have
arrays of objects, but it also appears highly desirable to allow for lists of
objects. A list would be similar to an array, but of unbounded length.
Furthermore, whereas an array could contain gaps for nonexistent
objects, lists might consist of existing objects only. Lists are important
to have if certain objects and domains are to grow without bound. In
particular, a text object would likely have an instance variable which is a
list of characters (a string).

Rules similarly require some re-thinking. Explicit assert and fail
statements appear to be more natural than the present scheme of sim
ply stating conditions. (A fail statement is equivalent to
assert(F ALSE) , and an assert(< cond >) is equivalent to if(not
<cond » then fail.) The ability to spawn asynchronous events may also
be necessary for certain applications, though it is not clear what would
happen to an event spawned by another event that fails.

A cleaner notion of event-searching results, if we force objects to
provide a list of acquaintances with which they may be interested in
communicating within some event. Clearly, the longer these lists get,
the more work that must be done to search for events. The cost of
event-searching is more directly in control of the object programmer.
Ideally, the programmer should be able to tightly specify precisely the
circumstances under which event-searching should take place. A care
fully designed object would then cause a minimum of unsuccessful
event searches. Again, a good language design will make the cost of
triggering for alternative object specifications very apparent to the pro
grammer.

6.5. Open issues
There are a number of questions for which it is more difficult to

provide adequate answers. Some of these may be religious issues that
can be argued a variety of ways. Others may quite significantly affect
the function and semantics of the language and the system, but in ways
that are not yet obvious. Still others do not seem to yield any appropri
ate solutions. We shall briefly discuss a few of the more interesting
questions.

Are rules objects? Certainly object specifications are themselves
objects (possibly text objects), and the executable code must be stored
as an object, but there appears to be no conceptual justification for
viewing rules as objects. Alternatively, it would be very convenient to

An Object-Oriented System 185

be able to dynamically create rules, store them as instance variables,
and execute them. Temporary rules could be handled in this fashion.
Certain objects could then modify their own behaviour, or deal with
arbitrary acquaintances in interesting ways. A good example would be a
debugging object used to develop new object specifications.

Should objects be allowed to change their own specification by
adding variables or rules? If an object has a list of rules, and rules are
objects, then an object could just create a new rule and add it to the list.
Somehow this seems to run contrary to the principle of an object as a
sort of abstract data type. Instead, perhaps one should have to create a
new object class and convert old objects to new objects. This would
avoid horrendous problems in managing objects that are always chang
ing their own representation. Furthermore, if it is possible to dynami
cally create and store temporary rules as instance variables, then it is no
longer necessary to alter the default behaviour of an object.

Since one does not necessarily know the classes of all objects one
may become acquainted with (since objects of new classes will likely
become acquainted with old ones), there must be a way to get at the
rules of these new objects. The suggestion made earlier was to allow
for dynamic invocation of rules. This might be sufficient justification
for a rule primitive object class which would be used just to store rule
identifiers (as opposed to strings containing their names).

Temporary variables present some philosophical problems. Are
they objects too? They can hold the same information that permanent
objects can, but they come and go with apparent abandon. This may be
a religious issue, since one can take the view that events are atomic,
and, as a consequence, temporary variables never really exist.

More seriously, one should consider what is meant by assigning a
value to an instance variable. Since instance variables are objects, one
should never be able to simply "assign" a value to them. Rather, one
should have to invoke a rule in the object, and pass the value to be
assigned. Of course, this must eventually stop with primitive objects,
so one could consider the notation ":=" as shorthand for invoking an
implicit assign-value rule. Complex objects must be treated with more
respect, however. It follows then that the only "values" appropriate for
passing between acquaintances are primitive objects such as integers,
characters and object id).

An exception to this rule would be if an object is to change
domains. It might be necessary, for example, to send an object from
one machine to another. The alternative would be to destroy the origi
nal of an object, and to create a "copy" in the new domain. For many
object types, however, it might be undesirable to allow the creation of
copies in this fashion. Far simpler and much more elegant would be to
permit objects to change domains. In the case of primitive objects such

186 Office Automation

as integers, ids and strings, it is simpler to make a copy of the object,
and pass that when communicating with an acquaintance. If a large
object is to be passed (rather than simply its id), duplication of the
object is likely to be undesirable, for efficiency reasons. In environ
ments where objects represent documents or private communications, it
is important to be clear that the actual owner of the object may change,
rather than just its apparent owner.

If several object systems are to be connected via a network, and
these systems are allowed to exchange objects, then it is important to
ensure that all objects have ids unique in the entire object universe. All
objects on a given machine should therefore be provided with
identifiers that somehow indicate the host machine on which they were
created (or the object manager should at least be able to handle
identifiers for objects originating from a different machine, if they may
superficially coincide with local identifiers).

A thorny question is how to handle events taking place between
two (or more) machines. A reasonable approach is to appoint overseer
objects that act as go-betweens for all the objects on a given machine,
and those on other machines. The overseers would then be the only
objects to partake in very simple events limited to exchanging objects
between systems. Once an object has moved to a different system, it
can take part in more complicated events.

As a final comment, we should point out some of the dangers of
muddying the atomicity of events. If an event is allowed to "partially
fail", or to fail but spawn another event before failing, then there is a
potential for unauthorized information to leak from an object. Atomic
events have the desirable property that none of the participants in an
event give up any information unless all of them agree to a mutually
acceptable contract (consisting of all the trigger conditions). An event,
by definition, has no side effects unless it fires. If this definition is
relaxed even slightly, then the security of all objects is threatened. Any
attempts to do so would therefore have to take this into account by
preventing pending events from communicating with external objects or
with other events.

7. Appendix: BNF Grammar for the Oz Language
The BNF grammar presented below uses the following meta

symbols and meanings:

I
[x]
{ x }

shall be defined as
alternatively
zero or one instance of x
zero or more instances of x

An Object-Oriented System 187

the terminal symbol xyz "xyz"
<x> the non-terminal symbol x where x is a sequence

of letters and hyphens beginning with a letter.

<object> :: = <object-class> ":" <super-class> "{,,
{ <declaration> ";" }
{ <rule> }
It} "

<object-class> ::= user
I <identifier>

<super-class> :: = object
I < 0 bj ect -class>

<declaration> ::= <variable> { "," <variable> } ":" <type>

<rule> ::= <rule-name>
["(" [<variable> { "," <variable> }] "),,]
"{,, { <statement> ";" } "},,
["(,, [<variable-value>] "),,]

<statement> ::= <declaration>
I <condition>
I <send>
I <assignment>
I <function>
I <sub-rule>

<condition> ::= <variable-value> <comparator> <expression>

<comparator> ::= "="
I"!="
1"<"
1"<="
I">"
1">="

<send> ::= <send-name> "." <rule-name>
"(,, [<variable-value> { "," <variable-value> }] "),,

<assignment> ::= <identifier> ":=" <expression>

188 Office Automation

<function> ::= <identifier>
"(,, I <variable-value> { "," <variable-value> }] ")"

<sub-rule> :: = "{,,
<statement> ";"
{ <statement> ";" }
{ "I" <statement> ";" { <statement> ";" } }
tI}"

<expression> :: = <variable-value>
I <function>
I <send>
I <arithmetic-expression>
I "(,, <expression> "),,

<arithmetic-expression> ::= "-" <expression>
I <expression> <arith-op> <expression>

<arith-op> ::= "*,,
I "l"
1"+"
I It_"

< rule-name> :: = alpha
Iomega
I io
I <identifier>

<send-name> <identifier>
1"-"
I "*"

<type> ::= integer
I string
I <super-class>

<variable-value>
I <value>

<variable> ::= "-,,
I <identifier>

<variable>

<value> :: = <integer-value>
I <string-value>
I "*,,

An Object-Oriented System 189

I nul

<identifier> ::= <alpha> { <alphanumeric> }

<integer-value> ::= <numeral> { <numeral> }

<string-value> :: = <double-quote> <character> <double-quote>

<alphanumeric> ::= <alpha>
I <numeral>

<alpha> ::= "a" I "b" I "c" I "d" I "e" I "f" I "g" I "h"
I "i" I 'J" I "k" I "1" I "m" I "n" I "0" I "p" I "q"
I "r" I "s" I "t" I "u" I "v" I "w" I "x" I "y" I "z"
I "A" I "B" I "C" I "D" I "E" I "F" I "G" I "H" I "I"
I "J" I "K" I "L" I "M" I "N" I "0" I "P" I "Q" I "R"
I "S" I "T" I "u" I "V" I "W" I "X" I "Y" I "Z" I "_"

<numeral> ::= "0" I "1" I "2" I "3" I "4"
I "5" I "6" I "7" I "8" I "9"

<double-quote> ::= the double quote character (,,).

<character> ::= any character - the conventions for non
printing characters, single quote and "\" are the
same as in the C programming language [KeRi78].

8. References
[ABBH84] [EINu80] [Geha82] [Gold84] [GoR083] [GrMy83] [Gutt77]
[HaKu80] [HaSi80] [Hewi77] [HoSa76] [KeRi78] [Moon84] [Morg80]
[NiMT83] [SSKH82] [Twai84] [Zism77] [Zism78]

Part V

Modelling

9
Conceptual Modelling and
Office Information Systems

S.J. Gibbs

ABSTRACT In this paper we explore the relevance of an area
of computer science known as conceptual modelling to the
design of office information systems. It is our position that
office information systems and data modelling share a number
of problems in common and should mutually benefit from any
exchange of ideas. We begin by first reviewing conceptual
modelling. In the second section we then look at three office
information systems from a conceptual modelling perspective.
Finally we describe the rationale behind a conceptual model
intended specifically for office information systems.

1. Conceptual Modelling
A data model can be viewed as a specification language for

representations of the real world. That is, given a problem in an appli
cation domain, one uses a data model to specify a representation of that
portion of the real world relevant to the problem. The representation
may contain both a static, or structural aspect and a dynamic, opera
tional, aspect. It is the task of a database management system to pro
vide a physical implementation of a particular data model by translating
the structures of the model to physical storage structures and the opera
tions to physical operations.

There are three data models prevalent in current applications: the
network, hierarchical, and relational models. With traditional network
models, a specific example being CODASYL [TaFr761, data is

194 Office Automation

organized by using record types and set types. Record types specify the
structure of record instances, set types specify (functional) relationships
between record instances. The hierarchical data model [TsL076] is a
restricted form of the network model in which relationships are
arranged in a tree. The relational data model [Codd70] organizes data
into n-ary relations. The structure of a relation consists of a number of
attributes over underlying domains.

The increasing complexity of database applications has raised
questions concerning the three traditional data models [Kent79]. For
example, Hammer and McLeod [HaMc81] claim that these models
force the user to think in terms of computer-related concepts rather
than the natural structure of the data. This is most evident in the net
work and hierarchical models where logical relationships are associated
with physical access paths. Langefors LLang80] argues that concepti> of
relational database theory, such as joins and normalization, have arisen
from processing considerations, and that even the relational model is
more concerned with organizing data for processing purposes than with
using natural structure.

A second criticism is made regarding the semantics of the struc
tural primitives within these models. Schmid and Swenson [ScSw75]
illustrate the ambiguity of semantic relationships among relational attri
butes. This is shown to result from the inability of the relational model
to distinguish properties of objects from relationships between objects;
both are modelled by the same structure. Other forms of "semantic
overloading" also occur in the relational model [McLe78].

The area of data modelling that deals with problems such as the
above is known as conceptual data modelling [ACM80, Brod80]. Con
ceptual modelling refers to the use of representations that capture the
natural structure of data. Consequently, the emphasis is away from
machine or processing-oriented representations and more towards an
information-oriented perspective. A number of alternative data
models, collectively known as semantic data models, have been
developed for conceptual modelling. Some of the more well-known
semantic data models and related languages are:

the semantic binary data model [Abri74],

the basic semantic data model [ScSw751,

the entity-relationship model (ER model) [Chen761,

the semantic hierarchy model [SmSm77a, SmSm77b, SmSm79],

the modelling and programming language TAXIS [MyBW78,
MyBW80, Wong83],

the semantic data model (SDM) [HaMc78, HaMc81, McLe78],

the extended relational model (RM/T) [Codd791,

Conceptual Modelling and Office Information Systems 195

the functional data model and the data language DAPLEX [ShipS 11 ,
and the conceptual language Galileo [AlCOS3, AlOrS3].

Additional information on these and other semantic data models, e.g.,
[Senk75, RoMy75, Rous76, Lang77, LangSO, SuL079], may be
obtained from data modelling surveys [KeKT76, WoMy77, McKiSl,
TsLoS2].

As mentioned previously, the main goal of semantic data models
and conceptual modelling in general is to capture the natural structure
inherent in an application. The advantages of models based on natural
structure are that they: simplify the design of complex systems by pro
viding a modelling methodology; give a high degree of logical indepen
dence, as is required by evolving applications; document the structure
of a system at varying levels of detail; and aid the user in interpretation
of data. We now examine the constructs used by many semantic data
models in their attempt to represent natural structure.

1.1. Object Orientation
One of ~he origins for the claimed use of natural structure is the

ability of semantic data models to specify constructs that correspond
directly to real-world entities. We will refer to this as the object-oriented
approach, and the associated construct as an object. (Many models do
not use the term "object" but choose instead "token" or "entity".) With
the object-oriented approach, the designer determines the real-world
entities to be modelled and then specifies their object representations.
The procedure is more one of adapting the model to the world than the
world to the model.

A number of refinements or varieties of objects are possible.
Abrial, for example, distinguishes between concrete and abstract objects
[Abri74]. A concrete object represents a physically existing entity such
as a person or thing. An abstract object resembles a concept, for
instance a number or a colour; something which has not come into
existence at a particular time. A second division is between independent
and characteristic objects [ScSw75]. An independent object is one that
may exist in isolation, unrelated to other objects. A characteristic
object is a secondary object used to describe an independent object.
Independent objects are natural units for insertion and deletion, while
characteristic objects form natural modification units. Similar to charac
teristic objects are dependent objects, an example of which are the "weak
entities" of the ER model. The existence of a dependent object is sub
ject to the existence of some related independent object. If the
independent object is removed, so are all its dependent objects. This is
often referred to as a dependency constraint [WoMy77] or as an existence

196 Office Automation

dependency [Chen76].

Generally, objects may possess some structure. A property of an
object is a named relationship between the object and a value (alternate
terms are "characteristic" and "attribute"). Most semantic data models
allow the value of a property to be a set, i.e., a multi valued property.
Where a significant difference arises is in whether or not concrete
objects may become property values. Three examples of models that
do not allow concrete objects as property values are the basic semantic
data model, the ER model, and RM/T. When properties cannot take
concrete objects as values, an additional mechanism is needed to
represent relationships between concrete objects. In the basic semantic
model and RM/T, this additional modelling construct is known as an
"association"; in the ER model it is simply referred to as a relationship.

The introduction of an explicit construct for relationships leads to
a number of design alternatives. First, the relationships themselves
may be allowed to participate in other relationships. This is not possi
ble in either the ER model or the basic semantic model. RM/T, how
ever, has both relationships that are treated as objects ("associative enti
ties") and those that are not ("nonentity associations"). Since associa
tive entities are in fact objects, they are free to participate in object
relationships. A second design alternative is whether or not relation
ships may take properties. Here again different models make different
choices. In the basic semantic model, a relationship cannot be
described by properties (this is sometimes described as a non
information-bearing relationship), while the ER model does allow rela
tionships to take properties.

1.2. Abstraction Mechanisms
An abstraction mechanism is something that allows us to hide or

ignore unwanted detail. Within data models, abstraction mechanisms
are used to construct higher-level constructs from a number of lower
level constructs or primitives. There are three abstraction mechanisms
that are commonly identified: classification, generalization and aggrega
tion .

• Classification

Many objects in a large data space will have similar structures,
that is, they will share a common set of properties. Qassification allows
one to ignore the details of particular objects by using a construct which
represents a set of objects with similar structure. In this section we
shall use the term class to refer to the construct resulting from
classification; other similar terms include "object type", "entity set", and

Conceptual Modelling and Office Information Systems 197

"entity type". Members of a class are referred to as instances of the
class; the opposite of classification is referred to as instantiation.

Classes have the dual aspects of a type, i.e., a structural
specification, and a set. For example, the class PERSON may refer to
both a collection of people and a particular property structure. Some
models develop the notion of types prior to introducing classes. For
example, in Galileo one can define a type which is not associated with a
class. However, the converse, a typeless class, is not possible since by
definition every class has a type aspect.

In some models, for example TAXIS and the semantic hierarchy
model, classification can be applied more than once. This results in a
class whose extension is a set of classes (referred to as a metaclass in
TAXIS). Furthermore, instances of a metaclass may be treated as
objects, i.e., classes themselves may have properties (not to be con
fused with the properties of instances of the class). An interesting
observation concerning multiple levels of classification is that for most
applications two levels appear to be sufficient [MyBW80]. (Note that
typed programming languages, such as Pascal, provide only one level of
classi ficati on.)

• Generalization/Specialization

Generalization refers to the formation of a single class by combin
ing two or more distinct classes. The extension of the resulting class
contains the extensions of the initial classes. In practice it is specializa
tion, the inverse of generalization, which is used to generate new
classes.

Consider the directed graph whose nodes correspond to classes,
where an arc from one node to a second indicates that the second is a
specialization of the first. Since a class cannot be both the specializa
tion and the generalization of another class, there can be no closed
paths within the graph. In some models, TAXIS for example, the
graph is connected, and there is always a most general class. Other
models, such as SDM and Galileo, define "base classes", from which
specializations are derived. However, this is not an important distinc
tion, since one can easily introduce a most general class, such as
THINGS, for which each base class is a specialization [HaMc81].

A number of methods are used to specify how the derived class
(the specialization) results from the parent class (the generalization).
One method, found in RM/T and an early version of the semantic
hierarchy model [SmSm77b], is to partition the parent by using the
values of a particular property (sometimes called a "category attribute").
More generally, a predicate involving the properties of the parent type
may be specified, and the derived class consists of those instances of
the parent class satisfying the predicate. TAXIS, SDM, and Galileo

198 Office Automation

support this form of specialization. One may also introduce a speciali
zation indirectly by adding additional properties to the type of the
parent class; this is common in TAXIS. Other methods include explicit
construction of the derived class by selecting instances of the parent
class or by the application of the intersection operator to two parent
classes. Depending upon the method used, it may be necessary to
enforce strict hierarchical specialization [HaMc81], in which case a class
is the specialization of at most one other class.

The section on classification described how the class notion is
composed of two aspects: an intensional, type aspect and an exten
sional, set aspect. Specialization is essentially a relationship between
classes and, as one expects, this duality is again evident. The exten
sional aspect of specialization is that the derived class forms a subclass
of the parent class, i.e., the extension of the derived class is a subset of
the extension of the parent class. The intensional aspect of specializa
tion is that the type of a derived class is a subtype of the type of the
parent class. This behavior is clearly illustrated by Galileo, where, as
mentioned previously, the set and type aspects of a class are separated.

Since the type of a derived class must be a subtype of the parent's
type, it is only necessary, when specifying the structure of a derived
class, to indicate that part which differs from its parent's structure. The
remaining part of the derived class' structure is obtained from the
parent, hence; the derived class inherits the structure of the parent.
Multiple inheritance refers to the case in which the derived class has
more than one parent, and so inherits two or more structures. Multiple
inheritance can introduce name-clash problems [GoB080b], so either
the user must be cautious or the model must enforce a naming conven
tion .
• Aggregation

Aggregation refers to how certain model constructs may be
viewed as collections or aggregates of other model constructs. Two
forms of aggregation are used by semantic data models. The first,
which has been called Cartesian aggregation [Codd79], views a class as
an aggregate of properties. Cartesian aggregation can be applied succes
sively in most semantic data models, that is, objects do not have a flat
structure. For example the class PERSON may be viewed as an aggre
gate of the properties NAME and ADDRESS, while ADDRESS may in
turn be viewed as an aggregate of STREET, CITY, and COUNTRY.

The second form of aggregation, known as cover aggregation
[Codd791 (an alternative term is "user-controllable grouping"
[HaMc78]), views an object as an aggregate of other objects. The
example given in the literature concerns ships and convoys [HaMc78,
Codd791; here a particular convoy can be viewed as an aggregate of ship

Conceptual Modelling and Office Information Systems 199

instances. Cover aggregation bears a close resemblance to classification;
the difference seems to be related to the notion of membership. The
membership of an object in a (base) class is statically determined by the
object's structure; membership in a cover aggregate, however, is
dynamic, and likely to change as events occur in the real world.

1.3. Semantic Integrity Constraints
Consider a particular representation of some application domain as

specified by a data model. A constraint is any condition present in the
application that must be satisfied in order to achieve a complete and
consistent representation [ACM801. The constraints expressed by data
models have been described as being inherent or explicit [Brod781.
Inherent constraints derive from the constructs of the data model itself;
they may be considered as restrictions of the model. An explicit con
straint is one expressed by using a constraint specification facility; fre
quently such constraints are called semantic integrity constraints.

A number of commonly occurring constraints have been
identified and will now be described. Inherent constraints vary from
model to model, and, furthermore, a constraint inherent in one model
may require explicit specification in another. Consequently, the
inherent/explicit categorization is model dependent and will not be
used in the following.

A type constraint restricts the values of a property or relationship
to the instances of a particular class. The domains of the relational
model also serve this purpose, so type constraints are sometimes
referred to as "domain constraints". Type constraints are also used in
models with procedural constructs, such as TAXIS and Galileo, to res
trict the values used as arguments of procedures. A uniqueness con
straint occurs when the value of a property or group of properties must
take unique values over a class. The traditional example occurs in the
relational model, where the properties (attributes) which must take a
unique value are called a "key". We mentioned the dependency con
straint when introducing dependent objects; the existence constraint
[WoMy77] is of a similar nature. This constraint requires the removal
of all relationships with which an object is involved, should the object
itself be removed (this is also referred to as "referential integrity"
[Codd79]). A cardinality constraint imposes a restriction on the cardi
nality of relationships between classes. Both the binary semantic data
model and the entity-relationship model make frequent use of these
constraints. A further constraint is one in which a property value is cal
culated or derived from other information. SDM and Galileo provide a
number of mechanisms for deriving property values. For example, in
SDM a property value may be calculated by using an arithmetic

200 Office Automation

expression involving other property values, or by applying operators
such as "minimum" or "average" to a class. Finally, a common con
straint is to forbid the modification of certain properties. This is illus
trated by TAXIS, where unmodifiable properties are known as "charac
teristics" .

There are two methods commonly used for the specification of
semantic integrity constraints [HaMc751. The "state snapshot approach"
or static specification involves identifying possible states of the represen
tation. The second, the "state transition approach" or dynamic
specification focuses on the allowable state-altering operations. These
two methods may be characterized as declarative versus procedural,
since the first is descriptive in nature while the second is obviously pro
cedural. Certain constraints are more suited to one method than the
other, and so, for full generality, both methods are often necessary
[TsL0821. As examples: In the binary semantic data model, type and
cardinality constraints are declarative, other constraints are embodied in
procedures. In T AXIS, uniqueness and type constraints, and
unmodifiable properties are declared in class definitions; further con
straints are specified using procedural means. In DAPLEX, explicit
constraints can be specified either declaratively using a logical assertion
or procedurally by using an operation sequence.

2. Office Information Systems
The implementation of an office information system is a major

programming effort requiring database, communications, and graphics
software. (Design requirements of office information systems are dis
cussed in [BrPe84].) As a result, few systems have been developed that
contain all the functions needed by an OIS. Instead we find a number
of systems which have concentrated on different aspects of the OIS. A
brief description of a number of these systems follows.

Two of the earlier endeavours in office automation were the Busi
ness Definition Language (BDL) [HHKW77] and the report of the
CODASYL end users facilities committee (EUFC) [Lefk79J. BDL is a
very high-level programming language which arranges business applica
tions in terms of three components: form definition, document flow,
and document transformation. The EUFC describes an object-oriented
interface for CODASYL databases; many of the ideas proposed by the
EUFC are now found in commercial systems [SIKV82, Will83].

PIE (Personal Information Environment) [GoB080a, GoB080b],
NUDGE [GoRo77], and Odyssey [Fike81] use techniques from
artificial intelligence to provide user support in specialized areas. PIE
extends the Small talk programming language [Inga78, BYTE81l with

Conceptual Modelling and Office Information Systems 201

multiple inheritance and a context mechanism. As an example, a user
may view a document in different contexts, such as prior to and after
revision, or a group of users may use contexts to organize the contribu
tions of different members. NUDGE is a scheduling program that uses
general knowledge about people, their activities, and meeting places to
resolve scheduling conflicts. Odyssey assists the user in completing
travel arrangements by keeping a record of the trip plan as it is
developed and by supplying information as it is required. The
knowledge representation language KRL [Bo Wi 77] is used to construct
electronic forms on which the planning activity is centred.

Scoop [Zism77] and OfficeTalk-D [ElBe82] are concerned with the
specification and automation of office (or business) procedures. Scoop
uses an augmented Petri-net (APN) formalism to specify the actions
and timing conditions of office procedures. An APN interpreter moni
tors the state of procedure instances and determines when actions are
to be performed. OfficeTalk-D is an extension of OfficeTalk-Zero
[EINu801, an early prototype office information system from Xerox. In
OfficeTalk-D office procedures are modelled by information control nets
(lCNs) [EINu801, a formalism whose primitives are activities and repo
sitories of information. An ICN is translated into an internal represen
tation stored in an entity-relationship database. The entity types
include activity, task, actor, and role. The relationship types include
status between activities and tasks, precedence between activities, player
between actors and roles, and performer between roles and activities.
OfficeTalk-D is implemented in a highly distributed environment; the
activities of a single procedure instance may be performed on different
nodes in the network. Additionally, a graphic-based user interface real
istically depicts the forms used by the office procedures.

A number of systems have investigated various problems associ
ated with forms handling. FOBE (Form Operation By Example)
[LuYa81] and OPAS (an Office Procedure Automation System)
[LSTC81, LuCS82, SLTC82] extend database languages (for data
definition and processing) to encompass hierarchically structured forms.
The MIT office workstation [AtBS79] uses a knowledge-embedding
language to define form constraints (derived fields and type con
straints). OFS [Cheu79, Gibb79, Tsic80] translates form operations
(form filling, filing, mailing, etc.) into operations on an underlying rela
tional database management system. TLA [Hogg81, HoNT81, Nier811,
is an extension of OFS with provisions for forms procedure
specification and automation. Further extensions to OFS have included
a global query facility to evaluate form queries over a network of sta
tions [RaGi82, TRGN82] and a voice-response system using a text-to
speech synthesizer [Lee81, Lee821.

The three systems we will examine in detail, the Star Information
System from Xerox, the Kayak project at INRIA, and the System for

202 Office Automation

Business Automation from IBM, are more general in their scope than
the systems mentioned above. These three systems deal with informa
tion other than forms and have addressed communications and user
interface problems.

2.1. The Star Information System
The Xerox Star [SIKV82, SIKH82, PuFK83] is the first commer

cially available system to provide a uniform graphic-based interface for
a multitude of office functions (Apple's Lisa computer [Will 83] now
offers many of the features available on the Star). Naturally, consider
able time was spent on the design of the user interface, and, in the
words of the Star's designers [SIKV82;246]:

We have learned from Star the importance of formulating the fun
damental concepts (the user's conceptual model l) be/ore software
is written, rather than tacking on a user interface afterwards.

The "user's conceptual model" chosen by Star is that of the office as a
collection of physical objects obeying certain laws. In order to see how
this model has been incorporated within Star it is first necessary to look
at Star's architecture.

The Star system runs on Ethernet [MeB0761, a 10M bps local area
network developed by Xerox for office applications. Attached to the
Ethernet are specialized servers and a number of user workstations.
The available servers include a file server for shared files, a printer
server, and a network gateway server which allows access to public data
networks. Each user workstation contains a processor with 512K bytes
of main memory, up to 29M bytes of disk memory, a 1024 x 808 bit
mapped display, and a pointing device known as a mouse.

The graphic display is used for a visual simulation of an office
desktop. Objects placed on the desktop are represented by small
graphic symbols known as icons. There are various classes, or types, of
icons defined within the system and these correspond to common office
objects. Examples of icon classes include folders, documents, mailtrays
and printers. The user may "move" an object by pointing to its icon
with the mouse and then pointing to a new location on the desktop.
For instance, to print an object, the object is simply moved to the

1 This quotation illustrates a potential source of confusion in the application of data model
ling to office iriformation systems. While data modelling and software systems design in
general share much terminology, a number of terms are used with quite diffirent connota
tions. For example, "conceptual model' as used in this quotation refers to a set of guide
lines or principles to be followed during implementation; not to a high-level formal represen
tation of the real world as in data modelling.

Conceptual Modelling and Office Information Systems 203

printer icon.

The Small talk programming language was used during the early
development of Star and there is a correspondence between Smalltalk
classes and icon classes. Just as Small talk classes are arranged in a
superclass/subclass hierarchy, so we find icon classes similarly arranged.
Every icon is either a junction icon or a data icon. A function icon per
forms some action such as printing an object or transferring an object to
another location. Examples are printer icons and mail tray icons. Data
icons are passive and resemble traditional files. Examples of data icons
are documents and folders.

In general, one may view a physical object at varying levels of
detail. For example, if we see a closed book on our desk, the only
information we gain includes such things as the name of the book and
its physical location. It is this type of information that is represented by
an icon. However, we may choose to open the book and inspect a page
or two, in which case we are provided with much more information.
Analogously, Star allows icons to be "opened"; this operation creates a
window in which the object is displayed in more detail. Once an icon
has been opened the user may inspect the object or modify the object
by performing editing operations within the window. Upon completion
the window is closed and the icon reappears.

When an object is viewed in a window, a transformation takes
place during which properties of the object are used to determine the
format in which the object is displayed. For example, objects such as
documents contain a property for specifying the font. The value of this
property is implicit in the display image when the document is viewed
through a window. Property sheets allow the user to view these proper
ties explicitly by using a representation which is closer to the object's
underlying structure. (Property sheets are only associated with data
icons; function icons have option sheets which allow the selection of cer
tain function options.)

In Star a small number of "generic" commands are used to per
form many different office functions. The most important of these
commands are MOVE, OPEN, CLOSE and SHOW
PROPERTIES/OPTIONS. As previously mentioned, MOVE can be
used to mail an object by moving it to a mail tray. Similarly, an object
to be filed is moved to a file cabinet. SHOW PROPERTIES and SHOW
OPTIONS display property sheets and option sheets, respectively. To
retrieve an object one could perform SHOW OPTIONS on the file
cabinet; this allows a search condition to be specified which is then
evaluated by the file cabinet. To reformat an object one would use
SHOW PROPERTIES. To edit one uses OPEN and CLOSE. Many of
these commands are performed by simple pointing actions using the
mouse; typing is kept to a minimum.

204 Office Automation

The streamlined quality of Star as well as the successful integra
tion of a number of functions make it an attractive system. There are,
however, some disadvantages. Perhaps the most serious from a model
ling point of view is that the data management facility [PuFK83] is in
essence a simple file system. Although data can be modified, queried,
and formatted by using the Star's graphic interface, there is no attempt
to describe the logical inter-relationships of the data. Consequently
constraint specification and querying are not as sophisticated as in data
base management systems, nor is the controlled sharing of data by mul
tiple users possible. Furthermore, the data management facility uses
structuring notions ("records", "fields", and "tables") that differ from
those used by the remainder of the Star system ("objects/icons", "pro
perties", and "types/classes").

2.2. The Kayak Project
Kayak [Naff81a, Naff81b, Quin81, Sche81] is a French govern

ment sponsored research project (now completed) concerned with a
broad range of office automation problems. The project has developed
both hardware and software components for office information systems.
Examples of Kayak hardware include a multimedia office workstation
(called the "Buroviseur") [Naff81a, Sche81] and two local area net
works: DANUBE [Naff81a], a bus network similar to Ethernet, and
TARO (the TAble ROnde) [Naff81a], a token-passing ring network.
Software components include PLUME [Naff81b, Quin81], a general
purpose editor for the Buroviseur, and AGORA [Naff81a], a
computer-based message system. The Buroviseur and PLUME exem
plify the variety of information occurring in office information systems
and so will be discussed in more detail.

The architecture of the Buroviseur is similar to the Star worksta
tion mentioned above. As with the Star, the Buroviseur contains local
disk storage, a local processor, a bit-mapped display and pointing dev
ice, and a network interface. The most notable difference is in the area
of audio capabilities. The Buroviseur contains additional hardware for
performing a variety of speech-oriented functions. Specifically, the
Buroviseur can perform speech synthesis (both from encoded speech
and text-to-speech synthesis), speaker-dependent word recognition
(with a 100 word vocabulary), and telephone dialing and answering (the
telephone itself, though, is not integrated with the Buroviseur, i.e.,
voice messages cannot be stored or processed).

The PLUME editor was designed to take advantage of the
hardware capabilities of the Buroviseur by allowing the user to create
muitipietype documents, that is, documents that contain more than one
data type. PLUME presently supports text information, raster graphics,

Conceptual Modelling and Office Information Systems 205

and vector graphics; planned additions include arbitrary bit-maps and
voice annotation.

A PLUME document has a hierarchical structure with three node
categories: atoms, units, and segments. An atom is a primitive data
value. For example, a text atom is a single character, a raster graphics
or bit-map atom is a pixel, a vector graphics atom is a line. Units are
sequences of atoms. A unit forms a word in the case of text, a region
in raster graphics, and a polygon in vector graphics. Finally a segment
is a collection of either units or other segments (so the hierarchical
structure can be more than three levels deep). A number of attributes
(such as font, justification, etc.) can be specified at various levels of the
hierarchy; they control the presentation of the document in a window
on the Buroviseur's display.

Besides the creation of documents with PLUME, the Buroviseur
allows the user to perform other operations such as document mailing
and retrieval; a description of the remainder of the user interface is,
however, rather hard to obtain. Perhaps what this brief description of
the Buroviseur best illustrates is that the introduction of multimedia
data is not without cost, and that much of this cost is born by the editor
which must provide greater functionality than traditional text-only edi
tors.

2.3. The System for Business Automation
The System for Business Automation project at IBM has

developed a number of software systems. The earliest was Query-by
Example (QBE) [Zloo77l, a popular two-dimensional language for
specifying relational queries and general database operations. More
recently the project has developed Office-by-Example and the System
for Business Automation itself. These two systems have a number of
common features but are based on slightly different underlying philoso
phies. Office-by-Example (OBE) [ZI0080, Zlo082] is an extension of
QBE, the main additions being: a greater variety of data objects (QBE
simply supports relations), including forms, hierarchical database struc
tures, documents, reports, and menus; two-dimensional program
objects; a facility for specifying operations to be performed when cer
tain events occur; and a mechanism for transferring data objects
between users. The System for Business Automation (SBA) [deZl77,
deJ080, deBy80, BySD82] is based on the actor programming metho
dology [HeBS73, Hewi77] in which objects ("actors") execute a pro
cedure ("follow a script") in response to invocation ("receipt of a mes
sage"). Recall that the Star also derives from an object-oriented
message-passing language (Smalltalk) and, as one expects, SBA bears a
close resemblance to the Star. There is, howver, a major difference in

206 Office Automation

emphasis between the Star and SBA. Star aims to create an environ
ment in which the user performs an electronic analogue of his or her
traditional information processing activities. SBA's goal is a language in
which the user can completely automate certain office activities. In
essence SBA allows the user to specify a greater range of procedural
information than does the Star.

Of the three systems, QBE, OBE, and SBA, only the first is com
mercially available; however, there are prototype implementations of
both OBE [Zlo082] and SBA [BySD821. We will look more closely at
SBA since it is in this system that data modelling techniques and
abstraction mechanisms are more easily discerned. SBA is still under
development, so it is difficult to find a consistent description of the sys
tem. The following is based on [deJ080] and [deBy801.

An SBA system is a collection of objects. There are various
categories of objects. Tables and forms are the most extensively
described; other categories include graphic objects and "semantic"
objects. In general, objects are instances of types. When a type is
defined, the properties ("fields" in SBA terminology) of its instances are
specified, as are certain operations and constraints. Subtypes are
allowed and there is an inheritance mechanism for properties, opera
tions and constraints.

SBA objects are constructed from two-dimensional abstract objects
known as boxes. Boxes may be nested, i.e., one box may contain
another. Boxes collect together the information used in defining an
object type or specifying an object instance. There are four sections to
an SBA box: IDENTIFIER, INPUT, OUTPUT and CONTENTS. The
IDENTIFIER section has two parts, TYPE and NAME. TYPE simply
refers to the type of the object associated with the box; NAME is a
value which is unique for each instance of the type (a key).

A box may be activated by certain events, or by certain conditions
holding true within the system. The INPUT section describes the
events which cause activation. An event is either the receiving of an
object, a specific time occurring, or an update taking place.

During activation of the box, new objects may be created. The
OUTPUT section identifies what, if any, objects are created and where
they are to be sent.

The CONTENTS section describes the operations performed
when the box is activated. Operations are built from a small number of
operators. These include the PRINT, UPDATE, INSERT and
DELETE operators found in QBE, and the operators COPY and TO.
The first four operators are used to display, update, insert or delete an
instance of a type. COpy creates a copy of an object and TO "sends" an
object to a second object.

Conceptual Modelling and Office Information Systems 207

In addition, the CONTENTS section contains a PICTURE box
and a MAPPING box. The PICTURE box specifies the layout of the
object associated with the main box by identifying the fields to be
displayed and their relative positioning. The MAPPING box specifies
constraints upon the field values of the object associated with the main
box. There are two types of constraints: field values which are derived
from fields internal to the box, and field values which either may be
derived from other objects or must bear some relationship to these
objects. The first type of constraint is specified by using a subbox
whose INPUT section identifies the field values needed to calculate the
derived field and whose OUTPUT section identifies the derived field.
The CONTENTS section of this box contains an expression which per
forms the calculation. When the main box needs a value for the
derived field this subbox will be activated. The second type of con
straint is specified in a manner similar to a QBE query. The constraint
makes use of example elements that are bound to values when the con
straint is evaluated. These bound values are then used as field values.

After an object has been created, constraints of the second kind
are decoupled. This means that changes in the objects which were used
during constraint evaluation will no longer have an affect. This is very
important when defining constraints upon forms. For example, the
PRICE field of an ORDER form may be derived from a table. If a
change is made to the price found in the table it is neither necessary
nor desirable to propagate this change to the form.

The generality of box definition permits the modelling of a variety
of structures and operations. For example, to model electronic mail
one could use a PERSON box. The mail operation then corresponds to
sending an object to a particular instance of PERSON. As another
example, a FILE box can be defined; sending an object to such a box
models the filing operation.

An SBA application consists of a number of type definitions and
instances of these types. Users may control the degree of automation
by choosing to perform operations explicitly or by adding the necessary
logic to the type specifications. Applications thus evolve as the more
structured operations are identified and automated.

3. Design of an Office Data Model
We will now attempt to synthesize the ideas from the previous

sections by designing a data model for office objects. Here we will be
concerned with choosing the basic constructs of the model and will
disregard problems of their syntactic expression. (A more fully
specified model, based on the following design, is described in [GiTs83,

208 Office Automation

Gibb84]. Models with similar objectives are presented in [BrPe83,
ABBH84, LyMc84, Zdon84J.) We will begin by formulating the
requirements of an office data model. The actual design is then carried
out by treating a data model in terms of its structures, operations, and
constraints.

3.1. Model Requirements
If we look at the office information systems just described, it

should be possible to generalize and isolate their common characteris
tics. It is then these characteristics that we expect to be supported by
environments for implementing office information systems. The fol
lowing is a list of similarities between Star, PLUME, and SBA.

• object orientation
Both Star and SBA are clearly object-oriented systems.
Icons in Star and boxes in SBA each represent independent
and individual entities that may be created or destroyed.
The hierarchical documents used by PLUME are objects in
the sense that their structure is determined by type-like
specifications. In fact object models provide a useful frame
work for describing modern document-handling systems
such as syntax-directed editors and interactive
editor/formatters [FuSS82].

• abstraction mechanisms
In each of the three systems, classification is used to associ
ate a type with an object and (Cartesian) aggregation to
organize the properties of an object. None of the systems
restrict objects to a flat structure, i.e., property aggregation
can be repeated an arbitrary number of times. Specialization
and generalization are used in both the Star and SBA; it is
not clear whether PLUME supports this abstraction.

• semantic integrity constraints
In both SBA and the Star it is possible to specify expressions
for derived property values. In addition, SBA boxes, such
as the MAPPING box, can be used to express a wide variety
of constraints.

• object movement
The Star and SBA make use of an operation which is not
found in traditional data models. This operation is the
MOVE command in Star and the TO operator in SBA. The

Conceptual Modelling and Office Information Systems 209

object movement operation can be modelled by using cover
aggregation. To move an object x from y to z, one models y
and Z as cover aggregates with x a member of y before the
move and a member of z immediately after.

• unformatted (multimedia) data
All three systems support text and various forms of graphic
or image data. In addition the Buroviseur has some audio
capabilities.

• external and internal representations
The three systems distinguish between an external, user
oriented representation, and an internal, processing-oriented
representation. In Star the external representation consists
of windows and icons, in SBA a PICTURE box, and in
PLUME a formatted document. The internal representa
tions are hierarchically structured objects in all three cases.

The above list can be used to compare office information systems
with data models. Of the six characteristics, the first four are also
found in semantic data models and may be attributed to these models'
concern with natural, or conceptual structure. Regarding the fifth
characteristic, the addition of unformatted data to database management
systems is a current research area. For example, there have been vari
ous proposals for handling text in a relational database [Fal082,
KoL082, KoMi 83, SSLK83], and an image data model has been
designed [Econ82, EcL083]. However, these proposals consider only
one data type when what is needed is a general treatment allowing for
audio, image, and text data in addition to complex data structures such
as forms. The final characteristic is the most neglected, particularly by
data models. (External representations should not be confused with
views or external schemas; an external representation determines the
actual format in which data is displayed to the user, whereas views and
external schemas specify the logical structure of data made available to
the user.) Examples of where a differentiation between internal and
external representations has been found useful are programming
languages with abstract data types [Wal180] and text formatting systems
[FuSS82]. (Text formatters, and graphics systems in general, tend to
be overly concerned with external representation and may conceal use
ful logical structure from the user.) Forms data models [LSTC81,
LuYa81, Tsic82] introduce external representations through the use of
form blanks.

Some data models make a general distinction between an internal
data-oriented representation and an external information-oriented
representation. For example, in the work of Langefors [Lang77,

210 Office Automation

Lang80J, there is reference to the data lOgical and in/ological realms.
Chen [Chen761 describes various levels of views of information. Yet,
in practice, data models and database systems make little or no provi
sion for specifying the external representation of complex data struc
tures. Ad hoc components such as report-generators or other pieces of
software are frequently used. Unfortunately this software is often
designed for use by programmers rather than by general office person
nel. Office data models should distinquish between an internal
representation suitable for processing and an external representation
which is more appropriate for the user. The realization of an object
using an external representation in a particular medium is known as
presentation.

In summary, with respect to data models, there is no single model
possessing all the above characteristics. Semantic data models come
closest to satisfying the requirements but are in need of extension in
the areas of data types and user interaction (presentation). The
remainder of this paper explores the design of an office data model,
indicating, wherever possible, how the model requirements influence
design choices.

3.2. Structures
This section develops the three structuring facilities of the office

data model: object types, data types, and template types. These facili
ties correspond directly to the requirements for an object-orientation,
multimedia data, and presentation.

3.2.1. Object Types
The following example will be used throughout this section to

introduce new terms and concepts. Consider the head office of a large
manufacturer where order requests are received from clients and
regional sales offices. Suppose these requests are entered on standard
ized order forms either by sales agents or directly by clients. In general
such order forms contain a large number of fields, each accompanied by
various headings and instructions. Rather than burden the example
with unnecessary detail, consider a simplified form consisting of an
order number, an account name, and a list of part names and quanti
ties. The problem is to define a representation of the order form that is
amenable to computer processing but retains the conceptual structure
perceived by the user.

Conceptual Modelling and Office Information Systems 211
In the relational mooet we COUtO nave me IOuowmg retauons:

ORDER(ORDER-NO, ACe>
ITEM (ORDER - NO, NAME, QTY)

Here, two problems are apparent: first, we have lost the object nature
of forms since the order form involves two relations. So, for example,
operations for creating or removing a form are not atomic but divided
into two parts. Queries and updates must also contend with this divi
sion. Secondly, the fact that ITEM is subordinate to ORDER is not
apparent from the relational schema. However, this is indeed the case
as deletions from ORDER should trigger deletions from ITEM but not
necessarily vice versa. A view, such as the derived relation

ORDER-ITEM(ORDER-NO, NAME, ACC, QTY)

is inadequate since a single order form may now correspond to more
than one tuple; this leads to complications in removing or modifying a
form. The above problems could be concealed from the user by a pro
gram that translates the user's form-oriented operations to operations
on ORDER and ITEM. Such a program, though, is obviously applica
tion specific and would be inconvenient if the structure of the order
form were to change or additional forms were to be introduced. Furth
ermore this approach has the disadvantage of locating structural infor
mation in two places - the application program and the relational
schema.

What is required is a data model whose structural elements can
represent the object nature of things such as forms. We are free to
give a name to the model's structural elements and, in light of their
function, can choose to call them objects. That is, the term object,
when referring to the data model, is a structural or organizational unit
used by the model. The decision as to which entities in the real world
are to be represented by objects within the model is application depen
dent and left to the system designer.

After having hypothesized structures called objects we must now
determine just what these structures are. Clearly a means for describ
ing objects is needed. For this purpose we introduce properties and
values as additional structural elements of the model. A property is a
named relationship between an object and a value. The structure of an
object is determined by the properties it possesses, its description by
the value of these properties. The introduction of properties allows us
to apply the classification abstraction to objects. An object type is
defined as a set of objects with a specified structure; a member of the
set is referred to as an instance of the object type. (To relate the termi
nology of this section to that of the first, one can say that object types
are classes of concrete objects. We shall soon introduce data types
which, as it turns out, are classes of abstract objects.)

212 Office Automation

At this point the model's structures resemble those found in the
relational model; there seems to be a correspondence between object
types, objects, and properties on the one hand and relations, tuples, and
attributes on the other. The difference appears in the treatment of
values. The relational model assumes that relations are in First Normal
Form (lNF), i.e., the values of attributes are not themselves relations
but simple data values [Codd701. The advantage of INF relations is
their structural simplicity and the resulting simplicity of relational
operations. (It is the higher-order normal forms that deal with
modification anomalies and redundancy [Codd 71].) By dropping the
INF provision, more general structures are allowed but with increased
operational complexity. The suggestion that INF be abandoned has
been made a number of times, both in the context of office systems
[LSTC81, LuYa81, Tsic821 and other application areas [GuSt82,
HaL082, ScPi821.

The office data model departs from INF by generalizing the
notion of a value to allow both objects as values and sets as values.
Properties whose values are data items such as numbers or strings are
known as simple properties. In contrast, the values of composite properties
are special objects known as characteristic objects. To distinguish charac
teristic objects from object type instances, the latter will be referred to
as independent objectsl. Composite properties derive their name from
how they may be viewed as the aggregation of groups of properties; in
this sense their structure is similar that of an object type. However, the
value of a composite property, i.e., a characteristic object, is always
dependent upon the existence of an independent object (this is the ori
gin of the terms "independent" and "characteristic" [ScSw75]).

The result of introducing composite and simple properties is that
objects no longer have a flat structure but instead a hierarchy of proper
ties and values. We may visualize an object as a tree where the root
corresponds to the object itself; characteristic objects occupy the inter
mediate nodes, ahd data items the leaves. A similar hierarchical organ
ization is found in forms data models [LSTC81, LuYa81, Tsic821 as
well as in many semantic data models described in the first section.
The model most resembling the office data model at this stage of its
development is the basic semantic model of Schmid and Swenson
[ScSw751. Many of the concepts used here, such as independent and
characteristic objects, have been obtained from this model.

The second generalization of the value notion is related to sets.
A multivalued property takes a (possibly empty) set as its value. A
single-valued property takes a single value: either a data item, a

1 However, unless noted otherwise, "object' without any qualification should be taken as
referring to an independent object.

Conceptual Modelling and Office Information Systems 213

characteristic object, or the special value NULL. The inclusion of mul
tivalued properties is a feature found in many semantic data models
and, again, in office data models.

Returning to the order form example, we can now adequately
represent the structure of this form. The specification would involve an
object type corresponding to the order form. This object type would
have two simple single-valued properties for the order number and
account name, and a composite multivalued property for the list of
items. The composite property would be described, in turn, by two
simple single-valued properties for the part number and quantity. The
following notation indicates this structure:

order form -+ order number, account name, item, ... , item;

item -+ part number, quantity;

The preceding discussion has dealt with the use of property, or
Cartesian aggregation in the office data model. Next we will demon
strate that specialization is required. The argument is based on the fre
quent collection of related objects, for example, a report and its sup
porting documents, and their placement in a single container such as a
binder or file. This should not be viewed as mere aimless paper
shuffiing, but rather as a dynamic method of organizing information
and one that is central to the user's conception of the office.

An illustration of this organizational method can be provided by
th~ order form example. Suppose that within the sales office related
orders are grouped by the use of dossiers. The grouping of orders
within dossiers clearly implies a relationship of some sort between the
two. A model well-suited for representing relationships is the entity
relationship (ER) model. (Here we are interested solely in whether the
ER model can capture the containment relationship between objects
and will disregard its inadequacy for the representation of their internal
structure') Suppose we represent containment using a relationship set
called SUBPART between the two entity sets l ORDER and DOSSIER.
It is assumed that an order form can be in at most one dossier at any
given time, hence SUBPART is l:N. At first glance this appears satis
factory; however, problems arise when new types of forms are intro
duced. It is quite likely that, in addition to order forms, the manufac
turer will use shipping forms to record product shipments. If we now
want to group order and shipping forms within dossiers we have two
choices. First we can add a second relationship set, SUBPART', to
model separately the relationship between dossiers and shipping forms.
Secondly we can modify the original SUBPART relationship set to allow
for three entity sets. Neither of these representations is satisfactory. In

1 An entity set is the term used in the ER mode] for what we have been calling an object
type.

214 Office Automation

both cases the schema has been modified extensively, more so than the
introduction of a new type of form would seem to merit. Furthermore,
in a realistic situation with many types of forms, such representations
would be excessively complex.

This problem may be solved by realizing that SUBPART is not
intrinsically a relationship between order forms and dossiers, or, for
that matter, between any application-specific objects. The solution
relies on the use of specialization hierarchies of object types, in which
case one can define SUBPART as a relationship between the two gen
eral object types AGGREGATE and OFFICE-OBJECT. The AGGRE
GATE object type is a generalization of all object types which have the
potential to contain other objects. So, for example, DOSSIER would be
a specialization of AGGREGATE, as would the object types for mail
trays, envelopes, files, and so on. OFFICE-OBJECT is simply the most
general type used in modelling the office environment. Its specializa
tions would include ORDER and SHIPPING. (In addition AGGRE
GATE could be defined as a specialization of OFFICE-OBJECT. This
would allow SUBPART to be used "recursively", i.e., a dossier could
then contain a second dossier.) The SUBPART relationship is inherited
by the specializations of AGGREGATE and OFFICE-OBJECT.

We have now looked at three semantic data modelling abstraction
mechanisms as they appear in the office data model. These three,
classification, Cartesian aggregation, and specialization, combined with
an ER-like representation of relationships seem sufficient for modelling
office objects. However, a well-known difficulty with ER-like relation
ships is that they are not objects themselves and so cannot participate in
other relationships. Furthermore, additional constructs are needed if
properties are to be attached to relationships. Consequently, we will
reformulate our representation of relationships and make use of the
fourth abstraction mechanism - cover aggregation.

An object type is specified by giving the property structure for
instances of the type. Now consider some object that is an instance of
an object type. Suppose we view this object as also being an instance of
a relationship. If this is the case the object type must also specify
which objects may appear in the relationship. Such objects are called
constituents of the original object. Thus, for example, the object type
MARRIAGE would have HUSBAND and WIFE constituents, both of
which would be based on the object type PERSON.

As with properties, constituents may be single-valued or mul
tivalued. The value of a single-valued constituent is a single indepen
dent object or the special value NULL; the value of a multivalued con
stituent is a set of independent objects. It is not necessary to decom
pose constituents as was the case with properties. The reason is that
the internal structure of an object appearing as a constituent value is

Conceptual Modelling and Office Information Systems 215

determined by the object type definition for that object.

Constituents can be used to represent many forms of inter-object
relationships. A group of single-valued constituents corresponds to an
ER-like relationship or an associative entity, while a multi valued consti
tuent, in general, depicts cover aggregation. For example, an object
type for representing convoys would be defined with a multivalued con
stituent taking a set of ships as its value. The containment relationship
for office objects is represented by including a multi valued constituent
called SUBPART within the specification of the AGGREGATE object
type. Values of SUBPART are constrained to be instances of OFFICE
OBJECT.

In summary, the office data model represents real-world entities
using objects classified into object types. Object types may be related by
specialization and generalization. The specification of an object type
identifies the property structure and constituent structure of its
instances. Properties are hierarchically ordered and take as values data
items or characteristic objects. Constituents take independent objects as
values. Both properties and constituents may be single or multi valued.

This section began by describing the difficulties encountered when
using the relational model as the basis for office modelling. We then
demonstrated the need for several high-level abstraction mechanisms in
an office data model. We now complete the circle and show that a rela
tional schema can, in fact, capture these same abstractions so long as
certain conventions on how objects map to relations are employed.

As a specific example we will consider the problem of order
forms, shipping forms, and dossiers as expressed within a semantic data
model. RM/T has been chosen since it provides an underlying rela
tional schema. The relations used are shown in figure 1. (Here we
have assumed that an order form has the structure mentioned previ
ously and that a shipping form has fields for the order number of the
shipment, the part name shipped, the quantity shipped, and the factory
from which the shipment originated.) The situation depicted in figure 1
appears to be rather complex. However, the user would not operate
directly upon these relations; instead a database management system
based on RM/T would interpret user operations and maintain inter
relational consistency.

216 Office Automation

OFFICE-OBJECT

OFFICE-OBJECT%

01

51

52

53 L dl

ORDER

ORDER%

ITEM

ITEM%

01 il

i2

AGGREGATE

AGGREGATE%

dl

SH:PPING DOSSIER

SHIPPING% ~SSIER%~
51 I d1 J
52

53

ORDER-ITEM

ORDER% ITEM%

01 i1
01 i2

ORDER-3:> lTEM-HD
I
IORDER% ORDER-NO ACC

I IrEM"
NAME QTY I

I

I
01 0073 Acme il X83 40

i2 DZl 20

SHIPPING-HD

I SHIPPING' ORDER-NO FACTORY NAME QTY

s1 0073 Toronto XL3 10
52 0073 Oshawa XL3 30

I 53 I 0073 I Toronto I DZ1 20 I

PC CG

SUP SUB SUP SUB

ORDER ORDER-HD ORDER ITEM

ITEM ITEM-HD

SHIPPING SHlPPING-HD

Ei:<C

I

SUP I suol KG

~
dl 01

SOP dl s1
dl s2

AGGREGATE OFFICE-OBJECT I dl s3

Conceptual Modelling and Office Information Systems 217

UGI

SUP SUB

OFFICE-OBJECT AGGREGATE
OFFICE-OBJECT ORDER
OFFICE-OBJECT SHIPPING

AGGREGATE DOSSIER -

Figure 1: RMIT relations

In RM/T, attributes whose names end with a special character
(here we will use nOlo") take internal object identifiers as values. Rela
tions with a single such attribute identify object types (entity types in
RM/T terminology). Here there are six object types: OFFICE
OBJECT, AGGREGATE, ORDER, ITEM, SHIPPING, and DOSSIER.
RM/T makes use of a number of special relations known as graph rela
tions. In general graph relations have two attributes, named SUP and
SUB, which play superior and subordinate roles. Figure 1 uses the pro
perty graph (PG) relation, characteristic graph (CG) relation, cover
membership (KG) relation, entity cover membership (EKG) relation1,

and the unconditional generalization (UGI) relation2• The PG relation
indicates that the properties associated with ORDER, ITEM, and SHIP
PING are identified in the ORDER-HD, ITEM-HD and SHIPPING-HD
relations. The CG relation here indicates that ITEM is a characteristic
object type subordinate to ORDER. The associations between particu
lar ITEM objects and ORDER objects are expressed in the ORDER
ITEM relation. The KG relation indicates that AGGREGATE is a
cover aggregate type for which the allowable constituents are instances
of OFFICE-OBJECT. The EKG relation shows that dossier instance dl
has as constituents 01, sl, s2 and s3. Finally, the UGI relation records
the specialization relationships that occur in the example.

3.2.2. Data Types
The discussion of properties in the previous section stated that the

value of a simple property may be a data item such as a number or a
string. We now expand on this notion of data item by including unfor
matted or multimedia data values.

1 Actually Codd does not explicitly name this relation but mentions that a graph relation
defined on object identifiers may be used to represent membership of individual objects in a
cover member.·
2 This relation has a third attribute which need not concern us here.

218 Office Automation

In data modelling a set of data values with similar structure or
semantic reference is often referred to as a data type. Data types can be
divided into two categories: predefined primitive data types and
application-specific or user-defined data types. Primitive data types are
the subject of this section, defined data types will be dealt with in the
section on constraints.

The primitive data types found in conventional general-purpose
programming languages usually include integer and real, for which there
may be various choices related to range or precision, boolean and char
for single-bit and byte values, and frequently string for variable-length
character strings. (In fact, string literals often have a maximum length
imposed by the compiler while string variables may be limited by main
memory considerations') Languages designed for particular application
areas may have specialized data types. For example, MUMBLE
[Guib82], a language used with raster graphics, has a built-in data type
for bit-maps. Mallgren [Mall 82] discusses the formal specification of
graphic data types.

The primitive data types required by office applications include the
traditional types and, in addition, four new types: audio, image, text, and
digital. The audio and image types l would be used for digitized voice
and image data, text for very long variable-length character strings. The
digital type is a common representation for the previous three and
would be used in modelling objects that handle uninterpreted digital
data (such as a digital telephone). The four, text, image, audio and digi
tal, are referred to as unformatted or multimedia data types.

Assuming that the office data model may use the unformatted
data types it becomes possible to model a great many of the common
office objects. For example, objects with text-valued properties
correspond to documents and letters, audio-valued properties can
represent recorded voice messages, and image-valued properties are
used with pictures and graphs. However, allowing such varied objects
complicates both their presentation to the user and the operations avail
able to the user for their modification.

1 Here we will simplify matters and avoid choosing between such things as vector and ras
ter graphics and encoded or nonencoded speech. A more detailed treatment would use
many image and audio data types.

Conceptual Modelling and Office Information Systems 219

3.2.3. Template Types
One of the requirements for the office data model concerned the

presentation of information to the user. This appears to be a non
trivial problem for two reasons. First, the introduction of unformatted
data types implies a multimedia environment for operation of the office
system. This environment would include a two-dimensional graphic
medium for image data (e.g. a raster display), a two-dimensional
character-oriented medium for text data (e.g. a printed page or
alphanumeric display), and for audio data a medium based on an audi
ble time-varying signal. The disadvantage with a multimedia interface
is that it is possible to disorient the user by presenting unrelated infor
mation simultaneously through two or more media. The result is that a
method for coordinating the presentation of information is necessary.
Secondly, office objects tend to carry a large amount of information.
This is due both to complex property structure (e.g. forms) and to the
use of large data values (e.g. documents). Thus a method is needed for
presenting information which reconciles model objects with the physical
characteristics of the various media and the perceptual limitations of
users.

A template type is a model construct that specifies the presentation
of a particular object type. The structure of the template type mirrors
the structure of the object type and gives general rules for the external
representation of the object type's properties. An instance of a tem
plate type, referred to as a template, determines the presentation of a
specific object. In other words there is a correspondence between tem
plate types and object types, and templates and objects. It is useful to
think of templates as a mechanism for mapping objects into physical
media (sometimes called "realization" or "materialization" [KoL082]).
The external structure of an object, more readily perceived by the user,
is the structure of the template type, while the internal structure is that
of the object type.

The advantages of templates appear when one realizes that it is
not necessary to restrict an object to the use of a single template
[Tsic82]. So, for example, a single object type may use one template
for the text medium and a second template, containing additional infor
mation, for the image medium. Similarly, templates allow the
specification of different views or perspectives of an object. A common
example is the need to withhold information from unauthorized users;
here a template would be defined to filter out properties considered
sensitive.

220 Office Automation

3.3. Operations
Data model operations are often divided into two groups: opera

tions which are definitional in nature and operations for manipulating
instances. (This division is not always present; for example, in TAXIS,
defining a new class involves creating an instance of a metaclass.) The
two sets of operations are referred to, by traditional database manage
ment systems, as the data definition language (DDL) and the data mani
pulation language (DML). Data definition operations take place pri
marily during the design stage of an application. The goal of the design
process is to produce a schema, i.e., a specification of the structure of
the database representing the application environment.

In the office data model, a schema identifies the model constructs
which have been defined by the designer. Thus a schema is a list of
object type definitions, template type definitions, and, possibly, expli
citly defined constraints. The model must, then, provide operations for
adding new definitions to the schema. These definitions can be related.
For example, in the case of object types, a new object type could be
defined independently of previous definitions, or, alternatively, as a
specialization of one or more object types from the schema. The opera
tion that adds new definitions to the schema will be referred to as
define. This is the only schema-level operation used. Semantic data
models often include more extensive operations such as schema
modification and restructuring [McSm80], or view and context
definitions [AlC0831. For office systems, the ability to change the
schema is very important because of the dynamic nature of the office.
The office data model provides much flexibility by allowing schema
extension through specialization.

It is convenient to discuss the manipulation operations of the
office data model in terms of the structures within the model. Thus we
will consider the operations for manipulating instances of object types,
data types, and template types respectively.

The operations required for object instances include the generic
operations used in data modelling. These operations have been
identified as [TsL082]:

insert - add data to the database,
delete - remove data from the database,
update - change data in the database,
set currency - identify a portion of the database of interest,
retrieve - obtain data from the database.

In the office data model, the insert and delete operations correspond to
creating a new object instance or removing an existing object instance.
We shall refer to these operations as create and destroy. The update
operation corresponds to changing the values of an object's properties
or constituents. Here, since properties and constituents may be

Conceptual Modelling and Office Information Systems 221

multi valued, two operations are required. The assert operation will be
used to assign a value to a property or constituent, remove to undo the
assignment. (A set of operations very similar to create, destroy,
assert, and remove is found in Abrial's data model [Abri74J.)

The use of a specialization hierarchy introduces two operations
not found in traditional data models. These operations are associated
with the phenomenon of entity-migration [Codd791, i.e., a dynamic
change in the type of an object. We will use the admit operation to add
an object to a more specialized type and prohibit to delete it from such
a type.

For queries a method is needed for specifying the set of objects
satisfying a given condition and then retrieving members of the set.
This faculty is provided by the two operations called set and for. The
set operation is used to select a set of objects that have been previously
created. The for operation allows iteration over a set.

The next group of operations are related to constraint enforce
ment. As we will see in the following section, many constraints are
expressed by explicitly identifying those operations which lead to their
violation. Merely forbidding such operations as they are encountered is
not always sufficient. It may also be necessary to undo the effects of
earlier operations in order to return to a consistent state. For this pur
pose we will use the transaction operations called tbegin, tend, and
abort [Gray81].

Now consider operations on data values. Here the applicable
operations should include those commonly found in programming
languages. Thus, for integer we have the standard arithmetic opera
tions, and for string such operations as string concatenation and com
parison. In this sense the formatted data types do not add anything
new or unusual to the data model. The unformatted data types,
though, are uncommon and require more attention. It is necessary to
identify the operations on text, image, and audio values that the user is
likely to require in performing office work. Also some knowledge of
signal processing and pattern recognition technology is needed to deter
mine which operations are currently possible. A discussion of these
operations is found in [Gibb84].

It is possible to identify four operations involving template
instances. First one must be able to acquire an instance of a particular
template type. We will refer to this operation as template; it is analo
gous to the create operation for objects. The most complex operation,
in terms of processing required, is associating an object with a template.
This operation is called embed and performs the mapping of an object's
structure onto the template's structure. In addition an operation is
needed to realize a template in the medium specified for the template's
type. We shall refer to this operation as present. Finally, in the case

222 Office Automation

of image and text media, it may be necessary to remove a presented
template from view. This is accomplished with the erase operation.

3.4. Constraints
In designing a constraint specification mechanism, one considera

tion is to keep the data definition language as simple as possible. Yet,
as more constraints are expressed declaratively, the number of state
predicates in the data definition language, and hence its complexity,
tends to increase. This problem is relevant to office data modelling
since a great variety (not just number) of constraints is encountered
[Ferr82, Geha82]' Consequently, we will use declarative specifications
only for the most common constraints, the remainder will be expressed
in a procedural manner.

In the office data model the constraints that can be specified
declaratively are:

the data type of a simple property,

the object type of a constituent,

uniqueness of simple properties and constituents.

The first two constraints resemble type constraints as found in program
ming languages. Their effect is to restrict the type of the value
assigned to a simple property or a constituent. The uniqueness con
straint is essentially a generalized key; it may be used with multi valued
properties or properties which are not the immediate sub-properties of
an object type. Constraints other than the above are expressed using
the constructs described in the following sections.

3.4.1. Data Types
Data type constraints restrict the values a property may take and

prevent the occurrence of meaningless operations (such as the com
parison of two properties based on different data types). Primitive data
types are insufficient for representing many properties [McLe76]. For
example, a property which depicts the ages of people should be con
strained to take only a sub-range of integer values, say from 0 to 150.
This is not possible, however, if only the integer type is available. A
similar problem occurs during the data entry phase of many office appli
cations. This typically involves a series of validation checks which
ensure that the new value agrees with some predetermined format. In
addition, to give the user greater flexibility, more than one format is
often allowed. An example would be "month day, year" and

Conceptual Modelling and Office Information Systems 223

"mm/dd/yy" for dates. Moreover, it may be necessary to define new
operations for data type elements. For example, queries on date values
need to compare the relative order of dates. This is not possible if the
type for dates is simply the data type string.

What is needed is a method for specifying more refined or res
tricted data types than are provided by the primitive data types. Thus
we suggest a data type definition language that will allow one to specify
the data structure used to store elements of the type, referred to as the
internal representation of the data type, and the allowable formats or
external representations of the data type. Additionally the data type
definition will specify the operations for the elements; these generally
include a function that tests for membership in the data type and func
tions for transforming between internal and external representations.
This description of a data type is close in concept to that of an abstract
data type (ADT) [LiZi74, GeMS77, LSAS77, ShWu77] as used in pro
gramming languages. In fact the use of ADTs for specifying data type
constraints has been suggested previously [McLe761, and data models
based on ADTs have been designed [SmFL81, AlC083, AlOr831.

Membership-testing functions have appeared previously in the
data modelling literature. For example Abrial's model [Abri74] and
TAXIS [MyBW80] use this technique. Defining a data type by means
of a function is very flexible since one has access to a programming
language. It is a simple matter to provide functions that support the
equivalent of sub-ranges or enumerated types.

The motivation for distinguishing between internal and external
representations is not to provide a protection mechanism as in program
ming languages but to allow for multiple external representations for
data type elements and so gain flexibility in the presentation of data
values.

3.4.2. Triggers
Many semantic integrity constraints impose further restrictions on

objects and their properties than are expressed in object type
definitions. For example, two properties of an object may be function
ally related (derived properties) or a condition may be imposed on the
constituents of an object. Data type definitions make no reference to
the object types present in the schema; the only information available
within the definition is related to the data elements themselves. There
is a need then, for a constraint specification mechanism which operates
at the level of object types.

There are two possible approaches for dealing with constraints on
and among objects. The first would be to continue with an ADT-like

224 Office Automation

formalism and replace the generic object operations (create, assert,
etc.) with individualized operations for each object type. The second
approach, and that followed here, makes use of triggers. A trigger is a
group of operations performed when a change is made to the database
(in which case the trigger is said to have been activated). The method
by which triggers are activated resembles pattern-directed invocation
[Hewi 72] as used in artificial intelligence. Triggers have also had a long
history within database research. They derive from the database pro
cedures of the CODASYL proposal [CODA71] and have been used in
commercial database management systems [Astr76]. More recently
triggers have appeared in forms data models [SLTC82, Tsic82] and
object-oriented office systems such as SBA [deBy80] and OBE [Zlo082].

There are a number of reasons for choosing triggers, as opposed
to abstract data types, as a constraint specification mechanism for the
office data model. First, since triggers are not explicitly called, they can
be added or removed from the schema with little difficulty. This is the
aspect of triggers which makes the SBA's gradual automation of pro
cedures possible. Secondly, triggers are useful in modelling events.
The office is largely event-driven, as Zisman notes [Zism 77; 17]:

Oftentimes the difficulties in offices do not arise as much from task
performance as from recognizing the need to perform a particular
task. The difficulty is not in doing, but in knowing when something
should be done.

Furthermore, office systems have many special conditions (such as tim
ing requirements and authorization conditions) that are easily expressed
by using triggers. Finally, data modelling in general places greater
emphasis on structural representation than is found in programming
languages [TsLo82]. Thus the structure of an object type is not hidden,
as with ADTs, but instead used to represent visible aspects of the appli
cation.

In their simplest form, triggers consist of two components: a con
dition and a set of actions. The trigger is activated and the actions per
formed whenever the condition is satisfied. An alternative is to add, as
a third component, a pattern identifying the operation which leads to
satisfaction of the condition. In this case the trigger is activated when
the pattern is matched. The actions are not performed, however,
unless the condition is also satisfied. This method has the advantage of
being easier to implement as the system has some warning of when a
trigger may be activated. Also, since the pattern identifies a particular
operation, one can now refer to pre-conditions (conditions which must
be satisfied before the operation is performed) and post-conditions (con
ditions which must be satisfied after having performed the operation).
A final addition to trigger structure, particularly useful in interactive
environments, is to include an error message that is displayed when the
trigger is activated but the condition fails.

Conceptual Modelling and Office Information Systems 225

4. Conclusion
One of the difficulties with modelling office data is the extremely

general and versatile structuring constructs that are required. In this
paper we have looked closely at three office information systems and
shown how the data-structuring constructs implicit in these systems can
be traced to conceptual data modelling. This led us to propose a data
model for office systems based firmly on data modelling principals in
the hope that it would produce a sounder understanding of office infor
mation systems.

It is too early to tell if data modelling offers the best approach to
office information system design and implementation. However it is
certain that many of the traditional problems facing data modellers -
data structuring, persistent and shared data, data retrieval - occur in
office information systems and also that the peculiarities of office infor
mation systems - multimedia data types, templates and presentation,
triggered events - will enrich data modelling.

5. References
[ABBH84] [Abri74] [ACM80] [AlC083] [AlOr83] [Astr76] [AtBS79]
[BoWi77] [Brod78] [Brod80] [BrPe83] [BrPe84] [BySD82] [BYTE81]
[Chen76] [Cheu79] [CODA7I] [Codd70] [Codd71] [Codd79] [deBy80]
[deJ080] [deZl77] [EcL083] [Econ82] [ElBe82] [EINu80] [Fal082]
[Ferr82] [Fike81] [FuSS82] [Geha82] [GeMS77] [Gibb79] [Gibb84]
[GiTs83] [GoB080a] [GoB080b] [GoRo77] [Gray81] [Guib82]
[GuSt82] [HaLo 82] [HaMc75] [HaMc78] [HaMc8I] [HeBS73]
[Hewi72] [Hewi77] [HHKW77] [Hogg81] [RoNT81] [Inga78]
[KeKT76] [Kent 79] [KoL082] [KoMi 83] [Lang 77] [Lang80] [Lee81]
[Lee82] [Lefk79] [LiZi74] [LSAS77] [LSTC81] [LuCS82] [LuYa81]
[LyMc84] [Mall 82] [McKi81] [McLe76] [McLe78] [McSm80]
[MeBo76] [MyBW78] [MyBW80] [Naff8Ia] [Naff8Ib] [Nier81]
[PuFK83] [Quin81] [RaGi82] [RoMy75] [Rous76] [Sche8I] [ScPi82]
[ScSw75] [Senk75] [Ship81] [ShWu77] [SIKH82] [SIKV82] [SIKV82]
[SLTC82] [SmFL81] [SmSm77a] [SmSm77b] [SmSm79] [SSLK83]
[SuL079] [TaFr76] [TRGN82] [Tsic80] [Tsic82] [TsL076] [TsL082]
[Wall 80] [Will 83] [WoMy77] [Wong83] [Zdon84] [Zism77] [Zism77]
[Zloo77] [Zlo080] [Zlo082]

10
A Model for Multimedia Documents

F. Rabitti

ABSTRACT The problem of a model for representing mul
timedia documents and supporting operations on documents is
addressed. Particular attention is given to the concept of type,
since multimedia documents do not fit the static schema
definition of database models. A syntax directed approach is
proposed for the model. Three levels of specification for a mul
timedia document are discussed. The layout level describes the
document presentation. The logical level describes the docu
ment internal structure. The conceptual level describes the
document semantic composition. The layout structure and the
logical structure are compatible with the Office Document
Architecture currently undergoing standardization (ISO,
ECMA, CCITT).

1. Introduction
In the office environment a very large amount of information is

manipulated in terms of documents. This information can be either in
formatted form (Le. attributes in office forms) or in free form (Le.,
text, image, graphics and voice).

In this paper we will deal with models for representing a general
class of office Multimedia Documents (MDs). MDs are structurally more
complex than objects usually managed in document processing or
retrieval systems [Crof83], in message systems [TRGN82], or in form
systems [Geha82, Tsic821. An MD is a collection of components which
contains the different types of multimedia information and may be
further structured in terms of other components (such as the body of a

228 Office Automation

paper that is composed of sections and paragraphs and contains images
and attributes embedded in text). The task of formally representing all
the possible documents occurring in an office environment is very
difficult. MDs have complex structures which tend to differ from one
document to another.

Let us compare the role of a document model to the role of a data
model in a database management system. There are three concepts in
the database field which are carefully distinguished: a data model (a for
mal language used to describe the real world in a manner that is useful
for the computer), a schema (a specification describing the structure of
the realm that is of interest to a particular application) and a database
(an extension of a schema containing the set of values that describes
the realm at some instant in time). These three notions also arise in
office information systems. For example, in a form system such as
OFS [Tsic80], the analogous concepts are the form description language,
form types and form instances. The form description language is used to
define the form types used by a particular application. Users can then
create and modify form instances belonging to any of these types.

The type concept as it appears in data models is useful when deal
ing with structured documents like forms, but leads to difficulties when
applied to the representation of general documents. We will use a
specific example to illustrate some of the difficulties. Consider a
hypothetical letter giving information about a new product (see figure
1, at the end of section 5). The internal structure can be considered as
being comprised of:

company logo,
date of the letter,
sender address,
name of the product,
introduction,
product description,
picture of the product,
cost summary,
table of component costs,
histogram of cost comparison,
sender signature.

Clearly, not all letters will contain the same eleven components;
some letters may have no tables while others will have two or more,
and so on. Hence, if a type for letters is defined, it may not have the
above structure. It is easy to imagine realistic situations where the
above structure is violated.

A document model should support types with a high degree of
flexibility in their structure. (See the companion paper, "Conceptual

A Model for Multimedia Documents 229

Modelling and Office Information Systems".) The document type will be
viewed as the minimal specification of the corresponding instances.
Instances cannot have a simpler structure than that indicated by their
type definition. During document production the user can add or
delete document components subject only to the type constraints, i.e., a
required component cannot be deleted since it is included in the
minimal structure for the type. This kind of modification is different
from the updating of a form or record field. By adding components to
the document, it is possible to alter the document structure. Using
database terminology, we can say that some editing operations, such as
adding a new figure or table, have a data definition aspect in addition to
a data manipulation aspect. Similarly query formulation involves speci
fying the structure as well as the conditions on values of that structure.
For example, a document query might ask for reports written on a
specific date (a traditional selection condition) and with a graph having
"profits" in the title. If graphs are not part of the minimal structure for
reports, then the second condition implies an additional structural con
straint as well as the obvious selection condition.

MDs are represented by different models. We can find an implicit
MD model definition in the different proposals for document manage
ment systems. However, these models are often limited in scope.
They reflect the special characteristics of the system with which they are
associated. We find Multimedia Document Models in two areas. The
first area deals with editing, formatting and interchanging of documents.
The second area deals with filing and retrieval of documents.

In the area of editing/formatting MDs, the structure oriented and
syntax directed modelling approaches [Me Va821 are particularly
interesting. The philosophy of structure editors is to exploit knowledge
about a document to simplify its editing. Many structure editors have
been proposed, mainly for text documents [Fras80, Walk81, DKLM831.
These editors usually use tree structures for representing hierarchies of
document elements. One category of structure editors, the syntax
directed editors, aims at ensuring that the structure of the document
satisfies syntactic integrity constraints [MeVa821. This idea has been
exploited by editors which have knowledge of a programming
language's syntax (eg. PLIl, LISP, or PASCAL) [Teit 77 , Fras81l. The
syntax directed document editors accept a grammar describing a
hierarchical data structure for formatted documents and allow the user
to enter and edit arbitrary trees having this structure. They do not
require interleaved formatter commands in the text, yet can display the
final formatted result [Cou1761. Besides checking the document for
syntactic correctness as it is entered, these editors provide prompts
guiding the user at each step.

In the area of document retrieval systems the more common
approach is to extend a database management system, adding the

230 Office Automation

capability to deal with text, images and voice (see the companion paper,
"Office Filing"). The associated models are usually extensions of well
known database models. Particular attention has been given to the rela
tional model [Sche84] and the entity-relationship model [AdNg84,
CrCZ83, LoVe84]. For example, in the BIG project [CrCZ83] MDs
can be described in a conceptual schema defined using a database
model, derived from the entity-relationship model. The model is
extended by the introduction of text units and picture units as attri
butes of entity classes. These units do not have the atomicity property
of data attributes. In fact, the system allows complex operations on
their content. For example, text operations such as searching for key
words and inserting and deleting strings of characters are defined in the
system. Moreover, the system enforces properties such as data non
redundancy, integrity, etc. which are more typical of database systems
than document retrieval systems.

In another example the TIGRE project [LoVe84] aims at the
implementation of a DBMS with capabilities for handling generalized
data. The TIGRE data model is defined as an extension of the entity
relationship model that includes the document formalism as a type con
structor. Two categories of abstractions are supported: generalization
and aggregation. They are similar to those defined in other semantic
data models [SmSm77b, Brod80]. Three main data structures are
defined: basic type, constructed type and class type data structures.
Type constructors are rename (for associating names to basic types),
array, record (as in programming languages) and documents. Each docu
ment is represented by using a standard form that takes into account its
logical structure and its presentation and semantic attributes. A
parenthesized list representation of the standard form is used to
transfer the document between different processes. Operators are
defined on document types. These include access operators (i.e. brows
ing through the structure) and manipulation operators (i.e. edit, print,
mai!)o Documents can contain hierarchical and non-hierarchical ele
ments.

The type concept is the key factor characterizing different MD
modelling approaches. A document type for editing/formatting models
is a skeleton specified either by its syntax or by formatting commands.
It can be useful for creating new document instances of that type
without having to start every time from scratch [FuSS821. The docu
ment type in models oriented to filing and retrieval is borrowed directly
from the data type concept in database models. A document type is the
specification of the structure and components common to all the docu
ment instances belonging to the same class. This enables the system to
efficiently manage the objects (documents) in its scope, since they all
belong to some already defined type. The system can interpret the con
tents of any component of a document in a class (according to the

A Model for Multimedia Documents 231

definition of the corresponding type).

MDs have complex structures which tend to differ from one
document to another. As a consequence, a document model should
satisfy two conflicting criteria.

1. To provide as much knowledge as possible about the structure of
a given MD, in order to assist in its creation, storage, and
retrieval.

2. To provide flexibility since the structure of the documents is very
difficult to predetermine.

The first criterion leads to a strongly typed document model, such
as we find in filing and retrieval systems. The second criterion leads to
a model without types (in the database sense), letting each document
instance have a structure defined separately (as in document editors and
formatters). A multimedia document model should aim at a good
compromise between the two criteria. It should try to obtain the
advantages of database-oriented models (for filing and retrieval opera
tion) and the advantages of editing/formatting models (for composi
tion, editing and presentation operations). The major emphasis of such
a document model should be a flexible type definition.

The organization of the paper is as follows. In section 2 the main
issues arising in MD modelling are presented. In section 3 a syntax
directed modelling approach is introduced. In section 4 the syntax
directed modelling formalism is used to define the concepts of type and
instance. Differences between our definition and types in data models
are underscored. In section 5, a complete MD model is defined. It
contains a conceptual level, a logical and layout level. The latter two
levels reflect the specification of the international standards for Office
Document Architecture. We also give an example, in which the con
ceptual, logical and layout structures are described, and their interrela
tions discussed. In iection 6 the operations of the model are presented.
Finally, in section 7, some conclusions and directions for future work
are presented.

2. Issues in the model definition
The following issues in MD model definition can be summarized.

1. Data types
The model should support a complete range of data types. Basic
data types include the usual data types, such as boolean, integer,
real, string, etc. Basic data types also include multimedia data
types such as text, image (uncompressed or run-length encoded
raster images), graphic (images encoded as graphic instructions)

232 Office Automation

and audio (uncompressed or LPC compressed audio values).
Composed data types, including sets, lists, arrays, etc. should be
defined. Derived data types should be included, such as date,
address, etc. Finally, various application specific derived data
types that depend on the particular environment may be needed.
Derived data types should be defined using abstraction mechan
isms, and starting from basic and/or composed data types
[SmSm77b, BrodSO, BrodS1].

2. Document types
The concept of type and instance should be very carefully defined
in the model. In data models the logical objects (entities) are
classified according to structural similarity [TsLoS2]. This
classification helps in efficiently storing the corresponding system
objects, such as records, forms, or tuples. The system can take
advantage of the object regularity and generate storage structures
on a per-type rather than per-instance basis. This approach is not
always helpful when dealing with more general documents. Simi
lar documents can have different structures. However, the type
concept is still useful for formulating queries and creating and
modifying documents. A document model, however, should sup
port types with a high degree of flexibility in their structure.

3. Document internal structure
In . many existing document models the internal structuring of
MDs has been optimized according to different requirements.
The requirements can be transmission speed for document inter
change, or processing speed for editing and formatting, or access
speed for filing and retrieval. In an office all these functions are
successively applied to a document. If we have a different model
for each function an MD may go through several conversions of
its internal structure. A unified model allows us to define a
unified MD internal structure. This internal structure should be
complete, meaning that it should include all the structuring
aspects necessary for the different operations. However, in order
to be useful this model should be widely accepted. If an MD is
generated in an office workstation, an internal structure is associ
ated to the visible (and perceivable) data elements composing the
MD. In a distributed office system, it is likely that this MD and
its internal structure will be transmitted among different worksta
tions and servers, for further editing, printir..g or archiving
[TayIS3]. All of the workstations have to know about its model in
order to understand the MDs internal structure.

4. Document modification
An MD may undergo successive editing operations after its crea
tion. It is not enough to store an MD in its final form [HoKrS41.
It is necessary to store the MD in a revisable form which can be

A Model for Multimedia Documents 233

further modified. A part of the MD internal structure should
include the description of how the document has been composed
(i.e. created and modified). This part should describe the MDs
syntactic components. Without this description a document
created in one site could not be modified in another site.

5. Document presentation
MDs must be presented on physical output devices by mapping
the internal structure into the external representation. This is
called the rendition process [HoKr841. The information necessary
for this process should be included in the MDs internal structure.
The structure necessary for document presentation should be
defined in a formal manner (for example, see the template con
cept in the companion paper, "Conceptual Modelling and Office
Information Systems" and in [GiTs83]). This part of the internal
structure should also be widely accepted since MDs should be
presented on different sites, having different capabilities.

6. Document retrieval
Two modes of retrieval should be possible: retrieval by location
(Le. position within a classification hierarchy) and retrieval by
content. In the first mode of retrieval documents are retrieved on
the basis of the location in which they were stored. In the second
mode of retrieval the user specifies a filter by creating a partial
specification of the MDs internal structure and providing certain
conditions on the MDs contents [TCEF83, TTRC84] (see com
panion paper by Christodoulakis). It is important to allow the
retrieval of MDs both by location and by content. Some docu
ments can be carefully classified and associated with precise posi
tions in file cabinets and drawers (or their electronic equivalent
[ElBe82]). Other documents cannot (or should not) be precisely
classified. For retrieval by location, the model should support col
lections of MDs such as dossiers or files [BrPe831. Dossiers are
collections of MDs dealing with the same topic. Files are collec
tions of MDs having similar internal structure.

7. Document communication
The interchange of MDs is the operation where the need of stan
dardization is apparent. When a MD and its internal structure are
encoded in a certain format at one site, the same format should
be known on the other side of the transmission in order to decode
and reconstruct the MD and its internal structure. In fact, an
Office Document Architecture is in the process of being standard
ized, in conjunction with the Office Document Interchange For
mats, in TC-29 of the European Computer Manufacturers Associ
ation (ECMA) [ECMA83] and TC-97/SC-18/WG3 of the Inter
national Standards Organization (ISO) [ISO-83a, ISO-83b]. Their
work is strongly connected to the work of the CCITT Commission

234 Office Automation

VIII, which is standardizing the Telex and Facsimile Group 4
Mixed Mode of Operation [CCIT83]. A document model should
be compatible with the ideas present in the Office Document
Architecture.

3. Proposed approach
We will follow the approach of syntax directed editors, for the

problem of MD types. Syntax directed document editors are very flexi
ble in defining document internal structures. They usually allow opera
tions on the definition of each MD instance structure. We will explore
this approach and describe a more complete definition of a document
model, operating not only at the instance level but also at the type
level.

We will define a context free grammar containing the rules for the
generation of multimedia documents. The set of rules is applied step
by step starting from the root to obtain a specific document. At the
same time, we define the document's internal structure, called the
structure tree of the document. A document is stored by keeping the
structure tree together with all data items. In this way, the system has
the advantage of always knowing exactly the internal structure of the
document. Data items can appear only as terminal nodes in the struc
ture tree. Nonterminal nodes correspond to higher-level structures that
group elements into more complex components of the document.

We also allow nonterminal nodes to appear as leaves in the struc
ture tree. This is the main conceptual difference between this docu
ment modelling approach and syntax directed editors. In this way, we
are able to represent in the same manner document types of different
generalization-specialization levels and document instances.

We will call a live node a node which corresponds to a nonterminal
in the grammar, and to which grammar productions can be further
applied. A live node in a document type can generate a new subtree in
the document type structure tree, containing new live nodes. This
document generation process allows us to derive a more specialized
document type or instance from an existing document type or instance.
A structure tree with no live nodes is a pure document instance. Pure
document instances correspond to our intuitive notion of a document
instance.

There exists a continuum of possible structure trees, going from
the most general document type to the pure document instances. As a
result, we can de-emphasize the distinction between types and
instances. Structure trees correspond to general definitions of docu
ments. If they have no live nodes they correspond to pure document

A Model for Multimedia Documents 235

instances.

The notation for the MD model definition will be based on a
grammar G used to specify the MD structure:

where
G= (N, T, R, P)

N is the set of nonterminal symbols,
T is the set of terminal symbols,
R is the root symbol, and
P is the set of grammar productions.

We use a context-free grammar as a restricted grammar with the
power necessary for describing document structures (regular grammars
are too restrictive). Productions have the form:

A-a
where A is a nonterminal and a is a string of terminals and nontermi
nals.

A is the left hand side (LHS) of the production, a is the right
hand side (RHS) of the production. We impose a further restriction on
the format of the productions in P. The RHS is either a string of non
terminals or it is a single terminal. That is, we do not allow the mixing
of terminal and nonterminal symbols in the RHS. The first is called a
nonterminal production while the second is a terminal production. This
restriction on the format of productions does not restrict the power of
context-free grammars [Ah U172].

For the specification of the productions we use an extended BNF
representation, where each production has the form:

< B; > are nonterminal symbols which can be optionally tagged by a
"+".

A < B; > + is called a repeating symbol. It means that a variable
number of < B; > can be generated from < B; > +. Formally, a repeat
ing symbol < B; > + in the RHS of an extended BNF production is
equivalent to a new rionterminal symbol < Z> with the new following
productions, in the usual BNF format, added to P:

1. <Z> - <Z><B;>
2. <Z> - <B;>

236 Office Automation

4. Structure representation
The internal structure of an MD is called a Structure Tree (ST). It

is conceptually equivalent to the parse-tree containing all the produc
tions of G applied from the root symbol until the document itself is
obtained.

We are now ready to give a formal definition of the structure tree
of an MD.

A statement S is a triplet (PN, LHS, RHS) where:

PN is a positive integer indicating a production in P of G. The
statement S is called the instantiation of the production PN.

LHS contains an identifier ID which is the instantiation of the
non terminal symbol in the LHS of the production PN.

RHS contains a list of identifiers ID, which are the instantiations
of the non-terminal symbols (in the same order) in the RHS of
the production PN.

The identifier corresponding to a repeating symbol mayor may
not be repeating. If it is repeating it is tagged by a "+", i.e., ID +.
Notice that for the statements instantiating a terminal production
(called terminal statements), the RHS contains only one identifier that is
the instantiation of a terminal symbol. We assume in this case that ID
is the actual value (or pointer to) of the entity represented by the termi
nal symbol.

A Structure Tree (ST) is a set of statements S which obey the fol
lowing conditions:

Condition 1

For any Sin ST, an ID in the RHS of a statement cannot appear
in the RHS of another statement, and an ID in the LHS of a
statement cannot appear in the LHS of another statement, and an
ID cannot appear in both the LHS and the RHS of the same state
ment.
As a consequence, if the same ID appears in two different state
ments of ST, then it must be in the LHS of one statement and in
the RHS of the other statement.

Condition 2

In ST, for all statements except one, the ID in its LHS must also
be in the RHS of another statement. The exception statement is
called the root statement and the ID in its RHS is the instantiation
of the root symbol R of the grammar G.

Condition 3

In ST, if the same ID is in the LHS of more than one statement,
then there must be a statement with ID + in its RHS.

A Model for Multimedia Documents 237

The definition of ST as a set of statements allows one to formally
check its properties and to formally define operations in the model.
The structure tree can -be visualized in graphic form. The correctness
conditions ensure that a tree equivalent to the ST can be constructed,
where each node corresponds to an ID (a node is a repeating node if it
corresponds to a repeating identifier). The root of the tree is the ID
instantiating the root symbol R of G. Then a subtree can be added to
the structure tree for every statement in ST. For a node named ID in
the structure tree, a subtree can be added with an aggregation edge (see
figure 2a) connecting the ID node with as many new nodes as there are
IDs in the RHS of S.

The aggregation edge reflects the aggregation concept found in
semantic modelling [SmSm77b]. Starting from a repeating node,
several aggregation edges can be generated since several statements in
ST can have that ID in the LHS. This results in a new type of connec
tion called association of aggregation edges (see figure 2b). This reflects
the association concept found in the extended semantic hierarchical
modelling [Brod81].

In the following, we will introduce further concepts about Struc
ture Trees in terms of statements that can be easily translated into the
equivalent graphic form for better visual comprehension.

We define a leaf statement as a statement with at least one ID in
its RHS which is not in the LHS of any other statement in ST. A ter
minal statement is a leaf statement, but not all leaves are terminals.

We define a live statement as a statement whose RHS contains an
ID that may appear in the LHS of a new statement not already in ST.
A live statement is essentially a source for additional statements to an
ST.

Restrictions are dynamic constraints (besides the static correctness
conditions) for the introduction of additional statements to an ST. Res
trictions are expressed in the form of special statements which are
present in the ST. Two types of restrictions are introduced.

Quality restriction
If an ID in the RHS of a live statement does not appear in the
LHS of any other statement, we can restrict the set of productions
in P of G that can be used to instantiate a new statement with ID
in LHS. A new special statement is introduced with the format:

Here QL is a number outside the range of production numbers in
P used to flag a quality restriction statement and ID is the target
of the restriction. This says that a new statement in ST having a
LHS equal to ID must be the instantiation of one of the

238 Office Automation

productions PNJ, ... ,PNK listed in the RHS of this restriction
statement.

Quantity restriction
If there is a repeating ID in the RHS of a live statement, we can
restrict the number of statements which can be generated from
ID. A new special statement is introduced with the format:

(QN, ID, MAX)

where QN is a number outside the range of production numbers
in P used to flag a restriction statement and ID is the target of the
restriction. This says that, at most, MAX statements (where this
number is contained in RHS of this restriction statement) having
LHS equal to ID can be present. Both quality and quantity res
trictions can be applied on a repeating ID, while only quality res
trictions can be applied on a non-repeating ID.

From these definitions, the relationships between the different
types of statements can be derived. We can identify the following cases
(see figure 3). A terminal statement is a leaf, but is not alive (Case
A). A leaf statement which is not terminal is alive (Case B). There
are live statements which are not leaves (Case C). For example, state
ments in which for each ID in their RHS there is a statement whose
LHS equals ID and some ID is repeating belongs to case C. If a quan
tity restriction on ID forbids adding new statements with ID in the
LHS, the statement is neither alive nor a leaf (Case D).

The previous definitions can also be translated into the equivalent
graphic representation of the structure tree. For example, a leaf node
is a node with no emanating edges. A terminal node is a leaf node
instantiation of a terminal symbol of G. A live node is a node which
can generate a new subtree according to the production of the grammar
and the restrictions introduced. As a result, a leaf node which is non
terminal is alive, and any live node which is not a leaf must be repeat
ing.

A quantity restriction on a live repeating node indicates the max
imum number of emanating edges.

A quality restriction on a live node indicates the possible produc
tions which can be applied for instantiating new subtrees. Having
presented the modelling formalism, it is possible to define the concept
of a document type and instance within this approach.

A Structure Tree, ST, corresponds to a pure instance iff there are
no live statements in it. Since all leaf statements which are alive are
nonterminal we can deduce that in a pure instance ST all leaf statements
are terminals.

A Model for Multimedia Documents 239

Intuitively, any instance document has a "complete" structure
tree, that is, a structure tree where all the possible production
sequences (top-to-bottom path in the equivalent graphic tree) are com
pleted. The final multimedia entities are instantiations of the terminal
symbols.

A Structure Tree, ST, corresponds to a type if and only if there is
at least one live statement in it. This type concept is more general than
the usual data modelling concept [TsL082] of type for formatted data.

The instantiation or specification process on a type consists in
adding new statements in ST which are consistent with the correctness
conditions and with the restriction statements already in ST.

We define a strong type as a type which can only be instantiated by
terminal statements. We define a weak type as a type which can be
instantiated by any statement (including non-terminals).

The concept of strong type is equivalent to the type concept at the
schema level of database models. In fact, instantiating a strong type
can only consist in adding multimedia data values of specific data types,
which is equivalent to adding terminal statements to ST. The data
types allowed for terminal statements are specified in the non-terminal
symbols corresponding to the IDs in the RHS of the live statements.
This is the reason for the restriction to one terminal in the RHS.

The concept of weak type is more general. Since non-terminal
statements can be added to ST, composed objects can be added during
the instantiating process. These document components correspond in
the graphic representation to subtrees of any complexity. Thus, the
specification of a weak type may correspond to a phase of type
definition, at the schema level, in database models. This is a DOL
operation in the database terminology.

It is clear that by using the partial specification process on the
structure trees we can obtain complex hierarchies among weak types.
They may be, in the general case, non-tree-like hierarchies.

The flexibility resulting from the weak type definition is needed in
multimedia documents for adding new complex components (i.e. a new
section with tables and graphics). Moreover a system based on this
model can exploit the complex hierarchies of weak types by keeping
catalogs of system enforced types for user access. These system
defined types are useful for document instantiation, for query
definition, and for query processing.

It is also useful to define the intersection operation among struc
ture trees. Intuitively, the intersection between two structure trees is
the most specialized structure tree "equivalent" to both original struc
ture trees. Formally, the intersection ST of STl and ST2 is obtained
from STl and ST2 applying the following recursive procedure:

240 Office Automation

1. If the root statements of STl and ST2 have different PNs (pro
duction numbers), the intersection is empty; otherwise tag both
statements as homomorphic.

2. For any couple of homomorphic statements in STI and ST2, do:
- for any IDI in RHS of the homomorphic statement in STl,
check if there is a statement S 1 in STl (not already tagged) with
IDI in LHS. Let PNI be its production number.
- in this case, consider the ID2 in RHS of the homomorphic state
ment in ST2, and corresponding in the production to ID1.
- check if there is a statement S2 in ST2 (not already tagged) with
ID2 in LHS. Let PN2 be its production number.
- If PNI =PN2, and PNI shows a non-terminal statement, the two
statements Sl and S2 are homomorphic, so tag them.
- If PNI =PN2, and PNI shows a terminal statement, tag the two
statements S 1 and S2 as homomorphic only if the values in RHS
of both statements (instantiations of terminal symbols) are the
same.

3. Stop when no more tagging is possible. The set of tagged state
ments in STl is the intersection ST inside STl (the same holds
for ST2).

The system could apply the intersection operation of structure
trees to all the combinations of the objects (types and instances) stored.
In this way it would be possible to have an a posteriori definition of
types. It would be possible to discover how appropriate are the a priori
defined types. For example, the system could count the number of
instances and subtypes for catalogued types, discover equivalent types
and identify new types which could be useful to several user defined
instances.

We expect that application environment experts will design the
types, will name them, and then will instruct the.users in their use. A
suitable user interface should assist the expert designing the types. The
flexibility of this typing approach will allow one to define types for the
different classes of documents in an office environment. Strong types
are suitable for all form-like documents, with very stable structure.
Weak types are more suitable for less structured objects, such as
memos, business letters, reports, brochures etc. Such documents may
contain tables, graphics, images and voice comments. The possibility of
establishing hierarchies of weak types is very useful. Moreover, since
structure trees can represent the internal structures of both types and
instances, it is possible to query types as well as instances. In fact, the
query specification mainly consists of a partial structure specification
including certain conditions on data values. Query resolution matches
partial structures and example values in the correct order. The same
process can be applied on structure trees of both instances and types

A Model for Multimedia Documents 241

(values are usually not present in this case). Querying types can be
very useful in this environment since there is no well-defined schema
as in database Systems. Naming is a crucial problem for a system
adopting this approach. Different names can be defined for types and
type components that are structurally very similar. A system should
support catalogues of type and component names, for the system
enforced types.

5. Levels of description
In a multimedia document we can distinguish different levels of

structures. At a more general level, we see the document as composed
of semantic components. They reflect the common user understanding
of a class of similar documents. Referring to the example of a product
announcement letter, the class of such letters is characterized by a
header/introduction part, a product presentation part and a cost discus
sion part. These semantic components describe the conceptual structure
of the particular document, which is also common to several documents
with the same function in an office organization.

At another external level, the syntactic structure of the document
is apparent. In fact, what is externally seen is the composition of mul
timedia data values in the document. These syntactic components con
stitute the logical structure of the document. . This structure can sensibly
vary even among documents with the same semantic structure.

In order to guide the presentation of the MD, a layout structure
should be strictly associated to the logical structure. The layout struc
ture shows how and where the logical elements should be displayed in
the physical document. Logical structure and layout structure are the
parts of the internal structure which should more strictly obey the stan
dards.

The conceptual structure describes the semantic components of the
MDs, giving names to them. Names are useful in defining the type
level part of the document structure and they correspond to names that
are assigned in database Systems during schema definition. Name
catalogues should be maintained by the system in order to facilitate the
users in naming choices. The conceptual structure can be exploited in
creating new MD instances starting from system enforced types, in con
trolling the editing of system enforced types, and in defining queries on
MDs.

The form of MD conceptual structure depends on the semantics
of the document. The syntax for defining it must be very flexible. A
meta-grammar is introduced which allows any semantic component's
hierarchical decomposition according to the MD type conceptual

242 Office Automation

structure. The grammar gives internal names ("meta-names") to the
hierarchical semantic categories. The productions defining the semantic
components are:

PNI: <conceptual_document> - <semantic_component>

PN2: <semantic_component> - <component_name>
<semantic_component> +

PN3: <component_name> - [meta_name]

PN4: <semantic_component> - <component_name>
[Iogical_structure_component]

Notice that "meta-names" need not be distinct. This allows the
definition of semantic interrelationships. In this case the semantic com
ponent associated with the meta-name will not have descendents since
it is assumed to be identical to the already defined semantic component
with the same name.

Starting from the grammar defining semantic components, we can
use the formalism to describe the conceptual structure (CST) in the
form of statements, or in graphical form. The same grammar shows
how the conceptual structure is connected to the logical structure.
Logical_structure_components are names found in the grammar
defining the logical structure. In fact, after a certain level towards the
bottom, the conceptual structure is merged with the logical structure.
This transition from statements as instantiations of the conceptual
grammar to statements as instantiations of the logical grammar happens
on a specific boundary of the logical structure.

Logical and layout structures should be based on standards. From
the guidelines available at this moment for the Office Document Archi
tecture, we can outline a meta-format of the productions for both logi
cal and layout grammars. The logical grammar will have the format:

al. <logical_document> - <compositeJogical_object>

a2. <compositeJogical_object>-
<property> + <constructor> <compositeJogical_object> +
I <property> + <constructor> <basicJogical_object>

a3. <basicJogical_object> - <MD_contentyortion>

The layout grammar format will be the same,
<logical_document>, <compositeJogical_object>
<basicJogical_object> are to be substituted in aI, a2 and a3.

where
and

Properties define particular aspects of the logical and layout
objects. Their type differs from object to object.

A constructor defines how a composite object is built by its consti
tuents, and which selectors can be used to access the constituents.
There are three types of constituents.

A Model for Multimedia Documents 243

1. The sequence constructor specifies a sequential order for the con
stituents of an object. The constituents are of the same type and
are sequentially accessible.

2. The array(n) constructor specifies an n-dimensional order for the
constituents. They can be of the same type or different types and
are directly accessible. In case of constituents of the same type,
the selectors are n-tuples of indices.

3. The aggregate constructor specifies either no particular order or a
sequential order of the constituents, which can be of the same
type or of different types. They are directly accessible by the con
stituent names.
Once the logical grammar and the layout grammar are defined, we

can use the formalism in section 4 to describe the logical structure
(LGST) and the layout structure (LYST) of an MD. Logical and lay
out structures are correlated throughout the MD content portions,
which are common to the two structures. The boundary between the
two structures lies at their lowest level (leave level). In fact, there is a
link between any basic logical object and basic layout object. This link
relates to the MD content portion of which both basic objects are the
direct ascendants. This is called correspondence relation in the standard
document architecture terminology. All the other non-hierarchical rela
tions in the Office Document Architecture are confined inside logical
and layout structures, but not between them.

Two document types, to which the example MD belongs, are
shown in figures 1 and 2. The type called "generalized letter" (figure 1)
is a weak type suitable for a large variety of office letters. The structure
tree for this type contains some rather general conceptual components,
such as "letter body" and "letter header", and also some lower-Ievellogi
cal components, such as "letter address". These conceptual components
are generated by using the grammar outlined in this section for the con
ceptual level of the model.

In figure 2, the type "product announcement letter" is described.
This is a specialization of the previous type, since some live nodes (Le.
"letter header" and "letter body") are expanded into other nodes at the
conceptual and logical levels. This figure also illustrates how mul
timedia data types (in this case the graphic-valued "company logo") are
contained in the structure defining a document type. The "product
announcement letter" is a strong type at the conceptual level, since all
leaf nodes lead down to the logical level. The conceptual structure of
the MD in the example is contained in the structure of the type in
figure 2, considering only the nodes at the conceptual level.

The logical structure of the MD of the example is illustrated in
figure 3. The interconnection between conceptual and logical structures
is apparent from these figures, since the leaf nodes in figure 2 are

244 Office Automation

-'- {Quantity Restriction 2}
'---:::------.:~

[generalized letter]

[letter header] [letter body]

[dear.sir] (char.string)

[letter address] (address)

[letter date] (date) [letter signature] (signature)

Figure 1:" Generalized letter" type

mapped to intermediate nodes in figure 3. The form of productions in
the logical grammar should be:

<logical_document> -+ <compositeJogical_object>

<compositeJogical_object> -+ <property> + <constructor>
<compositeJogical_object> + <basicJogical_object> +
<basicJogical_object> -+ [multimedia_datajteml

These productions express the recursive decomposition of the
composite logical objects (for example, sections, tables, figures, etc.)
into simpler composite logical objects. The decomposition halts when
basic logical objects, which are mapped directly to multimedia data
items, are reached. At any step of this hierarchical structure composi
tion the constructor used is specified (i.e. aggregate, sequence, array)
and the relevant properties are associated. The allowable types of com
posite and basic logical objects will be specified by the standards, as well
as their properties and the value ranges. Property values can be

A Model for Multimedia Documents 245

~ IQnR 21

[Product announcement leiter)

1 I (address)

[company logo) (logo) [announcement subject] (char stnng)

[announc introductiOn) (paragraph)

[textual mod desc) (text-piece) {plctorral pro.desc I (picture)

[textual cost desc 1 (text piece) [tabular cost desc 1 (meta table)

Figure 2: "Product announcement letter' type

explicitly assigned or computed by the system from the context (i.e.
section number). In particular, the inheritance of properties in the
hierarchy can be applied. In figure 3, the substructures resulting from
instantiating property productions are not shown.

246 Office Automation

Note . ~" , .•. ~

12

10

13

18 19

Figure 3: Logical structure

6. Model operations

I+INH
26 27 28 29

30 31

Terminal Nodes
S = Short text strmg
N Numeric
T = long text strrng
I Image element
G = Graphic element

In this section, the document model operations are outlined.
Some issues regarding their implementation are also discussed.

Document creation
When a new MD is created, the associated internal structure should be
generated according to the model. There are essentially two ways of
entering a document into the system.

A. Creation via an editor
The document is entered through an interactive document editor.
The user can take advantage of the already defined document
types. The structure tree is created step by step during the editing
process. The system has information on the admissible steps and
helps the user to issue the right operations.

A Model for Multimedia Documents 247

B. External input
The document is presented in facsimile format for input to the
system. Completely automatic scanning is difficult. Improve
ments are expected for character recognition [Free83]. However,
it is difficult to recognize the logical components and associate a
document to a weak type. Documents for which the structure
representation is known are handled much more easily. It is
necessary to scan and parse the facsimile as a compiler would
parse a program. The user associates the document with an exist
ing document type. The system recognizes the types of the exter
nal syntactic elements (parsing the logical structure) and applies
the syntax rules in a bottom up fashion.

The previous input modes were concerned with entering a docu
ment. There is also the possibility of receiving a document from
another system. In this case it is essential to adopt standardized proto
cols and formats [CCIT83] for the description of electronic documents
(at least at logical and layout levels).

Document filing
Filing a MD implies storing the MD structure tree, with the three inter
nal structures (i.e. conceptual, logical and layout) and the associated
multimedia data elements. For storing the structure tree it is possible
to consider either the direct statement form or a linear representation
of the equivalent graphic form. It should be noted that the overhead
for storing productions associated with actual data values is minimal. If
an MD belongs to a system type, it is possible to store only the type
names and the statements missing from the type specification. By
exploiting the existence of system types in storing MDs, it is possible to
facilitate the query processing. During retrieval, a type specification
will facilitate the MD identification. Values can be stored separately
from the structure tree. Special devices can be used providing
improvement in access speed and storage cost [RaZi84].

Document retrieval
Interactive query formulation in the model does not need a new
environment or language. A query filter can be defined using the same
interface as for on-line document creation and modification. The user
can usually recall only an approximate structure of some portions of the
document as well as some content specifications within these portions.
The user defines a structure tree with certain values as leaves and asks
the system to match it with stored documents. The specified structure
tree and the item values will act as a filter. The system matches the
structure as well as the values (see the companion paper, "Office Fil
ing").

The interactive query interface must allow some undefined areas
in the filter structure tree specified by the user. These undefined areas

248 Office Automation

can match with any structure portions of stored documents. The
defined areas of the filter structure tree are only required to match with
some of the structure portions of stored documents.

The query processing problem is similar, in principle, to the par
tial subtree matching problem found in semantic network interfaces to
database systems. If data values are supported by indexes it is best to
locate the data item values first and then compare the structures. If the
system has some mechanism of partial classification, as in the case of
system types, the process of subtree comparison can be performed
efficiently. The system can sort the retrieved documents in order to
facilitate their scanning. Thus, the user can decide to scan a retrieved
document in detail, to dynamically change the filter or to choose a
retrieved document type as a new filter. This provides flexible environ
ment for dynamic filter definition by the user.

Collection retrieval and document retrieval through collections
can be done in the same way. An initial query defined according to the
collection grammar is used to find and select the required collection. A
second query defined according to the grammar is used to find the
desired documents within the scope of the collection.

Document modification
Modifying a stored document means changing its logical and layout
structures and/or the linked multimedia data values. The statements
should be changed and/or substituted according to the correctness con
ditions. If the document is the instantiation of a system defined type,
the statements contained in the type structure tree could not be
changed arbitrarily. The new instantiation and specialization statements
should obey the eventual restriction statements of the type.

Document rendition
The MD rendition (presentation) process consists of obtaining the MD
external representation by processing the document internal structure.
Presenting an MD on an output device implies its composition accord
ing to its layout structure. The external representation of the document
is obtained by:

retrieving the physical elements of the document after having
identified them via the internal structure;

organizing the physical elements in higher-level objects logically
connected (e.g., an image and its caption) using the logical struc
ture;

ordering and composing the obtained objects as specified in the
layout structure.

Some degree of freedom should be allowed, in order to allow the
rendition of an MD (display or print-out) at different levels of detail
according to workstation capability.

A Model for Multimedia Documents 249

Document type definition
The MD type definition is very similar to the MD creation since it
involves essentially the creation of a structure tree. Particular care
should be taken in the definition of system enforced types (either weak
or strong). In this case the type editor will operate on the conceptual
structure defining the semantic object internal names and their
hierarchical structuring. Live statements and restriction statements
should be defined. It should be possible to operate also at the logical
and layout levels, when some logical and layout characteristics of the
semantic objects are known. Some multimedia values can also be
specified; for example, the company logo in business letters. MD type
definition can start from scratch or from an already defined weak type,
specializing it. In this case, a query facility for types can be very useful
since the appropriate information may be distributed in several struc
ture trees.

7. Conclusions
Documents containing data, text, image, graphic and audio com

ponents can have very complex structures. Moreover, these structures
tend to differ from instance to instance making it difficult to obtain a
strict type definition for a class of documents. Models for Multimedia
Documents must be flexible in order to allow a suitable representation
for their structure and contents, as well as for operations such as
editing/formatting, filing/retrieval, interchanging and presentation.

A model for representing documents and supporting document
operations on them has been proposed. It differs from data models
used in databases. It allows dynamic schema changes which are not
allowed by data .models. A formalism based on a syntax directed
approach has been presented, allowing the definition of types at
different levels. It allows hierarchies of weak types as well as strong
types. Type definition at the conceptual level is based on a meta
grammar. At the layout and logical levels type definition can be per
formed according to the document class definition rules. The model
defined is compatible with the anticipated standards for document
description at the presentation level (layout structure) and the internal
structuring level (logical structure). In order to support content
retrieval, a conceptual level of the document description has been
added.

We plan to work on formal specification of operations on docu
ments. An important topic is the investigation of fast access methods
to document internal structures. Such access methods will provide an
effective implementation of content retrieval. Efficient storage
representations of document modelling structures should also be

250 Office Automation

studied.

8. References
[AdNg84] [AhUl72] [Brod80] [Brod81] [BrPe83] [CCIT83] [Cou176]
[CrCZ83] [Crof83] [DKLM83] [ECMA83] [ElBe82] [Fras80] [Fras81]
[Free83] [FuSS82] [Geha82] [GiTs83] [HoKr84] [ISO-83a] [ISO-83b]
[LoVe84] [MeVa82] [RaZi84] [Sche84] [SmSm77b] [Tay183] [TCEF83]
[Teit77] [TRGN82] [Tsic80] [Tsic82] [TsLo82] [TTRC84] [Walk81]

Part VI

Analysis

11
Properties of
Message Addressing Schemes

P. Martin

ABSTRACT Message addressing schemes are an abstract
framework for dealing with the naming and addressing problem
in electronic mail systems. We use this model to analyze three
important properties of a naming and addressing mechanism -
completeness, serializability and time-independence. The impor
tance of these properties is illustrated with examples.

1. Introduction
The naming and addressing mechanism is one of the most impor

tant, and visible, components of an electronic mail system. Its role is to
identify and locate all the intended recipients of a message. The correct
and consistent functioning of the naming and addressing mechanism is
crucial to user acceptance of a mail system. Rather than discovering
problems with the naming and addressing while a system is running, we
describe how the naming/addressing logic can be modelled and then
analyzed. This analysis will become more important with the introduc
tion of advanced mail systems which share the responsibility for identi
fying and locating recipients with the users [Mart 84, MaLo83,
HMGT83, Vitt811.

Current mail systems require the originator of a message to know
all the recipients, and perhaps even paths to these recipients, at mes
sage creation time. The determination of the recipients is both static
and centralized.

254 Office Automation

But very often a user has only partial knowledge of the recipients
of a message. He may not know all the other users that should receive
a message or may not have enough information about a recipient to
totally identify him to the system. Future mail systems must be able to
augment the user's knowledge. The systems should contain their own
routing knowledge that will allow them to act with only partial informa
tion from the users. The systems will have to make decisions based on
the contents of the messages and the state of the system. Further, with
the communication and micro-computer technology available this
knowledge will have to be distributed. Thus the determination of the
recipients will be dynamic and distributed.

We make the distinction between logical and physical routing. In
logical routing, a series of decisions is made that eventually results in
the identification and location of the set of recipients of a message. The
knowledge required to make these decisions may be distributed among
a network of logical nodes. The actual physical distribution of the nodes
is transparent. One step in the logical routing may involve several steps
in the physical - over one or more local area networks and long-haul
networks. Alternatively, two or more logical nodes may be in the same
physical host.

We use the message addressing scheme model as a framework for
representing and analyzing routing knowledge. An addressing scheme is a
way of specifying and interpreting information on messages that even
tually brings them to the attention of the proper recipients. We exam
ine the properties of completeness, serializability and time
independence.

A complete addressing scheme is one that eventually delivers all
possible messages. If all possible routings in a scheme are serializable
then the addressing scheme is correct. That is, messages are treated
consistently along all paths and routed as we would expect. An
addressing scheme is time-independent if the length of time a message
spends in circulation is guaranteed not to affect its final destinations.

2. Message Addressing Schemes
Message addressing schemes were proposed by Tsichritzis [Tsic84)

as a framework for dealing with the problem of naming and addressing
in electronic mail systems. Instead of dealing with the problem in a
specific manner [Schi82, GaKu81, BLNS82, OpDa83J, addressing
schemes abstract naming and addressing from any considerations of the
physical routing. They allow for a dynamic and distributed evaluation of
the set of recipients for a message.

Properties of Message Addressing Schemes 255

The main objects in the addressing scheme model are messages
and addresses. Messages have a unique identifier and belong to a gen
erator set of messages {m}. Addresses, belonging to a set {a}, are also
uniquely identified and are nodes in a directed graph. The graph
defines the connectivity of the addresses - if address a is connected to
address b then a can send mail to b. The term address is a logical
notion. Each address serves as a context for making routing decisions.

There are two types of addresses. Addresses which never originate
or keep messages, but always forward them to other addresses, are
called routing addresses. These provide flexibility in representing routing
knowledge. The rest of the addresses, where messages can originate and
be delivered, are called mail addresses.

The state of an addressing scheme associates a set of messages
from {m} with each address in {a}. Namely, those messages received by,
but not yet sent by, the address. The mapping between states is
described in terms of the operations at a single address with a single
local message. There are four operations:

1. A message m is inserted in an address a (generation of a new
message).

2. A message m present in an address a is moved to another address
connected with a (message forwarding).

3. A message m present in an address a is accepted (message
delivery).

4. A message m is kept in an address a and a copy is forwarded to
another address connected with a (message delivery and forward
ing).

There are two properties that have to do with the interdependence
of messages. An addressing scheme is called memoryless if an address
does not retain information from messages that have reached it in the
past. An addressing scheme is called coordination-free if its mapping
handles each message separately, without being affected by the presence
of other messages. Both memory and coordination may be desirable
properties but their presence complicates the operation and analysis of a
scheme.

3. Complete Message Addressing Schemes
The routing logic of a message addressing scheme can be

represented in a graph. Nodes correspond to addresses and directed
edges correspond to the connections between addresses.

We associate a routing procedure Pa with each address a that
embodies the routing logic at that address. When a message arrives at

256 Office Automation

an address the routing procedure is executed to determine the next
step(s) in the message's routing. We assume each procedure execution
is atomic, that is, the arrival of one message cannot interrupt the pro
cessing of another. So using a "first-in-first-out" priority at an address
will ensure that each message is processed.

The results of a routing procedure execution can be a change of
state in the addressing scheme. One (the message being processed) or
more (in the case of coordination) messages are moved along one or
more connections from that address. The use of coordination in a mes
sage addressing scheme may mean that a procedure execution does not
change the current state. The message being processed may have to
wait for other messages to arrive before it is allowed to continue.

We represent routing procedures in the graph by labelling each
edge (a,b) with a predicate Pab such that if Pab is true a message is
moved along the connection from a to b. The results of a routing pro
cedure execution for a message m at an address a are determined by
the set of predicates on edges from a that are true for m.

As an example, consider the graph in figure 1. Messages that
come into the address s are forwarded to the addresses ab ... , an
depending upon the name of the recipient specified in the contents.

G
true

»

G
true

)

true

>0
0

0

ps~ 0
n

G
true

)

P"~k = "name of recipient is k"

Figure 1

Properties of Message Addressing Schemes 257

We introduce three special addresses to simplify the analysis. The
address 0 is a source address that is connected with all mail addresses in
a scheme. When an insert operation is performed it is represented as
the message moving from 0 to the originating address. So in figure 1,
an insert operation corresponds to a message moving along the edge
leading into address s. The true predicate on the edge means that a mes
sage can always follow the edge. The address () is a sink address. It is
also connected to all mail addresses. When a message is accepted at a
mail address it is represented in the graph as the message moving to ().
So in figure 1, an accept operation moves the message along the edge
from the particular ai' A third special address is 8. It is connected to
all addresses that can "drop" a message, that is a message leaves circula
tion without arriving at one of its destinations. This is represented as
the message moving to 8.

We define a path in a message routing to be a set of at least two
addresses {ai, ... ,an} visited in succession by a message and ai con
nected to ai+ I for all 1 ~ i ~ n -1. We identify a path by the conjunc
tion of the predicates labelling the connecting edges

which must be true for a message to follow the path. A cycle is defined
to be a path that begins and ends at the same address.

We now consider the requirements for completeness for three
categories of addressing schemes: (1) memoryless and coordination-free
schemes; (2) schemes with memory but coordination-free, and (3)
schemes with memory and coordination.

3.1. Memoryless and Coordination-free Addressing
Schemes

Memoryless and coordination-free addressing schemes are the
simplest category. Each message is routed independently of all other
messages in circulation. At each address the routing decisions are based
solely on the information present in the contents of the message being
processed.

A message will become stuck in circulation if it either becomes
trapped at an address or follows a path of infinite length. A message
would be trapped at an address if it was forced to wait forever to be
processed. But we know this is impossible since, practically, there can
be only a finite number of messages at an address and each address
processes messages on a first-in-first-out basis. A message could also
become trapped at an address if an execution of the associated routing
procedure failed to halt. We can avoid this problem if we choose

258 Office Automation

appropriate constructs for the routing language [Mart84].

So a message will only become stuck in circulation if it follows a
path of infinite length. Practically, there can be only a finite number of
addresses in any addressing scheme. Therefore a path of infinite length
must contain a cycle.

It is possible to detect a cycle in a memoryless and coordination
free addressing scheme. We can catch all messages that would follow a
cycle and eliminate them to obtain an equivalent and complete address
ing scheme.

Observation:
Suppose A is a memoryless and coordination-free addressing
scheme. Then it is possible to construct an equivalent scheme A
that is complete for the set of messages delivered by A.

Argument:
We say two addressing schemes are equivalent if they handle the
same set of messages, have the same set of mail addresses and
deliver messages to the corresponding mail addresses [Tsic84].

We construct a graph representation for A. Each possible path in
the scheme is represented by some predicate p determined from
the graph. The predicate p defines an equivalence class of mes
sages (those that satisfy p) and each message in the class is routed
in the same manner by each address in the path.

We obtain all the path defining predicates by performing the algo
rithm in figure 2 starting at 0 with an initial predicate of "true".
The algorithm is a variation of a depth-first search [AhHU74].
The predicate is outputted when the end of the path is reached.
The algorithm allows for backing up to consider all edges from a

node. Properties of Message Addressing Schemes 259

define-path (o,true)
proc define-path (a,p)
a,b are addresses
P is a predicate
begin
if a = () or a = 8 or a already in path

then output P

end

else begin

end

for each b connected with a
P+-Pfo/Jab

define-path (b,p)
P+-PAPab

end

Figure 2

We need only deal with paths of finite length so that the process
must halt. A path will either end with the message being
delivered (Le. forwarded to ()) or the message being dropped (Le.
forwarded to 8) or a cycle will appear. This is assured since there
are a finite number of addresses in any scheme. We assume that
the contents of a message cannot be changed. Changing the con
tents of a message means that a message may change equivalence
classes. This makes path determination a very difficult problem.
So the second appearance of any address in a path means that the
message has entered a cycle. Suppose we are following a path and
encounter a cycle. Say so far we have built up the predicate

Pab ... h = Pabfo/Jbc A ••. fo/Jgh

We create a new procedure Pa' by altering the procedure Pa to
check for, and drop, any messages that match the predicate.

We must assume that no two paths with the same origin can have
the same path predicate. Otherwise, if one of these paths has a
cycle we remove the possibility of messages being delivered via
the other path.

The scheme A' delivers all the messages that were delivered by A
and drops any messages that got stuck in A. Therefore A'is com
plete for those messages delivered by A. A' handles the same

260 Office Automation

messages as A, has the same mail addresses as A and routes those
messages delivered by A to the same destinations. Therefore A'is
equivalent to A.

3.2. Coordination-free Addressing Schemes with Memory
The inclusion of local memory at some addresses allows routing

decisions to be made on the basis of information kept about previously
processed messages. The memory can be used to store patterns from
messages and counters. The patterns are used to represent properties
such as the same origin, same subject, a particular attribute value or a
particular string of text. All messages containing the pattern are
assumed to have the associated property. If memory is used in this way
then cycles in a path can be detected.

As with memoryless schemes, we must deal with the case where a
message follows a cycle. But the presense of a cycle does not neces
sarily imply that the message will become stuck in circulation. An
address with memory can keep track of the number of times a message
loops in a path and stop the message after a finite number of times. So
not only is the presence of a cycle important, but also how memory is
used by addresses in the cycle.

We provide addresses with a finite amount of memory. We con
sider memory at each address to be in one of a finite set of states {sJ,
S2, "', sn}. We assume, without loss of generality, that addresses
with memory route messages to a single address on the basis of the
state. Further distribution can occur from that point. We also assume
that routing decisions at an address are based solely on the state.
Further decisions based on the contents of a message can be made at
subsequent addresses. We are able to separate these decisions because
addresses are logical entities. Tsichritzis [Tsic84] discusses reduction
methods that can be used to merge the routing logic of several
addresses after the analysis is performed.

When a message is processed at an address a with memory a state
change in local memory may result. If the current state is Si then a new
state Sj will result if some predicate qij is satisfied by the message con
tents. After the state change, all messages held at a will be moved to
an address aj provided they satisfy the predicate Paaj relating the state
Sj to the address aj. The edge (a,aj) in the graph of the scheme is
labelled P aaj. A held message is one that has been processed but could
not be moved on. A message m is held at an address a until the
address reaches a particular state from which m can proceed. So the
execution of a routing procedure can now result in a change to the state
of the local memory, or to the state of the addressing scheme or to

Properties of Message Addressing Schemes 261

both. this view of memory also represents coordination as seen in the
next section.

Observation:
Suppose A is a coordination-free addressing scheme with memory.
We can construct an addressing scheme A 'that is equivalent to A
and A 'is complete for the set of messages that get delivered in A.

Argument:
We proceed as in the memoryless case. We perform a search of
the graph representing A starting at 0 and obtain the path predi
cates. We look for cycles in the paths.

We handle cycles of only memoryless addresses as in the first
observation. So we must deal with cycles containing one or more
addresses with memory.

Suppose we have a cycle containing the addresses with memory a,
f3, ... , 'Y. We have to determine whether the loop in the path is
finite or infinite. In effect, we examine each P", to see how
memory is used. We want a P", to store information about previ
ously processed messages, including the number of times each has
visited a, and an upper bound on the number of visits. P", should
compare the number of visits by the current message with the
upper bound and take the message out of the cycle if the bound is
exceeded. With such a P", the loop will be finite and no change is
required.

In terms of the graph representation, we want at least one state Sj

of a that forces a message out of the cycle. That is, there is an
edge (a,a) labelled P",aj, where address aj is not part of a cycle
with a, and state Sj is reachable in a finite number of steps from
some state Si that occurs during the looping of the message.

If this is not the case we insert a new routing address T' with
memory into the graph such that for some pair of addresses f3 and
'Y that are part of the cycle and (f3, 'Y) is an edge, the graph for
addressing scheme A' replaces (f3, 'Y) by (f3, T' and (T ~ 'Y). The
procedure Pf3 is altered to send message to T' if they originally
went to 'Y. The procedure PT , uses memory as described, and
drops any messages (Le. moves them to B) that have previously
passed by.

The new scheme A' handles the same messages and has the same
mail addresses, and any messages that reached a destination in A
reach the same destinations in A: Those messages that got stuck
in A are dropped in A: Therefore A' is equivalent to A and is
complete for those messages delivered by A.

We can see that a scheme will be complete if the connectivity is
such that every cycle in the address network contains at least one

262 Office Automation

address with memory and the address uses the memory appropriately.

3.3. Addressing Schemes with Memory and Coordination
The introduction of coordination into a scheme means it is now

possible that a message may have to wait at an address until one or
more other messages arrive before it can be routed. We represent coor
dination with addresses that can hold messages in their local memory.
Coordination presents the possibility of dpadlock. Two (or more)
addresses may each hold messages that the other needs to continue the
routing of those messages. The existence of deadlock cannot be
detected with merely an initial inspection of the address network. It also
depends upon the messages in circulation and the routings of those
messages.

Deadlock occurs in a routing if the messages in a set all follow a
path that contains two or more coordinating addresses but the messages
do not visit these addresses all in the same order. This means there
must be a cycle in the address network that contains the coordinating
addresses in order for deadlock to be a possibility.

We use our definition of memory in the previous section to
represent coordination also. Messages can be held at an address a until
some state Sj of the local memory is reached. The arrival of all the
messages in some coordination set causes the change to this state Sj.

Without loss of generality, we assume that all messages go to the same
address aj where further distribution can be performed. The edge
(a,a) is labelled with the predicate Paaj that relates the state Sj to the
address aj.

Observation:
Suppose A is an addressing scheme with memory and coordina
tion. We can construct an addressing scheme A that is equivalent
to A and complete for the set of messages delivered by A.

Argument:
We proceed as in the previous two arguments. We perform a
search of the graph representing A starting at 0 and obtain the
path predicates.

We look for cycles. From the previous two arguments we know
how to modify A to handle cycles that contain only memoryless
addresses or some addresses with memory. So we must only con
sider cycles with two or more coordinating addresses. By eliminat
ing those messages that deadlock we ensure the completeness of
A.

Properties of Message Addressing Schemes 263

We cannot tell if a particular message will deadlock at the time of
its submission. Coordination involves several messages and the
occurrence of deadlock depends upon their routings. We remove
deadlock from A by installing a mechanism that can detect
deadlock and eliminate the messages from circulation.

Suppose there is a cycle that contains coordinating addresses
a c , ••• ,ad which all coordinate the messages me' ... ,md. We
create two new routing addresses f31 'and f32: The address f31'han
dIes the coordination for all the ai's and the address f32' distri
butes the coordinated messages from f31 'back to the ai's or to 8
in the case of deadlock in the original scheme.

We also replace each ai by the two addresses ail' and ai2: The
address ail' is connected with all the addresses connected to ai in
A and receives all the messages that went to ai. ail' is connected
to ai2' and to f31 'and forwards any messages in the coordination
set to f31: All other messages are forwarded to ai2: The address
ai2' is connected to all the addresses ai is connected with in A
and distributes messages in exactly the same manner as ai. By
using two addresses we remove the need for a single a 'to deter
mine whether the messages are returning from f32' or are coming
from another address outside the cycle.

The address f31 'handles coordination for the cycle. Once the mes
sages me , ... , md have all arrived they are forwarded as a group
to f32: The address f32' must decide if deadlock would have
occurred in A.

If any two of the messages come from different ai's then
deadlock would have occurred in A and the set of messages is
dropped from circulation. If all the messages come from the same
address then deadlock would not have occurred in A and the mes
sages can be returned for processing.

In order for f31'to be able to tell where each message comes from
we assume that each path predicate is unique. Then for each coor
dinating address ai in the cycle, we take the disjunction of all path
predicates that define possible paths to ai. If all messages satisfy
one of the disjunctions for some ai then deadlock would not have
occurred in A. For example, if there are paths from the mail
addresses aj, a2, , ... , ak to a;, then f32' would test for mes
sages satisfying

to determine if they would have been held by ai.

So A' will drop any messages that get deadlocked in A or that get
stuck in a loop in A. Therefore A' is complete. Also A' is
equivalent to A since the same messages are handled by both

264 Office Automation

schemes, both have the same mail addresses and all messages
delivered by A are processed in exactly the same way by A:

Figure 3 shows· a cycle in an addressing scheme A consisting of
the addresses aJ, a2 and a3, all with coordination. Figure 4 shows how
that cycle would be represented in the equivalent and complete address
ing scheme A.

The above proof assumes that if one of the mjs is submitted then
all will eventually be submitted. We do not consider deadlock caused by
users failing to submit all the required messages. This is beyond the
control of the addressing scheme. For a scheme in which coordination
is complete for all messages, we must construct the network so that
there is at most one link (set of arcs in one direction) between any two
coordinating addresses and that link is acyclic.

Figure 3

Properties of Message Addressing Schemes 265

Figure 4

266 Office Automation

4. Serializability in Message Addressing Schemes
Serializability is one of the primary concurrency issues in database

systems [Ullm82]. Serializability theory gives precise conditions under
which transaction executions can be considered correct [BeG082].
Concurrency in a database system means there are a number of possible
ways the execution of a set of transactions can affect the state of the
database. We assume the concurrent execution of several transactions
is correct if and only if its effect is the same as that obtained by running
the transactions serially in some order. This notion of correctness is
intuitively appealing since we are able to comprehend the effect of a set
of transactions if they happen one after the other.

Concurrency is also found in addressing schemes. More than one
message may be in circulation and processing at several addresses may
occur at anyone time. This concurrency, combined with the properties
of memory and coordination, can greatly complicate the message rout
ings within an addressing scheme. There may be a number of possible
routings for a set of messages. A notion of serializability allows us to
determine when the routing of a set of messages is correct with respect
to concurrency. An addressing scheme can be judged correct if all its
routings are correct.

The use of local memory at an address means the prior arrival of
one message can have an effect on the routing of a later message. For a
routing to be intuitively "correct", these two messages should be pro
cessed in the same order at all addresses that both messages visit during
the routing. Otherwise, the routing of the two messages may be incon
sistent among different paths followed by the messages.

A routing where all the procedures for a message mi are executed
before the procedures for another message mj satisfies this intuitive
notion of correctness. Concurrency is limited to the processing of a sin
gle message and th~ paths followed by a message are independent. But,
with coordination present in a scheme, a message may only go so far
down a path and then have to wait until other messages arrive, mes
sages that cannot be routed until the original message is completely
routed. So we have deadlock in the routing.

To accommodate coordination, we say a routing is serial if the
order of processing is the same at all addresses. We define a routing to
be correct if it has the same effect as a serial routing.

We assume the addressing schemes to be complete. Thus we are
guaranteed that every message routing will eventually halt and we will
not face the problem of never finishing a serial execution.

Properties of Message Addressing Schemes 267

4.1. Routing Logs
A routing R [ml' ... ,mn] for a set of messages {ml> ... ,mnl is

the circulation of the messages through the address network of an
addressing scheme. At each address visited by a message the procedure
associated with the address is executed to determine the next step in
the routing. This next step can be a transfer of the message to one or
more connected addresses or the transfer of the message out of circula
tion, i.e. the message reaches one of its destinations. A message may
concurrently travel several paths in the network. This corresponds to a
message going to a set of destinations. A routing ends when all the
messages leave the scheme from all paths in the routing.

We model message routings with a construct called a log (adapted
from logs in serializability theory [BeG082]). A log indicates the pro
cedures executed during a routing and the order in which they were
executed. Formally, a log over a routing R [ml' ... ,mn] is a partially
ordered set L = (l:, <) where l: is the set of routing procedures exe
cuted at the addresses visited by all the miS (I ~ i ~ n) and < is the
partial ordering on these executions. The partial order < indicates the
order of the addresses visited or, equivalently, the paths followed by
each mi> and other constraints on the order of execution (which we dis
cuss below). We note that the partial order < is transitive.

We represent each element of l: with the notation Pi} [J'jd, i.e.
message mi 'visits address aj and procedure ~ is executed. During the
execution the set of variables J)i in local memory (J)) is accessed. We
assume that J)i ~ J) and that each variable x E J)i is accessed and has
its value altered. We require that every variable in J)i have its value
altered because otherwise there is no way to tell that message mi has
been processed by address aj and that the variable was used to deter
mine the routing of mi' We let Pi} [] represent a procedure execution
where no local memory is accessed. We assume that the execution of a
procedure at an address is atomic. An execution of the procedure for
one message cannot be interrupted in order to execute for another mes
sage.

A log can be represented by a graph whose edges indicate the par
tial order <. The graph for the routing of a single message is simply a
tree. Figure 5 shows the graph of a log over a routing R [m d where m I
originates at address al and then follows two paths - al - a2 - a4
and a I - a 3. These paths are indicated by the partial orderings P 11 [] <
P12[] < P14[]and P11[] < P13[].

If an address is visited by a message mi more than once in a rout
ing then its associated procedure appears more than once in l:. A loop
in a path followed by mi results in a partial order

. .. Pi} < ~k < .,. < ~j < Pik < ...

268 Office Automation

Rl Pl1[Vlll

/ P12ll -----~;) P14[J

~ P13[V311

Figure 5

and the corresponding path in the graph is of infinite length. A pro
cedure may also appear more than once if an address is on more than
one of the paths followed by a message. These executions may not be
related by the partial order <.

There are two further constraints on the form of logs. We say two
procedure executions conflict if they are at the same address and their
memory references overlap. That is, for messages ml and m2, the exe
cutions Pli[Jifd and P2;[Jif2] conflict when Jif l nJif2#0. We assume
that all variables in local memory that are referenced during an execu
tion affect the routing of the message and have their values changed by
the execution. So the prior execution of Pi for ml has an effect on the
routing of m2' We require that all conflicting pairs of executions in a
log be ordered. Otherwise, there is no way to tell if the subsequent
steps in a routing are valid, i.e. they follow from the processing done at
the address. An example of a log Lover R [mo, ... ,m4] with
conflicting executions is shown in figure 6.

The second constraint deals with the coordination of messages.
Coordination is represented by a set of procedure executions (not
necessarily consecutive) at a particular address. The result of all but the
last execution is to hold the current message and leave the state of the
addressing scheme unchanged. The result of the last execution is to
route the current message and all those messages stored by the previ
ous executions. The order of arrival of the messages is not important.
We assume that the same routing is performed when all the messages
are present no matter what the order. If order does matter, then we
can represent this by accesses to variables in local memory, ego Pi} [fji]'
Otherwise we will simply use the notation Pi} [] when referring to coor
dinated executions.

Formally, we say a set of procedure executions at the same
address (P li [L ... ,PndD coordinate if all procedure executions must

L =

Properties of Message Addressing Schemes 269

/P0H]

P00[1
~ P02[V201

P40[] __ ~T P43[V3tl

1
P31 []-__ 17 P33[V331

t
P13[V311

Pi1[]

~P12[]

---7)P44[]

-->-:310-' P35 []

--)..,- Pit []

I ~ <P26[]

P22 [V22] --;;:"P23 [V32

~ P27[]

Figure 6

be performed before the routing of all the associated messages can con
tinue. That is, if l);l] < l)d] for some l~j:~n and i#k then
P/i [] < l)k [] for all I such that 1 ~ I ~ n . The presence of coordination
in a log can be indicated as in figure 7. The messages mo and ml are
coordinated at address a2 and both executions P02 [] and Pd] must
occur before both messages can be transferred to a4'

270 Office Automation

P01[]

P00[]

P1Z[].) P14[]

P13[]

Figure 7

4.2. Log Equivalence
If L is a log over some routing R [m 1, ... ,mn], we say Ph) [J-jh]

is a./frcted by Pi) [J-j;] if Pi) [J-j;] < Ph) [J-jh] and J-j; n J-jh -=/=. 0 and there
does not exist Pk) [J-jk] such that p;) [J-j;] < Pk) [J-jk] < Ph) [J-jh] and
J-j; n J-jk n J-jh -=/=. 0. In other words, the prior arrival of message m;

affects the routing of message mh at address a) and there is no message
mk that arrives in between which can override the effect.

Intuitively, two logs are equivalent if the same addresses are
visited by the same messages in each of the logs (same state changes to
the addressing scheme with respect to the individual messages) and
they have the same effect (if any) on the local memory of each of the
addresses. Formally, we say two logs are equivalent if they have the
same ~ and

Properties of Message Addressing Schemes 271

1. each procedure execution is affected by the same procedure exe-
cution in both logs;

2. they have the same set of final accesses;

3. they have the same coordination sets.

A procedure execution Pij [Vj;] is a final access to some set of variables
Vjf ~ Vj; ~ Vj if there is no Pkj [Vjk] such that Pij [Vjk] < Pkj [Vjk] and
Vjf ~ Vjk. A coordination set is a set of procedure executions
{pli [L ... ,Pk; []} that all coordinate on some message set at address
a;.

4.3. Serializable Logs
A serial log over a routing R [mI' ... ,mn] is a partial ordering on

I such that for each pair of messages m;, mj E {m 1, • • . ,mn } and all
addresses ak visited by both m; and mj, either P;k < J'.jk, or vice versa.
An example of a serial log is shown in figure 8.

A log is serializable if it is equivalent to a serial log. We consider
the routing associated with the log to be correct. For example, the log L
over R [mo, ... ,m4] shown in figure 6 is serializable. We can see that
it is equivalent to the serial log S over R in figure 8.

Suppose L is a log over the routing R [mI' ... ,mn]. The seriali
zation graph for L, SG(L), is a directed graph whose nodes are
R [m d, . . . ,R [mn] and whose edges are all R [m;]--+ R [m) such that
for some set of variables Vkl at address ak visited by both messages m;
and mj, P;dVk;]<PjdVkj] and Vk; n Vkj= Vkl .

A cycle will occur in SG(L) if the routing procedure executions
for a set of messages are in a different order at two or more addresses.
This is not correct since the routings of two or more messages affect
each other in different ways on different paths. So L cannot be serializ
able. Figure 9 shows the serialization graph SG(LJ for the log L of
figure 6. There are no cycles and we already know L is serializable. The
independent subgraphs in a serialization graph mean that individual
routings have no effect on each other, ego R [mo] and R [md, R [mo]
and R [m3] in SG(L). So in a memoryless scheme, there will be no
edges at all in any of the serialization graphs since each routing is
totally independent.

Observation:
For any addressing scheme A and log L over a routing
R [m 1, •.• ,mn] if SG(L) is acyclic then Lis serializable.

Argument:
We will give a proof by contradiction. Assume that L is not serial
izable, so by definition we know L is not equivalent to some serial

272 Office Automation

P22[V221

1
P23[V321

~
P26 [1 P27 [1

~ /
P00[1

~.
P01[1 P02[V201

~/
P40[1

1
P43[V341

1
P44[1

1
P31[1

t
P33[V331

1
P35[1

J
Pll [1

~
/'

P13[V31l P12[1

\~
P14[1

Figure 8

Properties of Message Addressing Schemes 273

R[mll <tE<=------- R[m31

SG(U R[m.,~

R[mZl

Figure 9

R[m41

log S. That is one, or both, of the following statements is not true
1. every procedure execution is affected by the same procedure
execution in both L and ~
2. L and Shave the same set of final accesses.
We will consider the two cases where each of the above state
ments is false.

case 0): When compared with every serial log S over R there is
some Pij [Jji] affected by some Pkj [Jjk] in L that is not in S. This
implies that there is an edge R [mk]-+ R [mi] in SG(L).

We know L is not serializable by assumption, so there must be
some other address ah visited by both mi and mk such that
Pih [Vhi] conflicts with Pkh [Vhk] and Pih [Vhi] < Pkh [Vhk].
P;h [Vhi] < Pkh [Vhk] implies that there is an edge R [mi]-+ R [mk] in
SG(L) though this may be obtained by transitivity. Therefore
SG(L) has a cycle but this is a contradiction.

case (2): When compared with every serial log S over R there is at
least one Pij [Jji] in the set of final accesses of L that is not in S.

If Pij [Jji] is the final access on Jjf in L, but Pkj [Jjk] is the final
access in S, then Pkj [Jjk] < P;j [Jji] in L and there is an edge
R [mk]-+ R [mi] in SG(L), though perhaps by transitivity; i.e.,
there may be conflicting accesses between them.

We know by assumption that L is not serializable. There must
also be some other address ah with variable set Vhf ~ Vh such that
Pkh [Vhk] and Pih [Vhi] conflict, Vhk n Vhi = Vhf and
Pih [Vhi] < Pkh [Vhk]. So there must be an edge R [mi]-+ R [mk] in
SG(L), though perhaps by transitivity. Therefore SG(L) has a
cycle, but this is a contradiction.

Therefore Lis serializable if SG(L) is acyclic.

274 Office Automation

5. Time Independence in Message Addressing Schemes
An addressing scheme is called time independent if the time

needed to process a message at each address does not affect where the
message gets delivered [Tsic841, i.e. the final destination (s) for each
message does not depend on the sequence of applying the next state
mapping in the network.

Observation:
Any addressing scheme A is time independent if it is complete
and there are no conflicts at any of the addresses in A.

Argument:
For A to be time independent we know that the amount of time
spent by a message at any of the addresses must not affect the
final destinations of the message.

For a given set of messages {mo, ... ,mk} in circulation, and two
routings of the messages R [ml' ... ,mn] and R 1ml' ... ,mn], a
message mi spends more time at an address aj in R ' than in R if
messages processed after mi at aj in R are processed ahead of it in
R ' (we assume the time a message spends at an address is directly
proportional to the number of messages ahead of it to be pro
cessed).

If aj is memoryless and coordination-free we know by definition
that each message is processed independently. So the order of
processing does not alter the destinations.

If aj has memory, then order can matter, since the prior arrival of
a message can alter memory and affect the routing of succeeding
messages. But we assume there are no conflicts; so for any two
executions Pi} [Vji] and Pkj [Vjk] we know Vji n Vjk = 0. The
memory used by the executions does not overlap so they can have
no affect on each other. Therefore the order of processing does
not alter the oestinations.

If aj has coordination then again order does not matter. The mes
sages will be kept until all the messages to be coordinated have
arrived and then the set of messages will be routed. The order
does not affect the routing.

Therefore A is time independent.

6. Examples
We illustrate the properties of message addressing schemes in this

section with a pair of examples. The first example deals with complete
ness. The second example deals with serializability and time indepen
dence.

Properties of Message Addressing Schemes 275

6.1. Mail Handling
Figure 10 contains a message addressing scheme for a set of typi

cal mail handling instructions that a pair of managers, Ml and M2,
might give to their secretaries. There is no global design. The instruc
tions are based on reasonable local procedures. Both managers give
identical instructions to their secretaries.

Incoming mail is first divided into personal and business mail
(mail addresses a and d). This division could be determined by how the
mail is addressed, who the originator is, or by special markings. The
personal mail is forwarded directly to the manager's office (mail
addresses b and e) where it leaves circulation.

The business mail is routed according to whether or not the
manager is on vacation. The routing addresses a and f3 (for Ml and M2
respectively) have memory that can be in one of two states. If the state
is SI then the manager is at work and mail can be forwarded to his
office. Otherwise the state is S2 and the manager is on vacation. A
manager inserts a special message p, just before he goes on vacation
and upon return from vacation, to change the state of his corresponding
address.

If the manager is on vacation then it must be determined whether
or not the mail is urgent. Before leaving for vacation, the manager
would identify properties (e.g., certain subjects, originators) which indi
cate that mail is urgent. Mail with these properties is forwarded to the
substitute manager. We assume that Ml and M2 cover for each other.
If the mail is not urgent then it can be forwarded to the manager's
office to be dealt with later.

Using the methods we have outlined, we produce predicates for
all paths in the addressing scheme graph starting at address a. The paths
starting at d are of the same form as those starting at a and are not dis
cussed here. We assume 0 is connected to a and d with edges labelled
true and band e are connected to (J with edges labelled true. The predi
cates corresponding to these edges can be left out of the path predicates
since they will play no role in determining the resulting value.

The path predicates for the paths starting at a are

Persona/ab

BusinessaaAMI- Hereab1

BusinessaaAMI- Vacationac2ANotUrgentcb

BusinessaaAMI- Vacationac2AUrgentcdAPersona/de

BusinessaaAMI- Vacation aC 2AUrgentcd ABusinessdf3

AM2 - Here f3e 1

(1)

(2)

(3)

(4)

(5)

276 Office Automation

Personal

N1-Here

NotUrsent

M1-Vacation

MZ-Vacation

NotUrsent

;'\

~siness
/

-------)7~~----------------p-e-r-s-o-n-a~1----------------/'

MZ

Figure 10

Properties of Message Addressing Schemes 277
Businessa"AMl- Vacation"c2AUrgentcdABusineSSdf3

AM2- Vacationf3/2ANotUrgent/e (6)

Businessa "AMI - Vacation "c 2A Urgentcd ABusinessd f3

AM2- Vacationf3f2AUrgent/a (7)

The exercise of determining the path predicates points out several flaws
in the routing logic when viewed globally. Path predicate (4) indicates a
possible path in which Ml considers the mail to be business while M2
considers it to be personal mail. If the latter were the case, the mail
should not have gone to Ml in the first place. Also, there is no action
for incorrectly addressed mail in this scheme. Path predicate (6) indi
cates a possible path in which Ml considers mail to be urgent while M2
does not. There is an inconsistency between the local procedures that
should be resolved. Finally, we see that path predicate (7) defines a
cycle. So, if both Ml and M2 are on vacation, urgent business mail will
just cycle around until one of the managers returns from vacation. We
only notice the incompleteness when procedures at all the addresses are
analyzed in combination. As more complex addressing schemes are
designed it will become more difficult to comprehend all the possible
paths in a scheme; therefore this type of analysis will be vital to ensur
ing completeness.

6.2. Calendar Manager
Figure 11 shows an addressing scheme for a very simple calendar

manager. Each user has a routing address with memory (the ajs) that
is used to keep track of booked time slots (figure 11 shows two users).
Each address has a set of states {St, ... , Sk}' The current state indicates
which time slots are free and which are booked.

When a message is received at an aj, if the requested time slot is
free, there is a state change Sj-Sj, where Sj is the same as Sj except
that the requested time slot is booked, and the message is forwarded to
a mail address that delivers it to the user. If a message is received by an
aj and the requested time slot is booked, then there is no state change
and the message is forwarded to mail address a7 where it is delivered to
a user designated to handle the problem.

A message routing in this scheme will be incorrect if there is
more than one message in circulation that wants to book the same free
time slot and these messages are processed in different orders at the
ajS. Different users will book different meetings for the same time slot.
Figure 12 contains a log L t over a routing R [mt>m2] and the serializa
tion graph SG(L t). The two messages try to book the same time slot
for a meeting with both users. So the memory references overlap in

278 Office Automation

both a3 and a4. The serialization graph contains a cycle so the routing
is not serializable and different meetings get booked at the same time.
Figure 13 shows a log L2 over a routing S[mt.m2] for the same mes
sages and its serialization graph SG (L 2). We can see that L2 is serializ
able and that both users get booked for the same meeting.

Also, this addressing scheme is obviously not time independent.
Any messages that request the same time slot conflict over the same
part of local memory in an aj. So the time spent in circulation, i.e. the
order of processing, by conflicting messages has a definite effect on the
final destination of the messages.

7. Concluding Remarks
We can view the study of message addressing schemes as analo

gous to the study of data models in database management systems.
Message addressing schemes provide a general way of representing the
"data" of a mail system, that is the naming and addressing information.

We need to understand the properties of mail systems before we
can effectively build advanced mail systems. We have described how
message addressing schemes are used as a framework for this analysis.
We dealt with the properties of completeness, serializability and time
independence, and discussed the conditions necessary for their
existence.

The naming and addressing mechanisms of both existing and pro
posed mail systems can be represented as message addressing schemes
and then analyzed to uncover problems. By assuring the existence of
such properties as completeness, serializability and time independence
we can increase user confidence in a system.

8. References
[AhHU74] [BeG082] [BLNS82] [GaKu81] [HMGT83] [MaL083]
[Mart84] [OpDa83] [Schi82] [Tsic84] [Ullm82] [Vitt81]

Properties of Message Addressing Schemes 279

true true

true true

Booked Booked

NewMeeting
NewMeeting

true

Figure 11

280 Office Automation

/ PI3[V31),\ > P1S[]

Pl1[]>/
~ P14[V41l ;;:. P17[]

\ I
~ PZ4[V4Z]) PZ6[]

PZZ[]

\;
PZ3[V3Z] 1 PZ7[]

R[ml] ~<-------> R[mZ]

Figure 12

Properties of Message Addressing Schemes 281

P13[V31l~\\-----~> PiS[I

P11[I

------~> P17[I

1

R[ml1-------~). R[mZl

Figure 13

12
Message Flow Analysis

O.M. Nierstrasz

ABSTRACT Message management systems with facilities for
the automatic processing of messages can exhibit anomalous
behaviour such as infinite loops and deadlock. In this paper we
present some methods for analyzing the behaviour of these sys
tems by generating expressions of message flow from the pro
cedure specifications. Message domains are partitioned into
state spaces, and procedures can be interpreted as automata
ejfocting state changes. Bloeking of procedures and procedure
loops can then be detected by studying the resulting finite auto
maton and Petri net representations of message flow.

1. Overview
Automatic processing and routing of electronic documents yields

some interesting problems when the work that is done with them is
sufficiently complicated. In this paper we consider the task of deter
mining what global behaviour is exhibited by messages in a message
management system when there exist a number of automatic pro
cedures running at user workstations, examining, processing and rout
ing incoming messages.

If the logic built into these procedures is anything but entirely
routine, then we may see messages being routed through the system in
various ways. If the automatic procedures are adapted from existing
manual procedures, there is always a possibility that the translation will
be faulty: that messages may get improperly routed, or that procedures
will wait indefinitely for messages that do not arrive. We therefore pro
pose some techniques for studying and analyzing the behaviour that can

284 Office Automation

be expected to result from such automatic procedures. The intended
behaviour can thus be verified to some degree, and anomalous
behaviour can be detected in advance.

In the following section we describe informally the systems that
we are interested in modelling and analyzing. Collections of worksta
tions connected by a network are used to pass electronic documents, or
"messages". These messages are typically highly-structured, and often
resemble forms. Similar messages are classified into "message types".
High-level automatic procedures may in fact be implemented by the
workers using the workstations. Complex activities can be broken
down into simple steps that collect a set of messages satisfying "trigger
conditions", perform transformations on those messages, possibly creat
ing or destroying some, and then route or file them.

In the third section we introduce a formal model for discussing
these systems. The model is then used to develop a characterization of
global behaviour in terms of message flow. The message domains (the
sets of values that messages may assume) are partitioned into state
spaces. Procedures can then be viewed as effecting state transition on
messages, and the entire system can be viewed as a collection of finite
state automata, one per message type. We then show how to recover
the coordination of messages performed by the automatic procedures by
"welding" the finite state automata into a Petri net (a popular modelling
tool).

Sections six and seven are concerned with detecting anomalous
behaviour. In section six we discuss the problem of blocking, in which
a procedure may wait indefinitely for a missing message to arrive. This
is especially troublesome if there are other messages waiting to be pro
cessed by that procedure. There are various scenarios in which block
ing may occur, including deadlock, where two procedures are each wait
ing for messages that are stuck at the other procedure.

In section seven we discuss "procedure loops". Here we may see
procedures firing indefinitely, passing messages back and forth between
them. A special case is the "message loop", in which some messages
visit the same sequence of procedures indefinitely. These problems
may also cause blocking, if a procedure is waiting for a message in a
loop. If messages are created in the loop, the file system will eventu
ally get saturated, and the network may even get overloaded with mes
sage traffic. We show how it is possible to use the Petri net model of
message flow to detect possible procedure loops.

Message Flow Analysis 285

2. Message Management
We are interested in office information systems that are

superficially very similar to real offices. We have a collection of works
tations ("stations", for short) that are the logical equivalent of desks.
Users communicate with each other by using electronic documents or
messages instead of paper documents. Other familiar objects may also
have their counterparts in a computerized office system (bulletin
boards, calculators, calendars and so on). By "simulating" a real office
with the computerized system, the task of computerization is simplified
and the likelihood of acceptance by office workers is increased [AtBS79,
EINu80, HaSi80], If naive-user programming is to work, then elec
tronic objects should have immediately recognizable counterparts to
familiar physical objects, and the operations we normally perform on
the real objects should translate naturally into operations on the elec
tronic ones.

The static objects in these systems are electronic documents con
taining the information that we would normally find on paper docu
ments. They resemble our intuitive notion of a message in that they
can be sent from workstation to workstation, but in this setting they
may have other constraints. Messages in an office information system
may be required to continue to exist after they have been received -
documents in offices often change many hands, possibly residing at a
location for a long period of time before being passed on. Further
more, many messages fall into well-defined groups or "types". Forms
and records are highly structured - a collection of them resembles a
relational database. Questions about forms can resemble database
queries ("tell me what customers owe us more than a thousand dol
lars") .

Operations on messages include creation, destruction, display,
modification and mailing. In addition, since messages in this context
may be a permanent record of information, we may wish to query a
database of messages. Such operations as selections and joins over
several messages by matching comparable fields, for example, can be
very useful. Similarly, when modifying messages, it should be possible
to easily transfer data from one message to another, or to use informa
tion in one field of a message to compute or generate new information
for another field.

In order to automate office activities, one must be able to recog
nize conditions that cause events to be triggered. Events may, in turn,
cause other events to be triggered. Visible events include the arrival of
messages and the creation and modification of messages. One must be
able to select precisely those messages that are of interest. A trigger
condition thus resembles a query ("get me a message satisfying this
condition") that applies to the future rather than just the present. Since

286 Office Automation

a collection of messages may be required in order to complete some
activity, these conditions may potentially include joins, or matching
between messages.

A simple example is mail-forwarding. All messages satisfying a
simple constraint can be automatically forwarded to a particular loca
tion. Order forms for large amounts could be forwarded to a manager
for approval.

It is instructive to decompose activities into steps: in each step we
must gather a set of resources (messages), possibly transform them in
some way, and release them. New messages may be created in the pro
cess. Although an activity may consist of several steps chained
together, we will concentrate on the steps themselves. The advantage
of this is that we can consider the steps to be atomic - they either
succeed or fail in entirety. Multi-step activities naturally do not neces
sarily have this property. It is the steps that we shall speak of as "pro
cedures", though one should keep in mind that more complex activities
exist in general.

We also assume that these procedures are local to workstations.
This view is very natural and consistent with the principle that compu
terized office systems resemble real offices: users of the system and
their automated procedures only have direct control over the documents
"belonging" to them. (We may extend this, however, by allowing the
presence of local procedures at other sites that "belong" to someone
else. A manager may, for example, be able to install a procedure at a
worker's station that selects and forwards certain messages back to
him.) Another advantage of local procedures is that we do not have to
address the problem of activities that are triggered by events that take
place at several physically different locations. If all the "workstations"
are timeshared on a single mainframe then we do not have serious
problems implementing such behaviour, but it is another matter when
each workstation is a separate machine on a network.

3. Message Flow Modelling
Before we can begin to address questions of global behaviour in

message management systems, we need a formal framework for dis
cussing automatic procedures. This framework must be powerful
enough to capture quite general procedures but should be divorced
from any particular implementation of them. It is immaterial, for
example, whether procedures are written in some high-level program
ming language or in some intermediate code generated by a
programming-by-example interface.

Message F10w Analysis 287

We will first present a model for describing messages and the pro
cedures that manipulate them. Although we make some simplifying
assumptions about procedures, we will show that quite general
behaviour can be captured within the confines of our model.

3.1. Locations
The logical configuration of an office information system is similar

to that of a physical office. There are a number of workstations ("sta
tions", for short), each of which is capable of communicating with any
of the others. Whether or not the system runs as a collection of physi
cally independent communicating machines or not is immaterial. Simi
larly the nature of the communication medium does not concern us
here.

The collection of workstations is represented by:

S = {Si> ... SN}

In addition we have two pseudo-stations, a and w, that represent crea
tion and destruction of objects. Creation and destruction are thus expli
citly modelled. In some situations such stations will exist in truth: des
truction of documents may in fact be implemented by permanently
archiving them; also, creation of documents may be the responsibility
of a privileged authorizing agent that assigns, say, unique identifiers.
We require only that no messages be sent to a and that none be
received from w. That is, they must behave as source and sink, respec
tively. The set of stations and pseudo-stations is:

S+ = S U {a, w}

Mailboxes are intermediate locations between stations. Messages
passed between stations must be put into a mailbox just as physical
documents are placed in an "in-tray". Although there may not be any
"real" mailboxes in the system we are modelling, this allows us to dis
tinguish between new mail and previously-seen messages. Further
more, our model has one mailbox for every ordered pair of stations.
This allows us to readily identify the sender of a message without hav
ing to resort to modelling a sender field for messages in transit. The
latter approach would be entirely equivalent, however. The set of all
mailboxes is thus:

M = {mij I l~i~N, l~j~N}

where mij is the mailbox for messages sent from Sj to Sj. Note that a
and w do not have mailboxes. A message "from" a appears at the sta
tion creating the message. A message that is destroyed goes directly to

288 Office Automation

w. A station is allowed to mail messages to itself.

The set of all locations is

L = SUM

and, with the pseudo-stations:

L + = SUM U {a, w}

The set of locations from which Si may receive messages is:

L(s;) = {a, Si} U {mki I l~k~N}

This is the local scope of Si - the locations that are accessible to the
procedures at Si' Messages may be created at a, they may already
reside locally at Si, or they may arrive by mail from any of the N sta
tions (including Si itself, if desired).

Similarly Si may route messages to anything in the set:

R (Si) = {w, Si} U {mik I 1 ~ k ~ N}

(Note the reversal of subscripts on the mailboxes.)

3.2. Messages
Messages are assumed to be structured, and belong to one of

several message types that encode this structure. The set of message
types is:

The domain of a message type is assumed to be the Cartesian product
of the attribute domains. (The attributes are the "fields" of a structured
message.) We have, therefore:

ni

dam (~) = II dam (~))
)=0

where ni is the number of attributes of message type ~.

We reserve two attributes, ~o and ~1 for the identity and the
location of a message, respectively. The identity of a message instance
is the only attribute that is never allowed to change. Since message
instances may change value, we need some convention that allows us to
keep track of their identity. We thereby also distinguish between a
message instance and a message value: a message instance may assume
different messege values at different points in time. dam (~o) may be
any enumerable set; for simplicity's sake we may assume it to be the

Message Flow Analysis 289

set of positive integers. Of course, dam (Xii) = L (a message whose
"location" is a or w is not explicitly represented). A message value is
represented by

xE dam (Ai)

The kth attribute of x is denoted by either Xk or x [k 1. The latter nota
tion is generally used when x is the jth message in a tuple of messages,
T=(. .. ,X, ...), so x=dil, and Xk=T(j][kl. Message tuples are dis
cussed below, in the section on procedures. The identity of x is xo,
and its location is Xl'

The system state is the collection of all the values of existing mes
sage instances. There is a set of message values Di for each message
type Ai. The system state is:

D = <Dj, ... DK>

where Di r;, dam (Ai). We do not represent messages whose "location" is
a or w. Such messages have not yet entered, or they have already left,
the system. We also insist that each Di contain at most one message
with a given identifier, i.e.

'Vx E Di> Y E Db Yo=xo:::} Y =x

In addition, we adopt the convention that

D(J) = Di where I = Ai

(i.e. if I is an arbitrary message type then D (J) represents the set
of instances of that type).

3.3. Procedures
At each station Si E S there may be a set of procedures that

automatically process messages:

P(Si) = {Pi} 11:::;;j:::;;ki }

where ki is the number of procedures at Si' The set of all procedures
is:

Every pEP has a set of input types, trigger conditions and actions.
A procedure (within our model) is a single-step activity. A collection
of messages (inputs) matches the trigger condition and the actions are

290 Office Automation

performed, causing messages to be modified (possibly created or des
troyed) and routed. The input types are the types of the messages p
needs in order to evaluate its trigger conditions:

I(p)=<1 1 "'1,> p , p p

where IpiE X. lp is the number of inputs to p.

The inputs to a procedure p form a set, or rather a tuple, of mes
sages that we call an input tuple. We usually represent such a tuple by
the symbol T, where x = T[j] is the jth input message and
Xk = T (j] [k] is the kth attribute value of the jth message. Such a ,
tuple T may trigger procedure pEP (Si) if T E IT dam Upj) and it satisfies

j=l
the trigger conditions of p. In addition, the messages in T must be
available to p, that is, T(j][I]EL(si), and each of the messages in T
must be unique (a message cannot play two roles for a single pro
cedure). We formalize this in the set T(p) of message instances that
may trigger p E Si, where: ,
1. T(P) ~ IT dam Up)

j=!

2. (TE T(p))t\Upj=Ipk)t\(T(j][O]=T[k][O]) =* j=k

3. TE T(P) =* Vi T (j][I] E L (Si)

Tuple T can thus trigger p if TE T(p) and for all IpjEI(p) we have
T(j]EDUpj) or the jth message is to be created by p (i.e. T(j] does not
exist yet). We then say that p is enabled.

In order to disambiguate conflicts between procedures, we allow
for a partial ordering "»" of procedures. If both p and p 'are enabled
and p» p : then procedure p must be fired. We say that p has priority
over p:. p 'may only be fired if it is enabled and p is not. This is useful
if p is triggered when message x matches some coordinating message y
and p 'is triggered when there is no coordinating y. Without partial
ordering of procedures it would be impossible to express the condition:
"fire p 'with message x only if there is no matching message y". For
example, if procedure p matches inventory forms to order forms and p ,
looks for order forms for non-existent items, then the only way to cap
ture the trigger condition of p 'is to have it accept all order forms not
accepted by p.

Actions map input tuples to output tuples. In our model, there is
a one-to-one correspondence between input messages and output mes
sages even if the procedure creates or destroys some messages. This is why
we need the pseudo-stations a and w. They allow us to (somewhat
artificially) model messages that have not been created as arriving from
a, and those that are destroyed as being sent to w.

The action of procedure p is a mapping:
Message Flow Analysis 291

I

A (P) : T (p)- IT dom (Ipj)
j=I

such that the identities of input messages are never changed, and they
are routed only to valid locations. We use the notation ajk to refer to
the individual attribute mappings of A (P). If 7 '=A (P)(7), then

ajk:7 1-7 fJ] [k]

For each j, therefore, ajO is the identity map (can't alter identity of
T[j]). Also, the aj IS are the routing junctions, since they are responsible
for updating the location attributes. Oearly, the domain of ajI is
R (s;), where pEP(s;).

Within our model, user input, external databases and other out
side sources of information are not explicitly represented. When pro
cedures make use of external information, we consider the mappings of
the procedures to map to a set of possible values (modulo the outside
information sources). Consequently, when we perform our analysis
with traditional machine models such as finite automata and Petri nets,
a certain amount of non-determinism appears that may not necessarily
be evident in the system under analysis. A function that sets a field of
a message to anything a user wishes to enter is therefore modelled as a
mapping from the input message to the entire domain of that message
field. We should therefore keep in mind that this "non-determinism" is
often an artifact of our attempt to exclude arbitrary information sources
from the outside world.

If 7 triggers p then the system state D is updated to reflect the
firing of p. Input me~sage instances are replaced by their new values.
If 7' = A (P) (-r), then the new system state D '= < D 1, . . . D K > is
defined by:

D; = (D; - hli]IIpj=X;}) U hfJ]I(Ipj=X;)A(7fJHl1:¢:w)}

Messages that are destroyed are simply deleted from D ;.

4. Message Paths and States
Our model of message management views procedures and loca

tions as basically static entities. Although procedures are altered and
workstations may be added to a system, we expect these events to
occur infrequently compared to the rate at which messages are pro
cessed and modified by the procedures. Also, we do not expect to be
able to formalize the changes in procedures and in system configuration

292 Office Automation

in the same way that we can formalize the changes in messages
(through the procedures). We may try to measure the large-scale
changes in procedures, however, through how they effect the behaviour
of messages. Since it is the behaviour of the messages that best charac
terizes what is actually happening on a regular basis, it is here that we
are to concentrate our efforts in analyzing global behaviour.

What is immediately visible is that messages are created, are
modified and routed by sequences of procedures at different worksta
tions, and are eventually destroyed. We can think of messages as trac
ing a path through the network of stations as they encounter different
procedures. In between the procedures they acquire different values
(including their location) which they hold until the next procedure
changes their value. We may thus think of a message path as being not
merely a sequence of procedures encountered by the messages, but as
an alternating sequence of values and procedures. This message path is
an expression of "message flow" since it encapsulates all the locations a
message visits during its lifetime, especially if we allow ourselves to
think of procedures as extremely brief, temporary "locations".

Unfortunately this expression of message flow is impractical. In
[Nier84] it is shown that there is no effective way of comparing the
message paths of two different messages. Briefly, it is shown how two
messages can "simulate" two different Petri nets in such a way that the
message paths are equivalent to the Petri net languages. Since there is
no effective way of determining whether two Petri net languages are
equivalent [Pete831, we cannot compare message paths.

We must therefore seek some less demanding way of describing
message flow. By partitioning message domains into finite state spaces
we limit the possible combinations of messages and procedures to be
considered. Furthermore, since procedures can be thought of as
effecting transitions of messages from state to state, we can derive a
finite state machine representation of message flow. We can thus
extend the notion of message paths to be alternating sequences of mes
sage states and procedures. As finite state machines are a well
understood formalism, this leads to a classical interpretation of system
behaviour.

We need not necessarily consider all message attributes when we
partition our message domains into a state space. Some attributes may
not affect the path of messages at all. Attributes that do affect the path
do so by affecting either the triggering of procedures or the routing of
the message.

To begin with, although the domain of a procedure's actions and
triggers is all of T(P), it is in fact likely that only some of the attributes
of the input messages are examined or modified. We would like to
identify the true arguments of a function as the ones that are actually

Message Flow Analysis 293

used in the computation of the value returned. We are assuming, of
course, that all the functions we will be dealing with are effectively
computable, and describable by algorithms. A procedure that incre
ments a field of a message clearly does not need any of the information
contained in the other fields of the message in order to compute the
result. The only true argument to the incrementing function is there
fore the field that is modified.

The true arguments to a function can generally be determined by
inspection. (There are situations where this may not be so, but we
shall not discuss them here.) For example, the true arguments to
f (x ,Y ,z) =x2+ yare clearly x and y, provided the domains of x and y
have more than one element.

We will now define selection attributes, routing attributes and control
attributes:

Selection attributes are defined to be those attributes that are true
arguments to the trigger conditions.

Xi} is a selection attribute if ~j E arg (T(P» for some p

Routing attributes are those that are true arguments to some rout
ing function (recall that routing functions are the components of an
action A (P) that modify the locations of the input messages).

~j is a routing attribute if ~jEarg(akl) for some routing function akl.

Control attributes are attributes that are true arguments to any
action that modifies some selection attribute, some routing attribute, or
(recursively) some other control attribute:

~j is a control attribute if:

(i) ~j is a selection attribute or

(ii) ~j is a routing attribute or

(iii) ~j E arg (akl) for some akl and attribute I of input Ipk is a
control attribute

Routing attributes are those that directly affect routing decisions.
Selection attributes indirectly affect routing by determining which pro
cedure is likely to "grab" the message (and consequently route it). Con
trol attributes affect routing even more indirectly by influencing the
value of routing or selection attributes. Note that the definition of con
trol attribute is recursive, and so includes attributes that affect routing
even indirectly.

Non-control attributes (the ones left over) do not influence rout
ing or message flow in any way. Consequently we may ignore these
when we decide how to partition our message state space. The non
control attributes are only of interest to us if we have specific questions
about their value. We might, for example, like to know the range of
values of a particular message field when it arrives at our station, even

294 Office Automation

though that field in no way affects its flow through the network.

Control attributes can be determined by a recursive application of
the definition given above. Once the routing and selection attributes
are determined, it is a relatively straightforward operation to detect the
control attributes. An algorithm for doing this is described in [Nier841.

4.1. Obtaining message states
We will now consider the matter of how best to partition message

domains into state spaces. Simple trigger conditions provide us with
excellent partitions, but complex conditions yield unusual message sub
domains whose images under actions can be hard to follow. Since we
are interested especially in the effect of actions on message states, it is
important to have states that are as simple as possible to trace. We may
therefore try to "box" complex subdomains, or reduce a complex condi
tion to a collection of simple conditions that cover it. We may also try
to refine our partition by discovering new message states that result
from applying actions to existing message states. This "fine-tuning"
may be continued indefinitely, however, and so it is generally not prac
tical to carry it too far.

Generally speaking, the best message state space would identify
one message state per message value. Since we require a finite number
of message states to begin to analyze message flow, we must consider
carefully how we choose our partition.

Since control attributes are the only attributes that affect routing,
our message states should correspond to predicates over the control
attributes. We can gather this information at the same time that we
collect the control attributes.

Selection attributes are those that are arguments to trigger condi
tions. The trigger conditions thus automatically yield conditions that
may be usable for generating message states. If a trigger condition can
be expressed as V(AC) where each Cj is a predicate involving one or
more control attributes, then we can use the Cj to generate message
states. The conditions collected in this way at all stations yield a state
space by considering messages that mayor may not satisfy each of
these conditions. If, for example, there are c conditions in total that
involve messages of type Aj, then a message x E dom (Aj) may poten
tially fall in one of 2c message states, corresponding to success or
failure in matching each of these conditions.

Of course, not all combinations of conditions necessarily yield a
usable message state: some combinations may be contradictory. Condi
tions Xi > 5 and Xi < 3 clearly cannot both be true at the same time.
There may therefore be considerably less than 2c non-empty message

states.
Message Flow Analysis 295

Message states that are expressible as a Cartesian product of attri
bute subdomains allow us to consider each attribute independently. We
would thus have

or

ni

(J' = IIR)
)=0

(J' = {xEdom (Xi) I ACj}
J

where each Cj represents R). C) is therefore a simple condition
involving only attribute Xi), for example: 4~x)~1O.

If the trigger conditions V(AC)) have the property that each C) is a
simple condition of this form, then we automatically are able to derive
our desired message states. Furthermore, when the attributes are
numeric and the conditions are of the form Xi(}U where U is a constant
and (} E { =, =1=, < ,~ , > ,~} then the conditions yield attribute ranges
bounded by the constants. In this case, if we have c) conditions involv
ing attribute Xi), we have at most c· constants and at most c) + 1
ranges. Consequently we would have 11 (c) + 1) message states (where

)

c) =0 for non-control attributes). This is considerably less than the
potential 2c states resulting from non-simple conditions (where c is the
total number of conditions involving all Xi), i.e. c= Ic)).

Unfortunately we cannot reasonably expect all trigger conditions
to be this well-behaved. There are two options available. The first is to
ignore all Cj that are not of the form Xi(}U, and the other alternative is
to try to convert them to simpler conditions that are more useful. The
idea is to "box" the messages satisfying the condition by discovering the
attribute ranges that correspond to solutions of the predicate. This can
be done, for example, with a condition like:

x?+xl~25

Here we can deduce that -5~Xi~5 and -5~x)~5. With the condi
tion:

Xi=X)

however, we can deduce nothing since both attributes potentially range
over their entire domains. Note that we may use combinations of con
ditions to extract more information. If, for example, the condition
above were combined with x) > 0, then we may deduce that Xi> ° is
also of interest. In a trigger condition of the form V(ACj), one should
use the conjunctions ACj to deduce the simple conditions.

296 Office Automation

In the cases of both selection attributes and routing attributes, the
problem is greatly simplified if triggers and routing actions are
expressed by users in terms of fairly simple conditions on attributes.
Furthermore, the user may be asked to supply any additional informa
tion implied by conditions that involve comparisons of several attri
butes. Of course, depending on the complexity of the triggers and
actions expressible within the system, it would be desirable if the sys
tem itself could do all the analysis of attribute ranges.

Other control attributes are slightly more complicated to handle
since they appear in actions that may not map to finite sets. We have,
however, already obtained ranges for the control attributes found thus
far (the routing and selection attributes), so we may feel free to use
this information at this point.

Consider a control attribute ~j that is modified by akj of pro
cedure p (where ~ = Ipk)' By the definition of "control attribute", we
know that all attributes in arg (akj) must also be control attributes.
Also, since ~j is a control attribute already discovered, we presumably
have some range information about it. If R[is a range for ~j, then:

akj (r) ER[

is a predicate over the inputs r to procedure p. We may therefore
attempt to "box" the set of inputs that satisfy this condition, and
thereby obtain ranges for the control attributes in arg (akj). The new
ranges can be used to further subdivide, or "fine-tune" the message
states.

Note again that "boxing" may be impossible in some cases, yet
trivial in others. Specifically, if akj is a function of a single argument,
then the condition akj (r) E R[is a predicate over a single attribute. For
example, if akj returns something like Xh + 1, and R[is the range [a ,b],
then the resulting predicate is Xh + 1 E [a ,b], and the resulting range for
this attribute will (trivially) be [a-1,b-1l.

If, on the other hand, akj is a complicated function of several
arguments (for example, a high-order polynomial), then the task of
obtaining attribute ranges is a problem in numerical analysis with only
approximate solutions available.

4.2. State transitions
At this point in our analysis we expect each station to know what

message states are currently of interest. What is left is to determine
what state transitions are effected by the procedures. For a message in
a given input state U' we would like to know the possible next state, U':

that may result if the message triggers some procedure p.

Message Flow Analysis 297

To tell what happens when p fires, it is not, in general, sufficient
to know the state of a single input message. Attributes of all coordinat
ing messages are potentially available to the actions that modify the
message we are interested in. Although we cannot predict what states
the other inputs will be in, we know that they must satisfy the trigger
condition. We therefore introduce the following notation to represent
the possible inputs given one message in state <T:

Tp(<T) = hi TE T(P), r[k]E<T}

(where <T ~ dom (Jj) and Jj = Ipk)

(For simplicity, Jj and k are understood.) Note that T p (<T)[k] is the
set of message values in <T that may trigger p (possibly empty). This is
equal to <T n T (P)[k 1.

We also introduce p (<T) as the set of procedures that <T might
trigger, and ~ (<T) as the set of values that <T might be mapped to after
triggering p :

p (<T) = {pEPI Tp(<Th~0}

~(<T)={A(P)(T)[k]1 pEp (<T), TETp(<T), Jj=Ipk }

Procedure p then effects a state transition from <T to <T' if
pEp (<T) and ~ (<T) n <T ''# 0. That is p :<T-<T' if p is capable of map
ping some message in state <T to some message jn state <T: given the
right coordinating messages. We also introduce I (<T) as the set alter
nating strings of message states and procedures encountered by mes
sages starting in state <T:

~ { {pi (<T' IpEp (<T), ~(<T) n <T''#0} if <T'#W and p (<T)'#0

I (<T) = A (the empty string) otherwise

I (<T) therefore is the message flow language for message state <T. It
represents all sequeI\ces of procedures that messages in state <T may
possibly encounter. I (<T) may be "computed" by recursively ilpplying
its definition. Sequences of procedures are generated as I (<T) is
expanded. (Of course, a straightforward expansion is impractical since
infinite strings may be generated.)

Since messages in different states may still be able to trigger the
same procedures, it is useful to keep track of the message states
together with the sequences of procedures encountered. We spoke ear
lier of a message path as an alternating sequence of message values and
procedures. We may easily extend this idea to message states in the
following definition:

_ { {<Tp<jJ(<T'lpEp(<T), ~(<T) n<T''#0} if <T'#W andp(<T)'#0

<jJ (<T) - <T otherwise

298 Office Automation
~ ~

Note the similarity to the definition of I. In fact, we may obtain I «1")
by mapping the states in cp «1") to the empty string. cp (cx) represents
paths starting from message creation. Paths terminate when messages
are destroyed, so cp(w)=w.

At this point we can easily see that message behaviour can be
compared to that of a finite state automaton. Let Ii be the set of mes
sage states for message type Ai, i.e. Ii is a partition of dam (Ai)
obtained by the approach described in the previous section. Then the
finite automaton of Ai is:

The states of the automaton are the message states. Inputs are strings
over P x Ii, i.e. pairs of procedures and next-states. The initial state is
cx, the final state w, and the next-state function is:

8i «1", (p, (1")) I- (1"'

where Ai=Ipko pEp «1") and 4«1") n(1"'*0. Note that we have K
automata, one for each message type. We shall discuss how these auto
mata can been seen to interact in the next section.

The set of all state transitions can be found by having each station
determine what transitions may occur there. Not all message states
may be reachable, however. (Similarly, not all state transitions are
"reachable".) An alternative way of finding the state transitions is to
start with the procedures that are capable of creating new messages, and
to trace message state transitions starting from there. The reachable
state transitions are thus collected by following the paths in cp(cx).
Since there are only a finite number of transitions, an algorithm to
compute cp (cx) should terminate after encountering each transition at
most once. Such an algorithm is described in [Nier841.

Briefly, "symbolic messages" gather all the reachable state transi
tions by simply traversing a "spanning tree", starting at cx, and visiting
each station where the information about the transitions resides. A
symbolic message represents a choice of possible current message states
and keeps track of the transitions that have been traversed up to that
point. Since different messages are often routed in different directions
by procedures, we need the ability to split a symbolic message whenever
this happens. A symbolic message may thus split into many parts going
in different directions before all reachable states and all state transitions
are found.

When there are no new states and state transitions to visit, the
symbolic message returns to the station initiating it. Since the symbolic
message may have split into separate parts, the work is not finished
until each of the parts returns. When the transitions have all been
gathered, we may then generate a regular expression capturing the

Message Flow Analysis 299

message flow automaton by using a standard algorithm such as in
[AhHU74].

5. Petri Net Representation
Although message behaviour can be compared to the behaviour of

a finite automaton, this does not tell the whole story since coordination
is not explicitly represented. What we in fact have is a collection of
finite automata, one for each message type, interacting with each other.
For procedures to fire, several of these automata must be in the right
state at the same time. In fact, it is possible to "weld" these automata
together in such a way as to produce a Petri net that captures the pro
cedure interactions. The resulting Petri net not only models the mes
sage flow and control flow apparent in the automata, but also captures
the coordination of messages by procedures. We thus explicitly
represent the flow of messages of all types at once, and the necessary
trigger conditions (in terms of message states) of all procedures.

Consider, to begin with, a Petri net with one transition for each
procedure, and places for the inputs and outputs of the procedures.
Each input and each output may correspond to several message states,
however. Let us then add one place for each message state of each
message type. Now add transitions from the places representing mes
sage states to the places representing inputs whenever messages in
those states match the trigger conditions for the procedure. Similarly
add transitions from outputs to message states when actions may map
messages to those states. In figure 1 we represent procedure p with
inputs il and i2 and outputs 01 and 02 as a single transition. Message
states (Tl through (T4 and (T 1 through (T 5 are represented by places.
Petri net transitions are also present to represent the fact that input il

corresponds to message states (Tl and (T2, and that p generates outputs
in state (T4. An entire Petri net may be built in this way with transi
tions mapping message states of various types to other message states.

There is a serious problem here, however. In figure 1 it appears
that messages in states (T 1 or (T 2 may map to messages in states (T 3 or
(T 4. Suppose that in fact we only have state transitions P:(T ll-(T 3 and
P:(T 21-(T 4. In this case that information would be lost by our Petri
net interpretation. It is possible to remedy this situation by adding
extra Petri net states to "remember" what the previous message states
were. In figure 2 we have added states t}, t2, t 1 and t 2 to accomplish
precisely that.

We may formalize this construction as follows:

Let P be the set of procedures in
I (P) = < . . . , fpj' ... > is the list of input

the system.
types to p.

300 Office Automation

'P

°2

Figure 1: A Petri net interpretation of message flow

o (p) = < ... , 0Pj' ... > is a "copy" of I (p) representing the out
puts. Ii is the set of message states of type Xi.
11 ~ {(P, O"j' O"k) I O"j' O"kEIi' pEp (O"j), 4 (O"j) n O"k:;C0} is the set
of state transitions for messages of type Xj. There are at most
IPI x IIil2 of these (and, in general, far fewer). Also, let
ri = {(P, 0") 130"k such that (p, O"j' O"k)E 11}. The riS represent the
O"jS that trigger some procedure p. We shall use the elements of these
sets as labels for the places and transitions of our Petri net.

Let our Petri net have places with labels in:

Message Flow Analysis 301

Figure 2: An "improved' Petri net interpretation

{Ipj I pEP, [pj in [(p)} U
{OPj I pEP, Opj in 0 (p)} U
(U Ii) U (U r;)
X;EX X;EX

and transitions with labels in:

P U (U ri) U (U 11)
X;EX X;EX

Note that we have both places and transitions labeled (p, a) E r;, but
they are in fact to be considered disjoint. We therefore have places

302 Office Automation

representing message states, procedure inputs and outputs, and "state
reminders" to remember previous states. The transitions represent pro
cedures and the acts of "grabbing" and "releasing" messages. The "grab
bing" and "releasing" allows us to capture the idea that procedure inputs
and outputs may correspond to several states.

The transitions have the following inputs and outputs:

1. a transition labeled pEP has inputs I (p) and outputs 0 (P),

2. a transition labeled (p, aj) E ri has input crj' and has outputs
(p, cr) and Ipk where Ipk =X;

3. a transition labeled (p, crj' crk) E ~ has inputs (p, cr) and Opk
where Opk = X;, and has output cr k.

It is now clear from the construction that tokens may "travel"
from message state crj to state crk via procedure p only if there is a
state transition labeled (p, crj' crk) E~. This is the problem that we set
out to correct after our first attempt at a Petri net representation. In
addition, procedure p may only fire if it has at least one message avail
able for each of its inputs. We have therefore succeeded in "welding"
together the finite automata of message flow by reclaiming the coordi
nation that we "sacrificed" in the previous section.

Note that the Petri net we have obtained is "conservative". (A
Petri net is conservative if we can assign weights to tokens according to
their places so that the net weight of the entire net never changes.)
Since tokens represent message instances in certain states, this means
that messages are "honestly" represented. We neither gain nor lose
messages. To prove this, let us assign double the weight to tokens in
the places representing message states. Consider the transition firings
in 1, 2 & 3 above. Transitions representing procedures are trivially
conservative since they all have the same number of inputs as outputs.
The "grabbing" and "releasing" transitions are also conservative since
the former "splits" a message state token into a procedure input token
and a "reminder" token, and the latter '~oins" a "reminder" token and a
procedure output token. In either case, the total weight of the tokens
is the same before and after.

The net is no longer conservative if we add extra transitions to
represent the creation and destruction of messages. This may be done
by adding one transition for each place representing an a state or an w
state. Tokens could then be added at will to the a states, and removed
from the w states. Equivalently, we may simply delete procedure input
and output places corresponding to the creation or destruction of mes
sages. Message states a and w need not be explicitly represented in
this case.

Message Flow Analysis 303

6. Blocking and Deadlock
A procedure is blocked if it waits indefinitely for one of its inputs

to arrive. If the procedure has only one input, that simply means the
procedure does not fire, but there may not necessarily be any far
reaching effects. If, on the other hand, the procedure does have other
inputs, then inputs that arrive to be processed by that procedure may
wait forever because of the blocking.

There may be several reasons for an input not to arrive:

1. The input is never created.

This causes blocking when a coordinating message is uniquely
determined, but does not, in fact, exist. If, for example, an order
is placed for some "feeblevetzers", and no such items exist, then a
procedure that attempts to match such an order with a
corresponding inventory record will be blocked.

2. The message states corresponding to the trigger conditions of the
procedure are unreachable.

This may happen because the message reaches a dead end, or
because it enters an infinite loop, or it may simply be that all pos
sible paths avoid the procedure in question.

3. The message states corresponding to the trigger conditions of the
procedure are avoidable.

Messages of the input type in question may be able to reach the
procedure to trigger it, but alternative paths may avoid it entirely.
Blocking may occur here if the message is uniquely determined by
the other inputs. An order form that is to be matched against an
inventory record for "veeblefetzers" will be unable to proceed if
the inventory record happens to be routed along a path that
avoids it. (We assume that there is a unique inventory record for
any given item.) If, on the other hand, an inventory record is
waiting to be matched against an order form, then it may not
matter that the order form can be routed along alternative paths
- there will be other orders for that item, so the procedure will
not necessarily be blocked.

4. There is a "blocking loop".

Two procedures are each waiting for a message that is stuck at the
other. This is what is most commonly thought of when we speak
of "deadlock" in systems where there is contention for resources.
The resources in our case are the messages.

5. The missing input is itself stuck at another procedure that is
blocked.

The other procedure may be blocked for any of the first four rea
sons.

304 Office Automation

Note that in cases 1, 3, 4 and 5 we only have blocking if the
awaited message is uniquely determined by the other inputs. If it is
not, then another message in the same state may eventually arrive, so
we would not have blocking. For example, since order forms would
not be uniquely determined by any procedure matching them against
inventory forms, they could never be the cause of blocking in such a
situation. In case 2, we have blocking even if the awaited message is
not uniquely determined since no message may ever reach the desired
state.

Let us consider each of the cases in turn.

6.1. Message creation
The first case seems a degenerate one, and not so much a candi

date for analysis. At any rate, one may easily identify all the pro
cedures that are responsible for creating messages of the awaited type.
Possibly this information can be useful in determining whether the
awaited message has been created. If we can determine that procedure
p may not be supplied with some inputs for this reason, we say that p
is I-blocked, or I-BL, for short.

Of course, if the procedure creating the messages is blocked, then
no messages will be created. This may be considered an instance of
case 5, however.

6.2. Unreachable states
Cases 2 and 3 are quite similar in that we are interested

specifically in the message paths. In case 2 it is simply a matter of
determining whether the message states corresponding to the trigger
condition of a procedure are reachable or not. This information is
readily available as we collect the state transition information, since
only reachable states are encountered. Lists of reachable and unreach
able states can thus be compiled.

Exactly why a particular message state is not reachable is another
matter. A characterization of message flow may be useful in tracking
down what is wrong, but it is well-nigh impossible to tell this without a
deeper understanding of what the procedures are supposed to do.
There are, however, two readily identifiable situations that suggest that
something is amiss:

i. A message may hit a dead end.

Message Flow Analysis 305

A message that ends up at a location where no procedure is
prepared to handle it at all is at a "dead end". Without user inter
vention the message will stay ,there forever. A dead end may be
the consequence of incorrect routing. Naturally this will prevent a
message from reaching waiting procedures. Again, we may dis
cover dead ends as we collect the state transitions.

ii. A message may enter an infinite loop.

This happens if a message reaches a set of mutually reachable
states from which there is no escape. States outside that set would
not be reachable. In particular, w could never be reached. This
too may be the result of incorrect routing. In a directed graph, a
set of mutually reachable nodes is called a dicomponent [BoMu76],
or a strongly connected component [AhHU74]. Once a message
leaves a dicomponent it may (by definition) never return. If the
dicomponent cannot be left, then the message is in an infinite
loop. A depth-first search algorithm can partition a directed graph
into its dicomponents in order 0 (max(n,e», where n is the
number of nodes and e is the number of edges [AhHU74]. To
identify infinite loops, one need only determine whether there are
any dicomponents with no arcs leaving them for another dicom
ponent.

A procedure for which a certain input cannot arrive because the
input message states are not reachable is 2-blocked, or 2-BL.

6.3. Avoidable states
In case 3 we are concerned with messages that mayor may not

arrive. A state may be reachable, but not necessarily by all messages of
the specified type. Blocking is possible if any given message is not
guaranteed to reach at least one of the message states corresponding to
the trigger condition, and that message is uniquely determined by one
of the other inputs. To determine the latter, one needs to know some
thing more about constraints on the messages. If, for example, we
know that a certain field of a message is a key field, and we have a pro
cedure that matches that message against another via that key field,
then we know that for any matching input it is uniquely determined.
An inventory record, for example, is uniquely determined by any order
form.

As to the matter of reachability, we may rephrase it as follows: Is
it possible for messages of a given type to avoid all of the message
states corresponding to the trigger condition for a given procedure? In
figure 2, message states CTI and CT2 must be simultaneously avoidable
for input i l to be avoidable. In this light it is clear that we may easily

306 Office Automation

answer this question. One need simply traverse the directed graph of
the message state automata, starting at <x, and avoiding all nodes that
are input message states to that procedure. If we can construct a path
to w that avoids all these nodes, then it is possible for a message never
to trigger the procedure in question. Clearly we need only traverse
each edge of the graph at most once, so the problem is solvable in
order 0 (t), where t is the number of state transitions (i.e. the number
of edges in the graph). If all paths encounter at least one of the input
states, then they are unavoidable (as a set), and this cannot be a source
of blocking.

If the reachable message states corresponding to some input of
procedure p are all avoidable, then p is 3-blacked, or 3-BL.

6.4. Deadlock
There is the possibility of deadlock, wherein two procedures are

each waiting for a message held by the other.

Suppose that procedure p has some input x that uniquely deter
mines some other input y. Suppose also that y may come to p from p ;
and it uniquely determines some input z at p: Finally suppose that z
comes to p 'from p '; where z uniquely determines the same x of pro
cedure p. We then have a potential deadlock in which x waits at p for
y, y waits for z at p; and z waits for x at p ':

Let us suppose that we know for all procedures p when some
input ~ E I (p) uniquely determines some other input ~ E I (P), and
there is no other procedure p' accepting messages of type ~ in the
same states as those accepted by p. Messages of type ~ must therefore
wait at p for the arrival of some specific message of type~. A message
of type ~ would uniquely determine one of type ~ whenever we have
some trigger condition of the form Xn=Ym where xEdam(~),
Y E dam (~) and ~m is a key field of messages of type ~. We
represent this information as a set of tuples:

A WAITS ~ {(p, ~, ~) I pEP, ~, ~ EX}

For (p,~, ~)EAWAITS, we say that p:~-~, or simply ~-~.
Furthermore, we say that:

if we have a sequence:

Message How Analysis 307

If p :X;-Jj, then messages of type X; tpust await uniquely determined

messages of type Jj. Similarly, if X;-Xb then messages of type X;
must await messages of type Xk , since the latter are uniquely deter
mined by the former.

If X;- Jj, and Jj-X;, (i.e. X;- X;) then a message of type X;
awaits a message of type Jj and vice versa. If the "two" messages of
type X; are in fact one and the same, then we have the distinct possibil
ity of deadlock. We need only find ourselves in the situation where
messages of type X; and Jj are awaiting each other at precisely the
same time. Since there is no other procedure that these messages can
trigger, then they will both wait forever, neither able to reach the other.

The set A WAITS of dependencies defines a directed graph with .
nodes in X and arcs in A WAITS. X;- X; occurs precisely when there is
a cycle in the directed graph. Cycles, of course, occur within the
dicomponents of the graph. As we mentioned earlier in this section,
dicomponents can easily be determined by a standard algorithm such as
in [AhHU74]. Any dico~ponent with more than one node in it would

yield an instance of X;- Jj, and would therefore provide us with a
potential deadlock.

If a procedure p can be blocked due to deadlock, then we say that
p is 4-blocked or 4-BL.

6.5. Recursive blocking
Finally, blocking in one procedure may cause blocking in other

procedures. If the first procedure is preventing messages from moving
on, then other procedures waiting for those messages will also be
blocked.

To detect recursive blocking we must find out not only which
states are unreachable or avoidable, but also which states are "blocking
states". We call a message state a blocking state (BL-state) if every pro
cedure effecting a transition to that state is blocked, that is:

for each (p, cr, cr'E T;, p is blocked $> cr'is a blocking state

Conversely, if every state leading to an input of some procedure p
is a blocking state or is unreachable, then that procedure is 5-b1ocked,
or 5-BL. This is a consequence of the fact that blocking states are a
variation on unreachable states - they are unreachable only as a result
of other blocking.

Similarly, if an input is uniquely determined, and the reachable,
non-blocking states are all avoidable, then the procedure is 6-blocked, or

308 Office Automation

6-BL. We therefore end up with a recursive form of blocking.

We may summarize potential blocking detection in the following
algorithm to be run at all stations ("new" BL-states mentioned in step 8
come from steps 7 or 13, whichever is appropriate):

1. for each procedure p do {
2. for each input ~ E I (P) do {
3. if p:X;-~ then
4. check if p is 3-BL
5. else check if p is 2-BL }

6. determine which pare 4-BL
7. identify all BL-states arising from the above
8. for each p not BL, such that (p, cr, cr) E T; where cr is a new BL-

state do {
9. for each input ~ E I (P) do {
10. if p:X;-~ then
11. check if p is 6-BL
12. else check if p is 5-BL

13. identify all new BL-states arising from the new 5-BL or 6-BL pro-
cedures, if any

14. ifthere are no new BL states then STOP
15. else continue from step 8

Steps 4, 5, 6 and 7 are as described earlier in this section. Steps 11 and
12 are similar to 4 and 5.

The algorithm must terminate since there are only a finite number
of procedures and a finite number of states. As long as the algorithm
continues to run, at least one new BL-state must be found at step 13.
Eventually we must run out of candidates for BL-states. Similarly, we
eventually run out of candidates for 5-BL or 6-BL procedures.

The blocking that we uncover can be of interest in several ways.
If a procedure p is 2-BL, then we know that it cannot fire under normal
circumstances. This means that (according to our analysis) there is at
least one input to the procedure for which there is no known path to
the procedure. This may mean that p is incorrect, in the sense that it
has been created under the delusion that its inputs will arrive, or it may
mean that some incorrect procedure elsewhere is improperly routing
messages, possibly to dead ends, or into message loops. An examina
tion of the message flow automaton will reveal how it is being routed,
and possibly provide some insight into what the problem is.

If procedure p is 3-BL, then that means that a uniquely
determined input is (theoretically) capable of avoiding p. An examina
tion of the path that does (appear to) avoid p can provide insight into

Message Flow Analysis 309

whether there is truly a problem or not. Note that our analysis may
have generated spurious paths, if there are state transitions present in
our model that for some reason never take place in the running system.

Procedure p and p I are 4-BL if there is some theoretically possible
configuration in which p and p I are each preventing the progress of
messages required by the other procedure. It remains for someone to
look more closely at that configuration to tell whether it is in fact reach
able in the running system. If it is, then we can either modify the pro
cedures to avoid the blocking, or we can monitor the flow of these mes
sages to detect blocking if it ever occurs.

Procedures that are 5-BL or 6-BL are only blocked if message
inputs are stuck at a blocked procedure. Naturally, if we solve the
blocking at the other procedure, or if that blocking is not reflected in
the running system, then the 5-BL or 6-BL problem goes away.

7. Procedure Loops
Infinite loops may be thought of as the opposite extreme to block

ing and deadlock. In the case of blocking we had problems with mes
sages being "stuck" and nothing happening as a consequence. Here we
have problems with too much happening. Messages either loop end
lessly, visiting the same stations and procedures, or procedures are fired
repeatedly, creating an unending stream of messages. We shall discuss
here the kind of infinite loops that may arise, and how we may go
about detecting them. The different kinds of loops all turn out to be
variations on what we call "procedure loops". Our Petri net model pro
vides us with an analytical approach to detecting when procedure loops
may occur.

Our earlier discussion of message loops revealed that there may
be situations in which messages encounter the same states infinitely
often. This may happen naturally with certain messages that are in fact
records expected to be handled repeatedly and indefinitely in more-or
less the same way. The inventory records of a previous example are
repeatedly processed by the same procedures whenever new order
forms arrive. This sort of message loop does not cause any problems
since the inventory records must wait before they are processed again.
If, on the other hand, they do not have to wait, then we may have a
message loop that is unmoderated. Procedures will fire repeatedly, as
fast as they possibly can until someone notices the problem and repairs
it.

Unmoderated message loops can be thought of as a special case of
procedure loops. A procedure loop exists when a given configuration of
procedures and message instances provides the opportunity for some

310 Office Automation

procedures to fire infinitely often without human intervention. Every
unmoderated message loop, then, is clearly part of a procedure loop.
Some procedure loops, however, may not contain any message loop.
Consider figure 3. Procedure p generates message x, which is con
sumed by procedure p: p' in turn generates y, which triggers p. We
have a procedure loop, but no message loop exists since all messages
handled by p and p 'have finite paths.

x

p y p'

Figure 3: A procedure loop

Procedure loops depend not only on the presence of an unusual
configuration of procedures, but also on a corresponding configuration
of messages to start the "chain-reaction". Our Petri net interpretation
of message flow can help us now. A Petri net can represent the interac
tion of procedures (up to the accuracy of the message state-space parti
tion), and a marking of that net can represent the current message
states of all the messages in the system. We limit our Petri net to
those procedures that do not require any user input. A procedure loop
exists if the Petri net can be fired forever. This may happen if and only
if there is some transition firing sequence that may be repeated
infinitely often [KaMi69]. Such a sequence must yield a new marking
that is "at least as big as" the initial marking, that is, the sequence must
at least restore all of the tokens used. If I.L is a marking of the Petri
net, and t\ ... tn is a transition firing sequence yielding new marking
I.L: then tl ... tn can be repeated infinitely often if l.Li ~I.L; for each i.

We approach the problem of detecting procedure loops by
translating it into an equivalent problem expressible in matrix equa
tions. Petri nets are equivalent to vector addition systems [KaMi691.
This alternative representation encodes the transitions of a Petri net by

Message Flow Analysis 311

using two matrices, A - and A +. Each matrix has n rows and m
columns, where n and m are the number of places and transitions,
respectively. The (i,j) entry of A- is -1 if place i is an input to tran
sition tj and the (i ,j) entry of A + is + 1 if place i is an output to tran
sition tj • For the net in figure 3, we have:

A- = [_~ -~l and A+ = [~ ~l
with p and p' represented by the first and second columns of each
matrix, respectively.

Transition tj is enabled in marking /.t if /.t+ A- j ~O (where A- j is
the jth column of A-). Suppose A =A-+ A+. In our example:

A = [-~ -~l
If tj is enabled in /.t, then the result of firing tj is /.t '=/.t+ Ai' Further
more, if we have a sequence of transitions that can be fired from /.t,
and we represent that sequence by a column vector x where Xj is the
number of times tj is fired, then /.t '= /.t + Ax is the marking that results
after firing the sequence.

If we can find some non-negative integer column vector x:;z!:O
such that Ax ~ 0, then /.t '= /.t + Ax> /.t, so that any transition sequence
represented by x can be fired indefinitely, starting from some appropri
ate initial marking /.t. Furthermore, we can always find a marking /.t
"big enough" that the transition sequence represented by x can be fired
at least once. The marking /.t = - A - x, for example, guarantees this.
Consequently, we have a procedure loop if and only if there is some x
such that Ax ~ O. The question that remains is whether or not we can
easily solve Ax~O. To this end we present the following theorem:

Theorem : The problem, "Does a Petri net have a marking in which
some transition sequence can be fired infinitely often?" can be solved in
polynomial time.

Proof : By reduction to linear programming. Let A be the matrix
encoding the transitions of the Petri net, as described above. Then the
problem is solved if we can answer whether there exists a non-negative
integer column vector x:;z!:O such that Ax~O. Let A' be the matrix
obtained by adding a column of zeroes at the left side of A, followed
by a row of ones at the top of A. A' is therefore an (n + 1) x (m + 1)
matrix such that:

ifi~l, j~l

ifi~ 1, j= 1
ifi=O

312 Office Automation

Intuitively this corresponds to adding one place, Po, which is an
output of every transition, and adding one transition, to, whose only
output is Po. Consequently, Po serves to count the total number of tran
sition firings.

Consider the linear programming problem A 'x ~ 0, 0, ... ,0) T

where we seek to minimize the cost function ex; c = 0, 0, ... ,0). (If
v is a row-vector, then vT is the column-vector, v transposeJ The cost
is therefore x 0, the number of times that we need to fire to.

The constraint A 'x ~ (1, 0, ... ,0) T guarantees that at least one
transition fires, since each transition places a token in Po. Furthermore,
x '= (1, 0, ... ,0) T is a basic feasible solution, since transition to places
a token in Po. The cost of this solution is 1, since to fires once. This is
therefore an upper bound on the cost. The lower bound is 0,
corresponding to a solution x 1 that does not use to. Such a solution
would also be a solution to our original problem, since it guarantees
that we fire only transitions represented by A.

Furthermore, the solution is always either zero or one. Suppose
that we have a solution such that ex '=x 0 lies between ° and 1. (Such
a solution would correspond to a "fractional" number of firings of toJ
Consider x '=x '~x "'where:

Now

{ ° ifi=O { x 0 ifi=O
X II" = d "' x; ifi"#O an x i = ° ifi"#O

AIX'~A'x'"~ O,O, ... ,O)T

A 'x "~ 0,0, ... ,O)T -A 'x "'

A 'x II ~ 0- X 0, 0, . . . ,0) T

Since (1- x 0) > 0, there exists some k such that k (1- x 0) > 1, so

A' k x II ~ 0, 0, ... ,0)

but then c kx "= 0, a contradiction to our assumption that the
minimum lay between ° and 1.

The linear programming problem has a solution with cost ° if and
only if Ax ~ ° has a solution x"# 0. This is easily seen by letting Xi =x ;
for all i > 0. Furthermore, x 1 cannot be all zero else A 1 X '= 0, violating
our constraint, A 'x ~ (1, 0, ... ,0) T. Hence x is a non-zero solution.
Finally, x' may be non-integral, but linear programming always yields
rational solutions. Since x 'is a rational solution, there exists a positive
integer k such that kx' is an integer. Furthermore, if x' is a solution,
then clearly so is kx: This then yields an integer solution for x, if one
exists.

Message Flow Analysis 313

Since linear programming is solvable in polynomial time in the
size of the input (by the ellipsoid method [PaSt82]), so is infinite firea
bility of Petri nets. D

8. Conclusions
We have presented a formalism for modelling message systems

with automatic processing of messages, and we have introduced some
concepts that are useful in characterizing the global behaviour of these
systems. We have shown how to generate finite state automaton and
Petri net interpretations of message flow by using our model. Finally,
we have shown how these derived interpretations can be useful in
analyzing message behaviour. In particular, procedure loops and vari
ous kinds of blocking (including deadlock) can be detected.

A number of extensions to the model would be desirable. Mes
sages are currently very simple. There is no explicit way of represent
ing repeating groups within messages, nor do we explicitly handle "spe
cializations" of message types. Similar and related (but non-identical)
message types must therefore be treated as being distinct. We also do
not currently allow procedures to handle inputs with a choice of input
types. (One way to handle specializations, however, is to model them
with a single "master" type combining the attributes of all the specializa
tions, and simply assign null values to the inapplicable fields of particu
lar message instances.)

A more radical extension is to allow for "intelligent messages" that
carry procedures around with them. Procedures are currently associated
with workstations, and not messages. An alternative is to consider the
behaviour of a system that manages "objects", where an object com
bines the data-storing of messages and the functionality of procedures.
It is not at all clear, however, how one would begin to analyze object
flow, once the distinction between data and procedure is lost.

Other interesting issues are the evaluation of incremental changes
to systems, and the evaluation of transformations. In the first case we
only make small, occasional changes such as adding or altering pro
cedures, and in the latter case we may coalesce or split workstations, or
move procedures from one workstation to another. What questions are
appropriate to ask about the effect of such changes, and can we make
cheap evaluations based on the analysis of the unchanged system?

314 Office Automation

9. References
[AhHU74] [AtBS79] [BoMu76] [EINu80] [HaSi80] [KaMi69] [Nier84]
[PaSt82] [Pete83]

Part VII

Performance

13
Access Methods for Documents

C. Faloutsos
S. Christodoulakis

ABSTRACT We describe and compare access methods for
documents in an office environment. We discuss the opera
tional requirements of an office, and we survey methods for for
matted data and for text retrieval, in an attempt to find an
integrated method for both. Comparison of these methods indi
cates that the signature file method is suitable for the office
environment. We examine this method in more detail, and we
compare several signature extraction techniques.

1. Introduction
In this paper we describe and compare access methods for docu

ments in an office environment. A document is composed of attribute
values and text. The user retrieves the documents on the basis of con
tents. Traditionally, retrieval of formatted data has been examined
mainly in the context of file structures and Data Base Management Sys
tems (DBMS), while the retrieval of unformatted data has been exam
ined in the context of library science and information retrieval. Before
we proceed, we shall mention the operational characteristics of the
office environment and its differences from the DBMS and library
environments:

1. Insertions are frequent in an office system. New documents
arrive and have to be filed. In a library system, the new docu
ments are usually batched, and the insertions are performed by
the System Administrator. In contrast, in an office environment,
not only may the system administrator not exist, but it has been

318 Office Automation

observed that data is more "private" (more decentralized users).
In addition, the users want to spend as little time as possible
organizing their data.

2. Deletions and updates are rare in both an office and a library sys
tem. DBMSs usually operate in more dynamic environments.

3. In office and library systems, the results of a query are returned to
a human being rather than to a program. A human user is willing
to tolerate a few "false hits" (e.g., some documents that do not
qualify in a query are returned by the system). In a library sys
tem, he or she may also be willing to tolerate a few "false dismis
sals" (e.g., some documents that qualify in a query, that are not
returned by the system). In an office system false dismissals may
be unwelcome.

4. Most documents are never accessed.

False hits and false dismissals are captured by the terms recall and
precision, respectively. Recall is the proportion of relevant, retrieved
documents over the total number of relevant documents in the data
base. Small recall implies many false dismissals. Precision is the pro
portion of relevant, retrieved documents over the total number of
retrieved documents. Small precision implies many false hits. Table
1.1 summarizes the characteristics of the three environments.

DBMS office library
frequency of

retrievals any medium large
insertions any large small
deletions any small small
updates any small small

administration large small large
recall 1 1 <1
precision 1 <1 <1

Table 1.1.
Description of the environments.

Access Methods for Documents. 319

2. Access Methods for Formatted Data
Many access methods for formatted data have appeared in the

literature and are used in commercial DBMSs. The most important
access methods form the following sub-classes:

1. Methods based on trees.

2. Methods based on hashing.

3. Methods using "signature" files.

In the following sections we shall examine each of these classes in
more detail.

2.1. Methods based on trees
The idea here is to create a file structure that will give the

addresses of the qualifying records. The simplest representative of this
sub-class is the inverted file method (e.g., [TeFr82, p. 344]). For each
attribute, an index is created and maintained. Given an attribute value,
this index provides a list of the addresses of the qualifying records.
When an attribute takes many distinct values, inverted files are usually
organized as B-trees [BaMc72] and variations (B*-trees, prefix B*-trees,
etc. - see, e.g., [Knut73, pp. 471-4791, [Come791, or [TeFr82]).

The advantage of the methods based on inversion is the fast
response. The disadvantages are the space overhead and the increased
amount of work required to maintain the indices in the presence of
insertions.

Multiattribute tree access methods can also be used. Probably the
most prominent representative of this class is the k-d tree [Bent751.
K-d trees show reasonable behaviour for updating and searching for
exact match queries. Bentley showed that the search effort for partial
match queries decreases exponentially with the number of attributes
specified in the query. k-d trees were originally designed for core
resident files. [Robi81] proposed the k-d B-trees, which are more suit
able than k-d trees for files on secondary storage.

The disadvantages of this method are the low storage utilization
(50-70% according to experiments by Robinson) and the (possibly)
expensive reorganization of the tree structure in environments with
many insertions.

320 Office Automation

2.2. Methods based on hashing
Several methods using hashing have been proposed in the litera

ture [SeDu76, Lars78, FNPS79, Litw80, Mart79, Knut73, TeFr82]. In
this method the address where a record is stored is determined by a
value of an attribute. A hashing junction transforms this value to an
address. Methods based on hashing usually provide fast access to quali
fying records. A serious problem of these methods is the deterioration
of response time when the file grows. [Lars78] uses a "forest" of binary
trees whose leaf nodes keep pointers to blocks with records. The "sig
nature" of a record determines the tree and the path that should be fol
lowed within the tree, upon insertion or searching. If a block fills up,
another block is allocated and a hashing function utilized, which will
divide the records (hopefully) evenly between the old and the new
blocks. The tree structure will change appropriately, to reflect the new
situation. In [FNPS79] it is proposed to store pointers to blocks in a
hash table which doubles in size whenever an expansion is necessary.
Again, the signature of the record determines an entry of the hash
table. This entry points to the block that the record should be stored
in. [Mart79] suggested the "spiral hashing", which is based on an
exponential (non-uniform!) hashing function, and allows smooth grow
ing of the file, without using pointers.

In multiattribute hashing, the address that a record is stored in, is
determined by the values of (some or all of) the attributes of this
record. [RoL074] suggested a hybrid scheme that uses inversion for
some attributes and multiattribute hashing for the rest of them.
[Rive76] proposed hashing each attribute value into a bit pattern, con
catenating all these patterns, and using the resulting binary number as
the address of the record. He provided detailed analysis for the average
and worst case performances of the method. [AhU179] extended this
method to in the case in which the attributes do not appear uniformly
in the users' queries.

Lloyd [LlRa82] suggested a multiattribute hashing method for a
growing file. He combined the method of [AhU179] and the method
of [FNPS79]. The main advantage of multiattribute hashing methods is
the fast response. The main disadvantage is the difficulty of handling a
growing file efficiently.

2.3. Signature files
The idea here is to create a signature of each record, and store all

the record signatures sequentially in a "signature" file. A record signa
ture is created by transforming the attribute values of the record, usu
ally via a hashing function. In order to process a query, the attribute

Access Methods for Documents. 321

values specified in the query are transformed by using the same
transformation. Then, the signature file is scanned sequentially, and
the records whose signature qualifies are retrieved.

The problem with this method is the "false hits" (or "false drops"),
which are records that do not actually qualify, although their signature
shows the opposite. The average number of false drops can usually be
controlled by careful design of the signature-extraction method, and by
allowing large enough signature size.

Vallarino [Vall 76] applied this idea in order to compress a bit
map. Roberts [Robe79] used superimposed coding to create signatures
for records of a telephone directory. Pfaltz, Berman, and Cagley
[PfBC80] suggested using more than one level of signature files. Chris
todoulakis [Chri83] examines the use of signature files when the
queries are batched. His performance analysis takes into account the
frequency of queries on each attribute.

The advantages of these methods are the simple handling of
insertions, the small storage overhead, the ability to handle records
with a large number of attributes, and the ability to exploit the advan
tage of sequential scan.

The disadvantage is that the response may be slow for large data
bases, because the signature file has to be scanned sequentially. How
ever, careful architecture (e.g., a variation of Roberts's bit sliced
method [Robe79]) and a large blocking factor can speed up the sequen
tial searching. Special purpose hardware is another effective solution
[AhR080], although it is expensive.

3. Access Methods for Text Retrieval
Many access methods for text retrieval have been proposed in the

literature. They form four classes. The first three of them have been
studied in the computer-science literature, while the fourth class is
based on clustering, the dominating approach in the library science
literature. We shall describe each class and comment on its advantages
and disadvantages.

3.1. Full text scanning
The most straightforward way of locating the documents that con

tain a certain search string (term) is to search all the documents for the
specified string (substring test). String is defined as a sequence of char
acters without "Don't Care" characters. If the query is a complicated
Boolean expression involving many terms, then we need an additional

322 Office Automation

step, namely to determine whether the term matches found by the sub
string tests satisfy the Boolean expression (query resolution).

The forthcoming discussion will not examine searching methods
for general regular expressions. This subject is discussed in more detail
in the context of Automata Theory [HoUl79, pp. 29-35]. However, if
the search patterns are restricted to strings, some more efficient
methods can be applied. We shall discuss these methods.

The obvious algorithm for the substring test is as follows:

• Compare the characters of the search string against the
corresponding characters of the document.

• If a mismatch occurs, shift the search string by one position to the
right and continue until either the string is found or the end of
the document is reached.

Although simple to implement, this algorithm is too slow: if m is
the length of the search string and n is the length of the document (in
characters), then it needs 0 (m *n) comparisons.

Knuth, Morris, and Pratt [KnMP77] proposed an algorithm which
needs 0 (m + n) comparisons. Their main idea was to shift the search
string by more than one character to the right whenever a mismatch is
predictable. The method needs some preprocessing of the search
string, to detect recurring sequences of letters. The time required for
preprocessing is 0 (m).

The fastest known algorithm was proposed by [BoMo77]. The idea
here is to perform the character comparisons from right to left. Thus,
if a mismatch occurs, the search string may be shifted up to m positions
to the right. The number of comparisons is n +m in the worst case,
and usually is much less (especially if the size of the alphabet is large).
Again, it requires 0 (m) preprocessing of the search string.

Another approach to this problem is based on automata theory.
[AhC075] proposed a method that is based on a finite automaton, and
allows searching for several strings simultaneously. The search time is
O(n), and the construction time of the automaton is linear on the sum
of characters in the strings.

In general, the advantage of every full text scanning method is
that it requires no space overhead and minimal effort on insertions and
updates (no indices have to be changed). The disadvantage is the bad
response time. This might be severe in the case of large data bases.
Therefore, full text scanning is usually carried out by special purpose
hardware [HSCE831, or is used in cooperation with another access
method (e.g., inversion) that restricts the scope of searching.

Access Methods for Documents. 323

3.2. Inversion of terms
Each document can be represented by a list of (key)words, which

are supposed to describe the contents of the document for retrieval pur
poses. Fast retrieval can be achieved if an index on those keywords is
created. All the well-known methods can be used to build this index:
sorted file (of keywords), B-tree, TRIE, hashing, or variations and
combinations of the above (e.g., see [Knut73, pp. 471-542]). The
MEDLARS system uses a sorted file (according to [SaMc83]). STAIRS
[IBM79] 4Ses a two-level index for the dictionary of (key)words: Words
that start with the same pair of letters are stored together in the second
level, while the first level contains pointers, one for each letter pair.
[Lesk79] uses an overloaded hash table with separate chaining, in order
to achieve fast retrieval in a database of bibliographic entries.

The disadvantages of the method are:

• The storage overhead (50-300% of the original file size, if word
level indexing is used [Hask81]).

• The cost of updating and reorganizing the index, if the environ
ment is dynamic.

• The difficulty in handling search terms with initial "Don't Care"
characters.

The advantages are that it is relatively easy to implement, it is
fast, and it supports synonyms easily: for example, the synonyms can
be organized as a threaded list within the dictionary. For these reasons,
the inversion method has been adopted in a significant number of
library systems [SaMc83, ch. 2].

3.3. Superimposed coding and signatures
Methods based on superimposed coding appear to be suitable for

text retrieval. An introduction to superimposed coding can be found in
[Bour63, pp. 57-59] or [Knut73, pp. 559-563]' In this method, each
word of a given document is hashed to give a bit pattern of fixed
length. In this pattern, a prespecified number of bits have been set to
"1". These patterns are superimposed (OR-ed together), and the result
ing bit pattern is the signature of the document (see figure 1). There
are two approaches from this point on: either this signature is used to
determine the location of the document (as in primary-key hashing), or
the signatures of all the documents are stored in a separate file (signa
ture file) which provides a filtering facility.

The first approach was proposed by [Gust71]. He considers docu
ments with a constant number of terms (records). For each record, he
creates a signature with a constant number of "l"s. Then he uses a

324 Office Automation
Word

free
text

Signature
001 000110010
000010101 001

document signature 001 010111 011

Figure 1

Illustration of the superimposed coding method. It is
assumed that the document consists of 2 words only.
The signature size is 12 bits. Each word sets 4 bits to
"I".

sophisticated one-to-one function that maps the above bit pattern to an
address. Given a term, a list of addresses that contain records having
this term can be derived. The interesting point of the method is that
the amount of search decreases very fast with the number of terms in
the (conjunctive) query. Variations of Gustafson's idea have been stu
died by [RoL074], [Rive76], [AhUl79], and [Lloy80]. However, as
mentioned before, they deal with formatted records and propose that
the signature of the record be created by concatenating the signatures of
the attributes instead of superimposing them. This detail creates prob
lems if one tries to apply their methods directly to text retrieval: even a
simple, single-word query has to be expanded to a disjunctive query,
which requires much time. For example, assume that we have six key
words per document, and we are looking for documents that contain
the word "information". This single-word query corresponds to the
query:

keyword 1 = "information" or
keyword2 = "information" or

keyword6 = "information".

The main advantage of Gustafson's method is the retrieval speed.
An obvious disadvantage is that the performance deteriorates as the file
grows.

The signature file approach has attracted more interest in different
application environments. [FiHu69] applied this method on a database
of bibliographic entries. They used a stop list to discard the common
words and an automatic procedure to reduce each non-common word to
its stem. They also used a numeric procedure as a hashing function,
instead of a look-up table. [Harr71] used the signature file approach in
order to speed up the substring testing. He suggested using consecutive

Access Methods for Documents. 325

letters as input to the hashing function. In [TCEF83], superimposed
coding is used for both attributes and text in a prototype multimedia
office filing system. The method proposed in [TsCh83] and followed by
[Lars 83] tries to use signature files without superimposed coding.
There, the signature of the document consists of the concatenation of
each word signature (see figure 2). This way, the positioning informa
tion is preserved.

Document free text retrieval methods
I I I I
v v v v

Word signature 0000 0100 0111 1011
Doc. signature 000001000111 1011

Figure 2

Illustration of the word signature method. The document
consists of four words. Each word yields a 4-bit word
signature

[Gonn82] discusses a number of text retrieval methods. Most of
them use superimposed coding, either as an abstraction technique to
create the 'signature file or as a "Bloom filter" [Blo070] to speed up the
membership testing during full text scanning. Signature files with
superimposed coding are used in [ChFa84]. The main ideas discussed
are:

• The hashing function is based on triplets of consecutive letters, to
allow searching for parts of words.

• Each document is divided into "logical blocks", and a separate sig
nature is derived for each block. A logical block is a piece of text
that contains a fixed number (say 40) of distinct non-common
words.

• The need to adapt the signature file to the users' access patterns is
considered, and an efficient scheme to condense the signatures is
proposed.

Some other signature extraction methods are based on compres
sion [Fal085] and will be discussed later.

Research on the design and performance of superimposed coding
methods started long ago. The first person who applied superimposed
coding for retrieval was C.N. Mooers, in 1947, according to [Knut73,
p. 559]. He invented an ingenious mechanical device based on edge
notched cards and needles. The device was able to handle conjunctive
queries on a database of bibliographic entries very quickly. The

326 Office Automation

keyword extraction was performed manually while the hashing function
utilized a look-up table.

This method of edge-notched cards attracted a great deal of
interest: [Stia60] suggested using pairs of letters to create each word
signature. He also proved that, for a given signature size, the false
drop probability is minimized if the number of "1"s is equal to the
number of "O"s in the document signatures. [OrTa561, using Jordan's
theorem, gave a closed form formula for the probability distribution of
the number of "1"s in a document signature. [KaSi64] discussed the
problem of designing a system of signatures that would not have false
drops. They attacked the problem from the point of view of coding and
information theory. Although theoretically interesting, their method
has practical drawbacks: it needs a look-up table, it cannot handle a
growing vocabulary easily, and it needs much overhead to design the
set of signatures.

In closing the discussion on the signature file approach, we should
mention that the main disadvantage of the method is the response
time, if the file is too large. The advantages are the simplicity of the
implementation, the efficiency in handling insertions, and the ability to
handle queries on parts of words, to tolerate typing and spelling errors
and to support a growing file.

3.4. Clustering
This approach suggests that similar documents are grouped

together to form clusters. The underlying reason is the so-called cluster
hypothesis (e.g., [Rijs79, p. 37]): closely associated documents tend to
be relevant to the same requests. Qustering has attracted much
interest by researchers in information retrieval and library science
[SaMc83, Rijs791. A great deal of work has also been done on cluster
ing in the area of pattern recognition [DuHa731.

Document clustering involves two procedures: the cluster genera
tion and the cluster search.

The typical cluster generation procedure works as follows: First,
each document is processed, and the important terms are extracted
automatically. This procedure utilizes the following dictionaries
[Salt7l]:

• A negative dictionary that is used to remove the common words
("and", "the", etc.).

• A suffix and prefix list that help to reduce each word to its
stern.

Access Methods for Documents. 327

• A dictionary of synonyms that helps to assign each word-stem to
a concept class.

Thus, each document is represented by a t-dimensional vector, where
"t" is the number of permissible index terms (concepts). Absence of a
term is indicated by a 0 (or by -1 [Coop70)). Presence of a term is
indicated by 1 (binary document vectors) or by a positive number
(term weight), which reflects the importance of the term for the docu
ment [Spar72, YuLS82].

After we have decided how to represent the documents as t
dimensional points, the next step is to partition them. There are two
classes of methods:

• theoretically "sound" methods, which are based on the document
document similarity matrix (e.g., [Rijs71], [Zahn71], [DuHa73, p.
238], [Rijs79, p. 46)). These methods are stable under growth,
robust, and independent of the initial ordering of the items.
However, they are slow: O(n 2), where n is the number of items
(documents) of the collection.

• Efficient methods, which proceed directly from the document
descriptions (e.g., [SaW078], [SaMc83 , p. 137, 222)). They are
fast, on the average, (O(nlogn», but they do not meet all of the
soundness criteria.

Searching in a clustered file is much simpler than cluster genera
tion. The input query is represented as a t-dimensional vector and
compared with the cluster-centroids. The searching continues in the
most similar clusters, e.g., those whose similarity with the query vector
exceeds a threshold.

The vector representation of queries and documents allows the
so-called relevance feedback, which increases the effectiveness of the
search [Rocc71]: the user pinpoints the relevant documents among the
retrieved ones, and the system reformulates the query vector and starts
the searching from the beginning. The usual way to carry out the query
reformulation is by adding to the query vector the (weighted) vectors
of the relevant documents, and by subtracting the non-relevant ones.

The main advantages of clustering are the following:

• The output documents can be ranked in decreasing similarity
value.

• The volume of the output can be controlled (e.g., the ten most
relevant items are returned to the user every time).

• It is possible to allow relevance feedback, which is an effective
and user-friendly method of searching.

The main disadvantage is that clustering is not well-suited to a
dynamic environment. Insertions of new documents create problems: if

328 Office Automation

an 0 (n 2) clustering method is used, an insertion will require 0 (n)
time. If an 0 (n /ogn) method is used, reorganization will soon be
necessary [Rijs79 pp. 58-59].

The storage requirements and response time of cluster-based
methods do not appear to constitute great disadvantages.

4. Considerations in Integrated Access Methods
In the office environment, an interesting approach is to integrate

text retrieval systems with database management systems (DBMS).
[HaL082] is extending the relational system R to handle "long" fields
(text, digitized images), but is not concerned with content addressibil
ity. In [TsCh83J, superimposed coding and signature files are used for
both attributes and text. In [Fox84J, clustering is used: a document
vector contains attribute values, in addition to terms. There are also
efforts to apply the network schema [Datt79] or the relational
[McLe8IJ on bibliographic data bases. [SSLK83] extends the language
of INGRES in an attempt to provide text-editing facilities through a
DBMS.

In this context, the design of an access method for both attributes
and text is an interesting problem. We have to consider primary-key,
secondary-key, and text retrieval methods. A qualitative comparison of
access methods will be presented next.

4.1. Comparison of primary-key access methods
There are two dominating methods here: B-trees [BaMc72] and

hashing (e.g., [Seve74]). Some important points for performance com
parison are the following:

• Space utilization (disk and main memory requirements).

• Response time for search.

• Handling of modifications (insertions, deletions, and updates).

• Handling of growing file.

• Preservation of key order.

• Ability to integrate with text retrieval methods.

Table 4.1 illustrates the advantages and disadvantages of each
method. The strong points are indicated by a "v" and the weak points
by an "x". Blank entries indicate that the specific method shows accept
able, but not exceptional, performance as far as the specific require
ment is concerned.

Access Methods for Documents. 329

B-trees hashing
space [1] [2]

response [3] v [2]

modifications
growth v [4]

key order v [5]

integration

Table 4.1.
Primary-key access methods.

Notes on Table 4.1:

1. B-trees guarantee at least 50% utilization. B* -trees [Knut73, p.
478] guarantee 67% utilization.

2. Knuth [Knut73, p. 535] estimates 1.45 probes in a hash table
with load factor 90% (separate chaining, successful search, bucket
size = 1).

3. Tree structures exhibit logarithmic behavior upon search. How
ever, hashing methods are faster in general.

4. The extendible variations of hashing seem less elegant than B
trees. Moreover, B-trees have been heavily used in practice.

5. There exist order-preserving hashing functions (e.g., [Knot 71 , p.
189]). However, they require knowledge of the distribution of
keys in advance. Moreover, the above distribution should not be
changed with the insertion of new records.

4.2. Comparison of secondary-key access methods
The classes of methods that we shall examine are:

• Inversion with B-trees.

• Multiattribute hashing (e.g., [RoLo74]).

• Signature files with superimposed coding (e.g., [Robe79]).

• k-d trees (e.g., [Bent75]).

The points for comparison are the same as in the previous sec
tion. Table 4.2 indicates the strong and weak points of each method.

Notes on table 4.2:

330 Office Automation

invers. mult. hash. sign. trees
space v [1]

resp. v v v [2]

insert. x v v [2]

del.-upd. x
growth v [3] v v
key ord. v x x v
integr. v [4] v

Table 4.2.
Secondary key access methods.

1. [Robi81] reports a space utilization of 50-70% for the k-d B-trees.
Pure B-trees have a space utilization of about 70%.

2. According to [Bent75], the search time in k-d trees is an
exponentially decreasing function of the number of specified attri
butes.

3. [LlRa82] has proposed an extendible multiattribute hashing
method.

4. E.g., the STAIRS system [IBM79] is based on inversion, and
offers facilities for accessing both formatted data and text.

We should also note that special purpose hardware has been pro
posed.

• [Stel77] and [Ho1l78] have proposed list-merging hardware that
improves the response time of the inversion method.

• [AhR080] suggested storing the signature file in associative
memory. They report average response time of 50 msec, but they
do not give estimates of the cost.

4.3. Comparison of text retrieval methods
The methods that will be examined here are: full text scanning,

inversion of terms, signature files and clustering. The points of com
parison include those of the previous section, except for the preserva
tion of key order. In addition, we have to consider here:

• Retirement of old (useless) documents.

Access Methods for Documents. 331

• Approximate string matching (Le., handling of typing and spelling
errors).

• Ability to answer queries on parts of words.

• Ability to handle synonyms.

• Ability to integrate with formatted-data access methods.

Table 4.3 summarizes the performance of each class of text
retrieval methods.

full text. sc. invers. sign. clust.
space v x [11 v [2] v
response x v x v
inser. v [3] v
del.-upd. v x
growth v v [9]

retir. v [4]

appro match. [5] [5] [6] x
word parts v x v x
synonyms v [7] v
integr. v v [8]

Table 4.3.
Performance of text retrieval methods.

Notes on Table 4.3.

1. The overhead can be 50-300% of the initial file size [Hask81].
The STAIRS requires 55-97% overhead, depending on the size of
the stop-word list [RaZi841.

2. The size of the signature file is usually 10% of the size of the text
file [ChFa84].

3. There is a trade-off between retrieval and insertion efficiency in
the inversion-based methods: if the index is compacted (sorted
sequential file of word occurrences), then retrieval is fast, but the
index has to be rewritten upon every insertion (or batch of inser
tions). If there is a more flexible structure for the index, such as
a B-tree for the dictionary and lists for word occurrences, then
performance degrades considerably.

4. In [ChFa841, an efficient method for handling old documents is
described.

332 Office Automation

5. [JoT084] describe a way to build a fault-tolerant FSA for full text
scanning.

6. [AnFW83] suggest using overlapping triplets to measure the dis
tance between two strings. This seems to match well with the
triplet-based signature extraction method that is proposed in
[ChFa84].

7. Superimposed coding can handle synonyms, if synonyms yield the
same signature. However, the only way this can be achieved is
through a lookup in a dictionary of synonyms. The dictionary
search will slow down the document-signature extraction opera
tion. Moreover, the construction and maintenance of the diction
ary is not trivial.

8. A recent attempt to use clustering for both text and attributes has
been reported in [Fox84].

9. Clustering methods will not perform well in rapidly changing
environments, where new clusters are frequently created.

5. Signature Methods
The previous section indicated that the method of signatures

seems suitable for data and text access. We shall examine signature
methods in more detail.

The first two methods have been described already in section 3.3.
The word signature method [TsCh83] suggests that we concatenate the
individual word signatures to form the document signature (see figure
2, for example). It will be referred to as WS. The second method
[ChFa84] suggests that we split the document into logical blocks and
superimpose (OR) the word signatures to create the block signature
(see figure 1, for example). It will be referred to as SC (for Superim
posed Coding).

The next method [Fal085] is based on compression. Again, we
split the document into logical blocks, as in SC. The idea is that we use
a (large) bit vector of B bits and hash each word into one (or perhaps
more, say n) bit position(s), which are set to "1" (see figure 3). The
resulting bit vector will be sparse and therefore can be compressed.

The compression method proposed in [Fal085] is based on bit
blocks. For the rest of the paper, it will be referred to as BC (for bit
Block Compression). In this method, the sparse vector is divided into
groups of consecutive bits (bit-blocks). The size of the bit-blocks is
chosen in such a way that the performance is optimized. For each bit
block, we create a signature, by recording (a) whether there are any
"1"s in the bit-block, (b) how many "1"s there are, and (c) which are

free
text
retrieval
methods
block
signature

Access Methods for Documents. 333

0000 0000 0000 0010 0000
00000001 000000000000
0000 1000 0000 0000 0000
0000 0000 0000 0000 1000

0000 1001 0000 0010 1000

Figure 3

Illustration of the compression-based methods.
With B=20 and n = 1 bit per word,

the resulting bit vector is sparse and can be compressed.

the offsets of these" 1 "s from the beginning of the bit-block.

An important consideration is that the BC method can be slightly
modified to become insensitive to changes in the number of words D
per block. This is desirable because the need to split documents into
logical blocks is eliminated, thus making the resolution of complex
Boolean queries much easier. The modification is as follows: we treat a
whole document as a logical block and calculate the appropriate bit
block size, according to the vocabulary D of the document. Then we
store this. value along with the rest of the document signature. This
method will be referred to as VBC (Variable bit-Block Compression)
for the rest of the paper.

Another method that uses compression was suggested by Mcilroy
[Mc1l82] for a different environment. His goal was to compress a dic
tionary of 30,000 words for a spelling-error detector program. Using a
coding technique proposed by Golomb [Gol066] and Gallager and Van
Voorhis [GaVa75], he achieved very good compression of the sparse
vector.

This compression technique can also be used for signature file
construction in a text data base as proposed in [Fal085]. There the
method is generalized by allowing n ~ 1 (i.e., each word may hash to
one or more positions in the sparse bit vector). The motivation behind
this generalization is to investigate whether we can achieve better per
formance with n > 1. In the rest of the paper we shall refer to this gen
eralized method as RL (Run-Length encoding).

334 Office Automation

5.1. Performance comparison
Next we shall present the results of a comparison of the five sig

nature methods with respect to their screening capacity for single word
queries. All signature methods introduce "false drops", that is, a signa
ture may seem to qualify in a query, although the corresponding text
does not qualify. The probability of this event happening is called false
drop probability Fd • Mathematically,

Fd = Prob {the sign. of a block seems to qualify /

the block does not}

The reasons we have chosen Fd as a measure for comparison are:

• Unlike the other measures, Fd depends solely on the method and
not on other factors, such as hardware configuration, buffering
algorithms, etc.

• Discovering the dependency of Fd on the signature size F seems
to be a mathematically complicated problem. If this was solved,
one could calculate the other measures for a specific setting
(hardware, operating system etc.).

In addition to the five methods above, we present formulas that
give the theoretical bound on the performance of the compression
based methods. These formulas are based on the entropy of a bit in
the sparse vector. The quantities in these formulas will have a sub
script EN (for entropy).

WS Word Signatures
SC Superimposed Coding
RL compression with Run Length encoding
BC bit-Block Compression
EN ENtropy based bounds
VBC Variable bit-Block Compression

Table I
List of signature extraction methods.

In [FaCh84] we studied the cases of WS and SC. For the case of
word signatures it can be shown that the false drop probability is

Fd.ws~l-[l- Lr (])

Access Methods for Documents 335
Symbol method(s) definition

Fd,xx all False drop probability
for the "XX" method

Fxx all (expected) size of a block
signature for the "XX" method

D all number of distinct non-common
words per block

Smax WS maximum number of distinct
word signatures

m SC number of bits that
a word sets to "1"

mopt SC the optimal value of m
B RL,BC,EN size of the sparse vector
n RL,BC,EN number of bits that

a word sets to "1".
b BC size of a bit-block
bopt BC optimal value of b

Table II.
Definitions of the symbols.

where the symbols are defined in table II. Equation (1) can be justified
in an intuitive way. It gives the answer to the question: "Given the sig
nature of a (non-qualifying) block, what is the probability that at least
one of its D word signatures will (accidentally) match the search signa
ture (j ?"

The implications of Equation (1) are interesting. It states that the
false drop probability is independent of the vocabulary size, the size of
the data base, and the occurrence or query frequencies of words. It is
not affected by word inter-dependencies and is the same for successful
and unsuccessful search.

The conclusions that hold for SC are similar to those for the WS
method. It can be shown that

Fd,sc= [; ropt (2)

Fln2
mopt = ---y;- (3)

both for successful and unsuccessful search, regardless of the
occurrence and query frequencies, regardless of the vocabulary size V,
and regardless of the size of the data base. Experiments that we per
formed on a 3.3 Mb data base of bibliographic entries indicate that

336 Office Automation

Equation (2) and (3) hold (see [ChFa84] figures 7-9).

In [Fal085] we derived the exact formulas for the compression
based methods and plotted graphs of the logarithm of the false drop
probability Fd versus the signature size F. The conclusions are the fol
lowing:

1. All the compression-based methods (RL, BC, and EN) give better
results than both WS and SC for n = 1.

2. The RL method gives excellent results, very close to the EN
curves.

3. For methods based on compression, the optimal value of number
of bits per word n is n = 1.

4. All curves (/og2 Fd versus F) become almost straight lines for
large signature sizes.

5. The graphs of all the compression-based methods have the same
slope, which is the same as the slope of the WS method. As
observed in [FaCh841, SC has a smoother slope because it does
not make full use of all the available 2 **F bit patterns, since it
requires that half of the bits be "1".

The fourth observation provided the motivation to look for
approximate asymptotic formulas, as the signature size F increases.
These formulas are:

Fws
log2 Fd, WS = log2 D - D (4)

Fse Fse
log2Fdse=- Dl =--D 0.693 (5) , og2e

FRL FRL
log2Fd,RL=n O+log21og2e)-D=1.528n-j) (6)

Fse Fse
log2Fd,se=n 0 +log2e-log21og2e)- j)= 1.913n -j) (7)

FEN FEN
log2Fd,EN=nlog2e-j)=1.442n-j) (8)

It should be noted that the above formulas are very accurate. The
maximum observed error was < 6%.

In addition to the false drop probabilities for a given signature size
(which are given by these formulas), several other factors may affect
the choice of the most desirable method. We discuss some of these
factors in the next section.

Access Methods for Documents. 337

6. Concluding remarks.
The signature file method seems to be suitable for an integrated

data and text environment, mainly for the following reasons:

1. It requires small storage overhead.

2. It is efficient on insertions.

3. If carefully designed, it can handle errors and queries on parts of
words.

4. The method may be applicable to optical disks [Fuji841. The rea
son is that signature files do not require updates and rewrites, like
the inversion-based methods. Thus the "write-once" restriction of
the optical disks does not create problems.

Pinpointing the best signature extraction method is not easy. In
the last section we described and compared a number of methods. In
our discussion we focused our attention on the false drop probability of
each method for single word queries. The result of the study is that,
from the chosen point of view, the best method is RL, followed by BC,
WS, and SC (in that order). From a practical point of view, there are
additional considerations. To name the most important of them:

1. Speed of searching a block signature.

2. Performance on more complicated queries.

3. Ability to ,answer queries on parts of words.

4. Preservation of the sequencing information.

We shall briefly discuss these points:

1. The fastest method for searching a signature (given that it has
been brought into main memory) seems to be SC: it requires only
m (typically ::::::10) bit comparisons to accept or reject a signature
in a single word query. The BC method requires additional bit
comparisons, as well as calculations, in order to determine the
length of Parts II and III of the block signature. The RL method
needs approximately half of the encoded zero-intervals to be
decoded and added, thus giving slow search time. The WS
method requires the whole block signature to be examined, but it
does not need decoding or any additions.

2. All the signature methods do well on conjunctive (AND) queries.
Methods that split documents in logical blocks (that is, SC, BC,
and RL) require more bookkeeping than the rest of the methods
(such as the WS method without logical blocks and the VBC
method).

3. For the present time, only SC [ChFa84] can handle queries on
parts of words.

338 Office Automation

4. Only the WS method preserves the sequencing information.

As a final conclusion, it is still difficult to pinpoint the most preferable
method. However, we believe that the most promising candidates are:

• Superimposed coding (SC), because it is the fastest (at least for
single word queries), it is simple (does not need any decoding),
and it can handle errors in the data base as well as queries on
parts of words.

• Variable bit-Block Compression (VBC), because it is fast (second
only to SC), economical in space (second only to RL), and does
not need to split documents in logical blocks.

7 . References
[AhC075] [AhRoSO] [AhU179] [AnFWS3] [BaMc72] [Bent75] [Blo070]
[BoMo77] [Bour63] [ChFaS4] [ChriS3] [Come79] [Coop70] [Datt79]
[DuHa73] [FaChS4] [FaloS5] [FiHu69] [FNPS79] [FoxS4] [FujiS4]
[GaVa75] [Golo66] [GonnS2] [Gust71] [HaLoS2] [Harr7I] [HaskSI]
[Holl7S] [HoU179] [HSCES3] [IBM79] [JoToS4] [KaSi64] [KnMP77]
[Knot71] [Knut73] [Lars7S] [LarsS3] [Lesk79] [LitwSO] [LloySO]
[LlRaS2] [Mart79] [McIlS2] [McLeSI] [OrTa56] [PfBCSO] [RaZiS4]
[Rijs7I] [Rijs79] [Rive76] [Robe79] [RobiSl] [Rocc71] [RoLo74]
[Salt7I] [SaMc83] [SaWo78] [SeDu76] [Seve74] [Spar72] [SSLK83]
[Stel77] [Stia60] [TCEFS3] [TeFrS2] [TsChS3] [Vall 76] [YuLS82]
[Zahn7I]

14
Text Retrieval Machines

D.L. Lee
F .H. Lochovsky

ABSTRACT Various approaches to text retrieval machines for
large text database are surveyed. Signature processors for sup
porting superimposed coding are first described. Text processors
for pattern matching are then categorized and discussed.
Finally, various designs for mUltiple response resolution, an
important but often ignored issue in associative memory and
processors, are reviewed.

1. Introduction
Information management and, in particular, information retrieval

have been major applications of computer systems for a long time.
This is evident from the rapid development and widespread use of data
base management systems (DBMSs) and text retrieval systems (TRSs).
Recent developments in office information systems place an even
higher demand on such capabilities of computer systems.

Traditionally, research in information retrieval and management
has been divided into two areas. The first area is database management
systems. In these systems, information is usually extracted manually
from the real world and stored in a structured way, e.g., as relations
and trees, in the system. For instance, information in an office may be
embedded in business forms, memos, letters, reports, etc. It is the
responsibility of human users to extract information from these media
and enter it into the data base.

340 Office Automation

In DBMSs, the data represented must have a well-defined logical
organization which is known to the user. The data must have unique
meaning and should be interpreted in a consistent way by different
users. This structured organization enables the system, as well as
users, to process the data efficiently. Unfortunately, it also restricts the
system to handling formatted data only and leaves the burden of data
capture to the users. These limitations have hindered the use of
DBMSs in many office applications in which a large amount of data are
unformatted [Loch8l],

Another area of research is concerned with text retrieval systems
such as library automation systems. Materials handled by TRSs usually
involve memoranda, papers, reports, and books which are unformatted.
It is impossible so far, and indeed undesirable, to represent these docu
ments in a formatted way in computers. For instance, the full text of
legal documents is often required, or we may be more interested in
reading a book than in reading its surrogate (e.g., keywords and
abstract).

Retrieving textual data is more difficult than retrieving formatted
data because of the large search space involved, and the lack of organi
zation and style in texts. Furthermore, more complex query expres
sions than those for formatted databases are required for satisfactory
retrieval [Holl83], since the same information may be expressed in
different written forms. To improve the response time, indexing
methods are used to reduce the search space, and special purpose pro
cessors have been designed to speed up the search process [Holl791.
For query formulation, many aids are also available. These include the
use of thesaurus and relevance feedback to increase the precision and
recall of a query [Salt7l], However, formulating queries with high pre
cision and recall remains a difficult process.

On the other hand, the usage patterns of TRSs have made the
design of some aspects of the systems easy. In TRSs, retrieval is the
dominant activity; insertion is rare; and update and deletion are in gen
eral unavailable to general users. Therefore, re-organization of the text
database is seldom, if ever, required. Little concurrency control is
necessary, since insertion, deletion, and update are infrequent so that
coarse locking granularity will not affect system performance
significantly

Due to the traditional separation of research into DBMSs and
TRSs, their hardware support, namely database machines (DBMs) and
text retrieval machines (TRMs), also exhibit different emphases on
their functionality and architectural design. DBMs emphasize arith
metic comparison and relational operations, such as projection and join,
while the major function of TRMs is pattern matching.

Text Retrieval Machines 341

DBMs have been an active research area for more than a decade;
many designs have been proposed and some of them implemented. A
number of commercial products are also available, notably Britten Lee's
IDBM [EpHa80), Intel's iDBP[Lowe82], and ICL's CAFS [Mall80).
On the other hand, the number of TRMs designed thus far is
significantly less. This may be due in part to the problems associated
with TRSs, and hence TRMs, which hindered their wider use. How
ever, TRSs and TRMs are becoming more and more important as office
information systems proliferate. In this paper, we focus on the design
of TRMs for supporting large text databases (e.g., a file server of size
greater than 1012 bits on a local network). DBMSs and DBMs are not
discussed further in this paper, although some design issues and design
approaches are applicable to DBMs as well. As such, the term "data
base" hereafter refers to a text database when no ambiguity arises. Sec
tion 2 discusses the technological advances which have impact on
hardware designs. Section 3 surveys approaches to the design of TRSs.
Previous work on text retrieval machines is examined in section 4, with
emphasis on the hardware support for superimposed coding. Three
components, namely signature processor, text processor, and multiple
response resolver (MRR), are discussed.

2. Technological Implications
The most important characteristics of TRSs are the vast amount

of storage required and the large number of users simultaneously
accessing the data. These characteristics impose severe constraints on
the choice of storage technology in providing satisfactory response time
with affordable costs.

The rapid advancement of processor and memory technology has
released many constraints previously imposed on hardware designs. On
the other hand, it has also prompted the design of many "future" (and
in some cases "unrealistic") machines, which are based on technology
that will probably be unavailable for a decade. Most of these designs,
as exemplified by MPC[ArGi81] and Bentley's and Song's tree
machines [BeKu79, Song80) are based on the assumptions that the
whole database can reside in fast memory and that a processor is associ
ated with a small segment of the database. These assumptions are
unrealistic when the database size is large and growing rapidly. In this
paper, we only consider designs which are based on available or emerg
ing technologies.

Due to the size of the database, processor-per-track, fixed-head
disks and semiconductor memories such as CCDs are too expensive for
storing the whole database. The trend of mass storage technology indi
cates that moving-head magnetic disks remain (and will continue to

342 Office Automation

remam for some time to come) the prime candidate for inexpensive,
on-line bulk storage. Optical disks which are suitable for image and
archival data storage are appearing [Chi82). However, in both techno
logies, the access time and transfer rate are slow; as such, they must be
augmented with semiconductor memory to avoid bottlenecks.

There are basically two different ways to exploit fast semiconduc
tor memory in reducing disk access time. First, cache memory can be
used to reduce the effective disk access time. The application of cache
memories is well-known and has been proven effective in conventional
computer systems. DBMs with disk cache memory have also been pro
posed [ScOS76, Shaw80). However, locality of reference for formatted
databases is not well supported by empirical results [KeDe83], and little
work has been done on the reference behavior in TRSs. Nevertheless,
this does not indicate that disk cache cannot improve access time. How
ever, design parameters such as cache size may differ substantially from
those of a programming environment. For instance, it is known that
the access frequency of a given document decreases exponentially with
the age of the document on the system [Grav78). Therefore, recently
created documents can be "paged" into fast memories to improve their
access time. However, a large cache may be required to give any
significant improvement in access time. The application and evaluation
of a large disk cache in TRSs remain important research areas.

Another way of exploiting fast memory is to use it as the storage
for indexing information, so that the location of the desired informa
tion can be obtained rapidly without searching the database exhaus
tively. Furthermore, indexing information is more amenable to parallel
processing, since it is more structured than the text database itself.

The performance of cache memory is excellent if the data
required reside in the cache. However, if they are not in the cache and
no (or very coarse) indexing information is available, a long access time
is incurred. Indexing, on the other hand, provides performance some
where in between these two extremes, since access to the index infor
mation and a small portion (seldom the whole) of the database is
required for every retrieval. In general, both techniques can be applied
within the same system.

3. Some Approaches to Text Retrieval Systems

Text Retrieval Machines 343

3.1. Full text approach
In the full text approach, the text is searched directly against

users' queries: no access method is employed. As a result, no storage
and processing overhead are required for the access structures. Furth
ermore, since the text is searched directly, all information inherent in
the text can be used as search criteria, allowing complex search expres
sions to be formulated (e.g., word proximity, word fragments, etc.).
The obvious drawback of this approach is the large amount of process
ing and disk I/O required when the database is large.

With the advent of semiconductor technology, TRMs employing
multiprocessing techniques are often exploited to improve the response
time. Although TRMs based on full text scanning eliminate the need
for maintaining access structures, they are too expensive for large data
bases. For instance, scanning a database of 1012 bits with 1,000 proces
sors which operate in parallel at a speed of 1 Mbits/sec* will require 17
minutes. In addition, since only a small portion of the database usually
contains the desired data (known as the 90-10 rule) [Hsia801 , most of
the processors do not retrieve any relevant data. Therefore, a more
efficient way of exploiting hardware resources is desirable.

3.2. Inverted file approach
The inverted file approach takes the other extreme. It attempts to

reduce the amount of data to be searched, by eliminating the need to
search the (primary) database. This is accomplished by keeping an
index of keywords extracted from the text. Each keyword is associated
with a list of pointers pointing to the locations at which the keyword
appears. Thus, when searching for a keyword (s), only the index has to
be examined. This greatly reduces the processing time required.

There are, however, a number of disadvantages. First, depending
on the size of the vocabulary and the granularity of the index, the
storage overhead can be very large, ranging from 50% to 300% of the
primary database [BiNT781. Second, the processing time rises rapidly
as the search expression becomes complex, since intersection of lists of
pointers is required when the expression contains logical AND opera
tions. Finally, queries are limited by the vocabulary used in the index;
complex queries such as word fragments and word proximity cannot be
handled directly. These drawbacks seriously limit the applications of
inverted files to text retrieval systems.

* This figure is limited by the memory transfer rate. Magnetic bubble memories typically
have a transfer rate less than 300 Kbits/sec. Magnetic disks can operate at a transfer rate
of about 10 Mbits/sec.

344 Office Automation

3.3. Signature file approach
The signature file approach can be considered as a compromise

between the first two approaches. To facilitate subsequent discussions,
we first define the following notation:

B; : the ith block of the text database;

S; : the signature generated from B;, represented as a bit vector
S;lS/ ... Sr;

p; : the pointer associated with S;, pointing to B;;
m : the number of bits per signature;

n : the number of signatures in the signature file (Le., the number of
blocks in the text file);

Q : user queries expressed as patterns;

SQ : the signature generated from Q, represented as a bit vector
SOSa ... So;

wSQ : the number of one's (weight) in SQ.

wS; : the number of one's in S;;

The database is divided into a number of fixed-length blocks.
Each block B; is associated with a signature S;. Algorithm 1 depicts a
typical way for generating S; from B; [Harr711.

J) for l~j~m do
S/:= 0;

2) for all substring t of length k of B; do
begin

end

hash t into an integer j where 1 ~ j ~ m;
S/:= 1;

Algorithm 1. Algorithm for generating the signature of
a text block.

In practice, common words in B; are ignored when S; is gen
erated, and trigrams (k = 3 in algorithm 1) or digrams (k = 2) are
used. The signatures, together with the block numbers (or physical
pointers) are stored separately in a signature file.

When a pattern Q is searched for, a signature SQ is first generated
from Q, with the same algorithm used for generating S; 's. Then,

Text Retrieval Machines 345

algorithm 2 can be used to search for the patterns. The signatures act
as a filtering mechanism to eliminate from the database blocks which
are guaranteed not to contain the required data. The condition in the
algorithm is referred to as inclusion. That is, a signature satisfies the
condition (Le., it qualifies) if it includes the query signature. The inclu
sion condition is a necessary but not sufficient condition for a block to
satisfy the query, since bits in a signature set by one or more words in a
text may overlap with the bits set by another, different, word. Blocks
whose signatures satisfy the inclusion condition, but do not satisfy the
query, are called false drops. Therefore, after a signature is qualified,
the corresponding block must be compared to the query to check if it
really matches the query. Figure 1 depicts the block diagram of a TRS
based on this approach.

for all Si do
if (Sf = 1 for all j where S6 = 1) then

begin

end

retrieve Bi and compare with Q,
if match return Bi ;

Algorithm 2. Search algorithm for superimposed coding.

The query processor generates SQ from Q and passes SQ and Q,
respectively, to the signature processor and the text processor. The sig
nature processor searches the signature file and obtains a (possible null)
set of pointers for the text processor, which compares the correspond
ing blocks with Q. Matched blocks (or documents containing the
matched blocks) are returned to the user. Note that these three proces
sors can be implemented as three hardware processors or as three
software modules running on a conventional computer.

It is clear that only the signature file and a small portion of the
database need to be searched. In some applications, only 2-50% of the
database has to be searched [ThTa821. Since the size of the signature is
usually 10-20% the size of the database, the overall processing time is
significantly reduced. Furthermore, complex queries can be handled,
since the pattern is also compared to the text directly. This approach
effectively combines the advantages of the first two approaches and has
been shown to be very effective for text retrieval [ChFa841.

346 Office Automation

Signature I
File

Signature
Processor

Text
File

Text
Processor

Q
--.-----..,r------~

Query
Processor

User Query, Q

Figure 1: Block diagram for a TRS based on
signature files

4. Previous Work on Text Retrieval Machines

4.1. Signature file processor
In this section, we consider several designs for the signature pro

cessor, and evaluate their performance. To simplify the analysis,
storage for pointers in the signature file is ignored, since they occupy
approximately the same space in the designs under consideration and
have minimal effect on the performance; or they can be omitted com
pletely if the signatures are retrieved according to their logical order, in
which case, the ifh signature retrieved corresponds to the ith text block.

4.1.1. Sequential file
The simplest approach is to store the signature file sequentially on

disks and scan it bit-serially. Obviously, this takes n'm time units.
There is no special hardware required other than a simple controller
and a comparator.

Text Retrieval Machines 347

4.1.2. Transposed file
The signature file can be organized as a transposed file on disk.

The first bit from every signature is stored consecutively, starting from
an addressable block. Similarly, the second bit from every signature is
stored in the same manner, starting from another addressable block,
and so on [Robe79J. To search for a pattern, the bit slices correspond
ing to bit positions of SQ which contain one's are ANDed together. A
one in the ith bit position of the result vector indicates that S; qualifies.
The operations can be described formally with algorithm 3. A simple
processor implementing the algorithm is shown in figure 2.

1) for any i where Sb = 1, do
load ith bit slice into register R;

2) for allj wherej #- i and Sb = 1, do
begin

end

AND the /h bit slice with R bit-serially;
circulate the result back to R;

3) return Pi if the ith bit of R is one.

Algorithm 3. Search operations of a signature processor based
on transposed file organization.

In this approach, only n' wSQ bits are examined in the signature
file. Thus, the total time required is

n . wSQ + n = n' (wsQ + 1)

The last term represents the time for scanning the register R to obtain
the pointers to qualified text blocks (step 3 in the algorithm). This
approach is optimal in the sense that it examines the smallest possible
number of bits from every signature.

4.1.3. Word-serial, bit-parallel organization
The premise of the word-serial, bit-parallel (WSBP) approach is

that the signature file is small compared to the size of the database.
Therefore, with the decreasing cost of memory, the whole signature file
can be stored in faster memory, such as CCDs, magnetic bubbles or

348 Office Automation

r-----------------,

disk

Control

m 1,
S: n,

,
S' 2 ,

S' 1 , ,
________ ..J

MUX: multiplexor
DEMUX: demultiplexor

R

Figure 2: Signature processor
based on transposed file organization

even RAM, which allows a word (bit vector) to be read in parallel (as
opposed to disks which transfer data bit- or byte-serially).

A signature processor was proposed by Ahuja and Roberts at Bell
Laboratories in 1980, based on this approach [AhR080]. The whole
signature file was stored in CCD modules connected to a common bus
and searched in a word-serial, bit-parallel fashion. * The organization of
a module with a capacity of nj signatures is depicted in figure 3. Signa
tures are read from the signature file sequentially and masked by SQ.
The bits of the masked signature are ANDed together to produce a hit
signal. If the hit signal is set, the signature is qualified and the
corresponding pointer is output.

* In [AhR080}, the search method was referred to as "word-parallel'. However, we use the
term "word-serial, bit-parallel' to conform with the common terminology in computer archi
tecture.

Text Retrieval Machines 349

Address

r------------------~
1 m

I S ~~------------~ n~

-,r--""'7I
Signature

Store

S2~-+ __________ -r~
S 1 L.,-JL..,.-\------------""'r'

Query Mask : / ~~"""'T"---r_--
corresponding J,

to SQ

HIT

Figure 3: Signature processor
based on WSBP organization

Module i

A number of identical modules connected to a bus with a central
controller can operate in parallel. The time for searching the signature
file is ideally the time to search one module if bus contention is
ignored. Obviously, a module with ni signatures can be searched in ni
steps.

This method is a straightforward application of parallelism. How
ever, it is not optimal in the sense that the whole signature file (Le.,
n'm bits), rather than n .wsQ bits, is read. Consequently, only ws/m
of the total I/O bandwidth and the associated hardware (e.g., the query
mask) of the signature store are utilized. When wSQ is much less than
m, this approach is inefficient in the use of hardware and, more impor
tantly, 110 bandwidth, resulting in a longer processing time than is oth
erwise achievable if the full bandwidth were utilized.

350 Office Automation

4.1.4. Word-parallel, bit-serial organization
A natural way to make full use of the 110 bandwidth of the signa

ture store is to base the design on a transposed file organization. In
this section, we present a design based on a word-parallel, bit serial
(WPBS) organization and demonstrate that it is better than a WSBP
design [Lee84].

The signature file is transposed and stored in a module, as shown
in figure 4 (i.e., word i of the signature store holds the i1h bit slice of
the signatures). SQ is sent to the controller, which then addresses the
signature store according to the bits set in SQ. That is, if the i1h bit of
SQ is set, the ;th word which contains the i th bit from every signature is
read. The output words are ANDed together by the comparator C At
the end of the operation, the i1h bit of C will be set to one if and only
if Si includes SQ. The operations of the processor are detailed in algo
rithm 4. As in the transposed file approach, only wSQ bits from every
signature are examined. Thus, the search takes only wSQ steps and is
independent of the number of signatures in the module (Le., ni).

In the last step of algorithm 4, if more than one pointer has to be
sent to the controller, the output of pointers must be serialized by the
mUltiple response resolver (MRR) (see section 4.3). The MRR sends the
pointers (responders) to the controller in sorted order. Sorting the
pointers is not an essential requirement of the algorithm, but it can
minimize disk arm movements when the blocks are retrieved from the
database. It is sufficient to note at this point that the MRR consumes
only a small amount of time (e.g., < 10 p,sec). Furthermore, the out
put of pointers can be overlapped with the search of the signature store
and, as such, will not degrade the performance significantly.

The size of a module can be expanded both horizontally and verti
cally, as shown by the arrows in figure 4. A row of signatures is a block
of ni signatures stored together, side by side. Horizontal expansion
increases the word width of the store so that more signatures can be
stored. This approach does not affect the time for searching a module,
but consumes a larger amount of hardware for the comparators and
MRR. Vertical expansion increases the number of words ("height") of a
module. It serves two purposes. First, the number of signatures per
module can be increased. For instance, if the number of words is dou
bled, two rows of signatures can be accommodated, one at the lower
address portion and the other at the higher address portion. This
method requires little extra hardware, but it becomes slower, since the
module must now be searched row by row. Second, and more impor
tantly, it enables the number of bits per signature to change after initial
installation. For instance, the number of bits per signature can be

CNTLR

Text Retrieval Machines 351

m

Horizontal
Expansion

c::::::>

" ,......,......,---::~--r'-.",.,," ,

pointer store

Multiple Response
Resolver (MRR)

Enable SQ
(a) (b)

Figure 4: (a) Signature processor based on WPBS search,'
(b) its serial comparator

1) for 1::S;;; i::S;;; ni do Ci : = 1 /* initialize C */

2) for l::S;;;j::S;;;m where Sb = 1 do
for l::S;;;i::S;;;ni do y := y AND S/

3) output p/s in sorted order if y = 1

Algorithm 4 Search operations of a WPBS module.

increased to reduce the number of false drops, or decreased to take into
account the decreasing access frequency for old documents [ChFa84].
In general, a module may initially contain more than one row. The
choice is determined by the available size, configuration, and technol
ogy of the memory employed.

352 Office Automation

Table 1 summarizes the performance of a module based on WPBS
and WSBP search. In both cases, the module contains n signatures and
uses m comparators (Le., m signatures per row in the WPBS approach).

In the WPBS approach, when n is greater than m, [; 1 rows are

required. It can be observed that when wSQ is much less than m, a sub
stantial gain in speed is achieved in the WPBS approach.

word-parallel word-serial
bit-serial bit-parallel

number of signatures n n
number of comparators m m
number of comparators m wSQ

utilized

time to search a [; l·WSQ
n

module (+ MRR time)
additional hardware controller controller

+MRR

Table 1. A comparison of word-parallel, bit-serial
search and word-serial, bit-parallel search.

It is assumed in the above design that conventional memory
which can address only one word at a time is used. However, superim
posed coding only requires the result of the conjunction of the bits
from a signature, which correspond to the one's in SQ, not the values
of the individual bits. Thus, the one's of SQ can be used as enable sig
nals to the signature store to select bits from a signature simultane
ously. The selected bits are then wired-ANDed together. Figure 5
illustrates the design of the signature store based on this approach, and
its implementation using nMOS technology.

Bi,j is the bit cell holding ~he /h bit of the ith signature (Le., S/).
Bi,j is enabled if and only if S6 is active. The outputs of the enabled
bit cells of a column are then wired-AND together. It is easy to show
that the result, Ci , equals 1 if and only if Si includes SQ. This
approach allows the search of one row to be performed in one step.
Furthermore, it does not require the address decoder in figure 4(a) and
the comparator, C, in figure 4(b). The disadvantage is that custom-

Text Retrieval Machines 353

rt ..J!C
B. '+1 Bj +l,j+ ...,~ I,J

DC

1+ B .. Ii- B. +1 .
I,J I ,J

C
I

Figure 5: (a) Signature store based on
simultaneous enable and wired-AND,
(b) nMOS implementation of a bit cell

(b)

design memory is used; the design and development costs are high.

354 Office Automation

4.2. Text processor
The text processor receives from the signature processor a (possi

bly null) list of pointers which point to all text blocks containing the
patterns specified by the user query, with the addition of a small
number of false drops. The main purpose of the text processor is to
compare the user query directly with the text blocks, to eliminate false
drops. User queries are usually represented as regular expressions, and
the comparison, of course, can be done by software. However, when
the patterns are complex, or a large number of signatures are qualified,
the comparison still consumes a substantial amount of time. In this
section, we are only concerned with hardware alternatives for perform
ing pattern matching operations. Therefore, pattern matching refers to
hardware pattern matching, unless indicated explicitly to the contrary.
We also use t to denote the length of a text string and p to denote the
length of a pattern.

In essence, pattern matchers proposed in the literature for full
text scanning (e.g., [Robe78J, [HaH083] and [Mukh79]) can be used as
a text processor. However, when used with superimposed coding, the
search space for the text file is reduced dramatically and consists of
fixed length blocks. These two properties strongly influence the design
of the text processor.

Pattern matchers can be classified into two categories: logic-with
pattern and logic-with-text. In the logic-with-pattern category, processing
power is associated with patterns. That is, patterns are stored directly
or in an encoded form in one or more processors or logic cells. Text
strings are retrieved from secondary storage and sent to the patterns for
comparison. Since every pattern character can be compared to a text
character concurrently*, this hardware approach is faster than software
approaches which compare one text character with one pattern character
at a time. Neglecting other overhead, the speed is upper-bounded by
the time required to read the whole text string from secondary storage.
When comparison can be overlapped with the reading of a character
from disk, this approach requires t steps to process a text string.

In the logic-with-text category, processing power is associated with
the text strings; pattern characters are sent to the text sequentially for
comparison. In general, every text character is compared to a pattern
character in parallel. Assuming the text is already loaded into logic
cells, the speed of this approach is upper-bounded by p (Le., the time
to broadcast the pattern). Since p is much less than t, this approach is
potentially much faster than the first approach. The obvious disadvan
tage of this approach is the large amount of hardware required to

* Note that the pattern characters can be compared to the same text character broadcast to
them, or to difforent text characters.

Text Retrieval Machines 355

accommodate the text. Furthermore, the variation of t is very large.
Thus, it is difficult to determine beforehand how long the text could be
and, therefore, the size of the pattern matcher to be used (e.g., the size
of the memory and/or the number of logic cells).

4.2.1. Logic-with-pattern category
In this section, we will discuss three different approaches within

the logic-with-pattern category. They all share the common characteris
tics that t steps are required to match a pattern with a text string, and a
relatively small amount of hardware is required.

4.2.1.1. Associative memory
Associative memory is perhaps the simplest way of performing

pattern matching in hardware. As depicted in figure 6, patterns are
stored in an associative memory. Each memory word is, in effect, a
parallel comparator with storage capability. If a pattern is shorter than
the word size of the memory, the pattern must be padded with don't
care characters, which are represented by dots in the figure, to fill the
whole word.

. . . • DATA BAS E .•

. . . . INFORMATION

· Hit
associative MRR

· memory

·
D A T A •• •• SYSTEMS

II . III
DATA BAS E:~ text strin2

from disk

Shift Register

Figure 6: Pattern matching with associative memory

356 Office Automation

The text string is shifted into the register from secondary storage.
The text segment in the register is compared simultaneously with every
pattern. Patterns which match the string segment in the register will
respond with a signal to the controller through the multiple response
resolver (MRR). The text is shifted by one character, and the com
parison is repeated until the end of the text is reached.

This approach is simple, both conceptually and in hardware
design. Since the number of patterns is usually small and their lengths
short, the size of the memory is reasonably small. Furthermore,
designs employing conventional RAM and hashing techniques in place
of truly associative memory have been proposed, to lower the costs
further while retaining most of the properties of truly associative
memory [Burk82]. However, associative memory is not flexible. It
allows exact match with FLDCs (fixed-length don't cares) but does not
allow VLDCs (variable-length don't cares). Alternations within a pat
tern can only be handled indirectly; by replacing the pattern with a
number of patterns each of which represents one alternation in the ori
ginal pattern. Patterns with closures are not allowed at all. Further
more, the length of a pattern and the number of patterns are respec
tively limited by the word length and the number of words in the
memory.

4.2.1.2. Cellular logic array
In an associative memory, a pattern matches with a text segment

in parallel and reports immediately (usually within one clock cycle)
whether the comparison is successful. In a cellular logic array, an array
of logic cells is used to hold a pattern. (When there is more than one
pattern, a two-dimensional array is required.) Each cell compares the
pattern character it is currently holding with a character from the text,
and passes a partial match result to its neighbouring cell, which will act
according to the received partial match result and in tum produce
another partial match result to its neighbour. Although a pattern is
compared to a text segment in parallel, the result is not known immedi
ately, as in an associative memory; rather, a partial match signal is esta
blished at the beginning of the pattern and propagates down the pattern
as the comparison continues. A match of the full pattern is eventually
established, when the signal is able to propagate to the end of the pat
tern.

There are many designs based on cellular logic arrays. Foster and
Kung proposed a systolic array for pattern matching [FoKu80]. A sys
tolic array is composed of a (large) number of simple logic cells. A cell
is connected only to its neighbours (e.g., as a linear array or matrix).
Thus, data and control signals are exchanged only between neighbour

Text Retrieval Machines 357

cells, and the signal flow between cells is simple and regular. This
structure allows easier VLSI implementation. Figure 7 is a pattern
matcher based on the concept of systolic array.

pattern _ ---,~
in

result

text

logic cells

pattern
out

Figure 7: Architecture of a systolic pattern matcher

The pattern is shifted into the array from the left and cycled
through the array, while the text is shifted at the same time from the
right. Each cell compares the corresponding characters from the pat
tern and the text and sets its output line to one if and only if the two
characters match and its input result line has been set to one (thus
establishing a partial match signal). When the result line of the left
most cell ·is set to one, the pattern is found in the text. The design has
the same pattern matching capability and limitations of associative
memories.

A more powerful design was given in [Mukh79] and [Mukh80].
Its basic structure is the same as the systolic pattern matcher above.
However, more logic has been put into the cells and more control lines
are used. The pattern remains stationary after it is loaded into the
array. Among other capabilities, it can handle VLDCs.

A disadvantage of cellular logic arrays as well as associative
memories is that when a number of patterns have to be matched simul
taneously, a two-dimensional array of logic cells must be used. How
ever, since the array is connected in a fixed way, both the length and
the number of patterns that can be matched at the same time are fixed.
This inflexibility leads to an inefficient use of hardware. For instance,
an array of 2Ox20 cells cannot be used to match 21 patterns simultane
ously, no matter how short each pattern is. Similarly, it cannot accom
modate a pattern longer than 21 characters, even though the pattern is
the only one to accommodate.

358 Office Automation

4.2.1.3. Finite state automaton
Another method for implementing a pattern matcher is based on a

finite state automaton (FSA) [HoUl791. The patterns to be matched
are first translated into a state transition table, which is then loaded into
a finite state machine (FSM). Starting from its initial state, the FSM
accepts characters from the input text and makes corresponding transi
tions according to the state transition table. If the FSM reaches one of
its final states (accepting states), the pattern associated with the final
state is found in the text. Pattern matchers based on deterministic FSA
(DFSA) [Robe78] and non-deterministic FSA (NFSA) [HaH083] have
been proposed.

A DFSA can be implemented with a two-dimensional array con
taining the "next state" information. The next state of a transition can
be obtained by addressing the array with two indexes representing the
current input character and the current state. However, this simple
approach requires a memory of size 1 ~ 1 ·1 Q 1 ·lag21 Q 1 bits (where 1 ~ 1
is the size of the alphabet and 1 Q 1 is the number of states). A more
sophisticated encoding technique called Bird's indexing can reduce the
memory size dramatically. Since a state with only one outgoing are,
called a sequential state, matches only one character, it can be
represented by a pair containing the character and a number represent
ing the next state. In practice, 90% of the states are sequential states.
Thus, the memory required is reduced substantially. States with more
than one outgoing transition are called index states. The next states of
an index state are numbered in order according to the collating
sequence of the characters causing the transitions, and are stored in
adjacent memory locations. An index state can be represented by a
base (its lowest-numbered next-state) and a bit vector of 1 ~ 1 bits. The
i th bit of the vector corresponds to the ith character in the alphabet
(ordered with the same collating sequence). A bit is set to one if its
corresponding character causes a valid transition, and to zero otherwise.
Therefore, when a character is read, the corresponding bit is checked. If
it is a zero, the default transition is taken; otherwise, the next state is
obtained by adding to the base the number of 1 's to the right of the bit.
Thus, an index state can be represented by lag21 Q 1 + 1 ~ 1 bits, rather
than lag2 1 Q 1 . 1 ~ 1 bits in a direct array implementation. To make Bird
indexing effective, the DFSA is separated into three smaller DFSAs.
The first DFSA detects single-word patterns without VLDCs; the
second one detects single-word patterns with VLDCs (initial or embed
ded); the third one, taking input from the first two, detects multiple
word patterns. If the DFSAs are combined, every state will be an index
state when the pattern contains VLDCs, and thus more storage is
required.

This technique requires more setup time and sophisticated
hardware than a direct array implementation. Furthermore, sequential

Text Retrieval Machines 359

states and index states, as well as different index states, demand
different amounts of processing time. As such, buffering between the
DFSA and disk is required.

The advantage of NFSA is that it can occupy several states simul
taneously. This allows several search paths to be followed at the same
time. When a search path finds a mismatch (reaches a dead end), it
simply stops, without the need of backtracking. Thus, the state transi
tion diagram can be simpler and, as a result, requires much less storage.

A NFSA can be implemented by a replication of DFSAs. When a
"fork" to multiple states occurs, one or more DFSAs are activated in
such a way that each of the activated DFSAs, including the activating
DFSA, assumes one of the next states. Haskin and Hollaar proposed
an implementation of NFSA called partitioned FSA, or PFSA
[HaH083]. Instead of replicating complete copies of the state transition
table in each DFSA (called character matcher, or eM), each DFSA is
assigned only a specific subset of the original table. The partition of the
state table must ensure that no eM will be f{)rced to occupy more than
one state. This partitioning is not trivial, and requires a larger amount
of setup time than the deterministic approach.

Pattern matchers based on FSA have the advantage that the
number and lengths of patterns are limited only by the total size of the
memory in the FSM. Thus, it is more flexible in that, with a fixed
memory size, the matcher can match a large number of short patterns
or a small number of long patterns.

This method has the full pattern matching capability of regular
expressions and, as such, possesses a higher query capability than the
other designs discussed so far. However, it requires extra set-up time
for the translation and loading of the transition tables, and the hardware
is more complicated. Even with special coding techniques, the state
transition tables require a large amount of storage. For example, when
the query interarrival time is 4 seconds, and each query has 23 patterns
containing a total of around 165 characters, the storage required is 800
Kbits for the deterministic FSA approach, and 50 Kbits 00 eMs with 5
Kbits storage each) for the non-deterministic approach [Hask80,
HaH083]'

4.2.2. Logic-with-text category
A straightforward approach in the logic-with-text category is to

store the text in an associative memory. Each word of the memory
holds a text segment such that a pattern can be compared with every
segment in parallel. However, this approach can only locate patterns
within a segment but not between segments, since memory words

360 Office Automation

usually do not have any communication among themselves. This prob
lem can be alleviated by using a large word length, but at the expense
of a slower speed, since the pattern, if shorter than the word size, has
to shift down the word, so that it can compare to every successive p
substring of the segment. A more serious disadvantage of this
approach is that, for a reasonably large database, the associative
memory is too large to be economical, if ever implementable. Even
with the VLSI technology available in the near future, it will be impos
sible to associate a sufficient amount of logic with every text character,
for performing comparison (and, of course, for storing the character),
given that the size of the database may exceed 1010 characters. In order
to reduce the amount of hardware, pseudo-parallelism is usually
employed instead of full parallelism. One approach, discussed in the
following section, is to divide the text into segments, and to compare
the pattern to every segment in parallel, but sequentially within a seg
ment. Thus, the speed is much slower than the upper bound p.

4.2.2.1. Associative Linear Array Processor (ALAP)
The Associative Linear Array Processor (ALAP) was originally

proposed for performing fast arithmetic operations, and later extended
to perform pattern matching operations as well [FiLo77, Love77]. As
depicted in figure 8 (a), ALAP consists of a linear array of logic cells
connected to three busses. Two of these busses are for input and out
put. The third bus allows both arithmetic and pattern matching opera
tions to be performed between the data stored in selected cells and an
external operand. (For pattern matching, the external operand is a pat
tern character.) In addition, a channel, called the chaining channel, con
nects the cells in series; it allows each cell to transfer data and status
bits to its immediate right neighbour.

A cell consists of an arithmetic logic unit for performing arith
metic and comparison operations, and a shift register (e.g., CCD) of
length 64-Kbit, called the data register, for storing text segments. The
chaining logic of each cell permits all cells to shift their contents simul
taneously on the chaining channel. As such, the entire ALAP can be
regarded as a very long shift register, and cell boundaries can usually be
ignored.

ALAP can perform a number of arithmetic operations, such as
addition and multiplication, in an elegant way. Unfortunately, the facil
ity for pattern matching is very primitive. Comparison within a cell is
carried out sequentially. The ALU acts as a serial comparator, which
compares one pattern character with one character from its data register
and accumulates the partial results. Since the data register is much

Text Retrieval Machines 361

64 Kbit modules

chaining
channel

input bus _ --J...-+-+-___ .L-+-t-____ --'--+-+ __

output bus _----L+----L--t--------l.-+--
aux. input bus ___ ---L-----L---------L--

serial
comparator

(a)

~""'.""'H'"" match signal for
tagging matched

substrings
TRUTHS TRUTHS.
RUTHSTRUTHST.
UTHSTRUTHSTR.

repeats p times

(b)

from external
controller

Figure 8: (a) Organization of ALAP,
(b) comparison operations of an ALAP cell

longer than the pattern, the pattern has to be broadcast repeatedly until
the last character in the data register is compared. Furthermore, in
order to locate all occurrences of the pattern in the data register,
regardless of their orientation, the pattern has to be broadcast p times,
such that each time it starts with a different pattern character. An
example is shown in figure 8(b), in which the pattern is "TRUTHS". It
is clear that this design only allows exact match with FLDes, and
requires a number of steps equal to p times the length of the data regis
ter for pattern matching.

Since processing and control logic are associated with every 64-
Kbit text segment, the cost per bit is lower than that of truly associative
memories. However, when the database is very large, the data register
still requires an appreciable amount of logic.

362 Office Automation

4.2.2.2. Associative Linear Text Processor (ALTEP)
The Associative Linear Text Processor (ALTEP) is similar to

ALAP in that the text string resides in a linear array of logic cells.
However, ALTEP is designed specifically for pattern matching; it has
the full pattern matching capability of a regular expression and is much
faster than ALAP. With signature file as an access method, the data
base consists of fixed-length blocks, and only a small portion of them
are examined. Therefore, an array of pre-determined length can be
used in AL TEP, and a text block can be loaded into the cells on
demand. Once the block is in the cells, the array functions as a truly
associative processor which, in most cases, requires only p steps to
match a pattern with a text [Lee84].

ALTEP is a linear array of identical logic cells connected to two
common busses (see figure 9). The instruction bus is used to broadcast
instructions to the cells. Every cell executes concurrently the instruc
tion it receives, and acknowledges to the controller through the ack
nowledgement bus if the operation is successful. The controller may
take different actions, depending on whether or not an acknowledge
ment is received. A uni-directional chaining channel connects all cells
serially, to allow inter-cell communication.

I

Controller

cell 0 cell 1 cell n
chaining

hannel ... I
i nstruction

bus

ack nowledgement

bus

Figure 9: Organization of ALTEP

The text string is stored in cells 1 to n, one character in each cell.
The operation of a cell is to compare the text character it is holding
with the pattern character broadcast to it, and, according to the result,
acknowledge the controller and change its internal state. Cell 0 is a
pseudo cell. Its only purpose is to provide an initial signal to the input
chaining channel of cell 1 at the beginning of an operation, and reset
the signal afterwards. As such, the cell can be much simpler than the
other cells. However, it is conceptually simpler to regard it as identical
to the other cells, except that it does not match with any pattern

Text Retrieval Machines 363

character. Thus, every cell in ALTEP is identical and responds to an
instruction in the same way.

ALTEP accepts patterns in the form of regular expressions
[HoUl791. Patterns without alternations and Kleene closures are called
simple patterns. In principle, a regular expression allows any level of
nesting, but a hardware implementation must impose a limit on the
number of levels allowed (e.g., four levels) because of the restriction of
hardware resources. This limitation, however, is not a serious one,
since a pattern with many levels of nesting will be very complex (i.e., it
matches a large number of different strings). It is unlikely that a user
is able or willing to specify such complex patterns.

Simple patterns can be handled in an obvious manner. Initially,
the chaining channel input to every cell is set. Each cell compares its
text character to the pattern character it receives. Upon a match, it sets
the chaining channel of its right neighbour and acknowledges the con
troller; otherwise, the channel is reset. After a text character is broad
cast, the controller can abort the process if no acknowledgement is
received. It is not difficult to observe that, after the last pattern charac
ter is processed, a cell with its output chaining channel set indicates
that a substring which ends at this cell has matched the pattern.

Alternations and closures of simple patterns can be handled if the
intermediate match results are properly saved in temporary storage
within each cell. Let us consider the pattern PI (P21 P31 P4); it is
equivalent to the disjunction of three simple patterns PIP2, PI P3, and
PI P4• Thus, they can be matched individually, as described above, and
the results accumulated. However, this is not efficient, because PI is
matched three times. To avoid this inefficiency, after PI is matched,
the state of the cells is saved. After P2 is finished, the state is restored,
so that P3 and P4 can be processed as if PI has already been matched.
The result for matching each of the alternations is accumulated, and
restored after all alternations are finished.

The closure of a simple pattern P can be considered as the alter
nation of an infinite number of simple patterns, pI, p2, p3, and so on
(pi means P is repeated i times). Therefore, a naive way of matching
P* is to successively match these patterns, starting from pI, until a pat
tern pi which does not occur in the text is reached. However, this sim
ple method is not efficient. An important observation is that, after pi
is finished, the result of matching pi + I can be obtained by repeating P
just one more time, since the result of matching pi is already available.
Therefore, it is only necessary to save the state of the cells after pi is
processed, and broadcast P once more to get the result of pi+l. The
process is continued until a mismatch is encountered, and the accumu
lated match results are then restored. Alternations and closures can be
nested to a depth determined by the size of the temporary storage.

364 Office Automation

For patterns without any closure, O(P) steps are required. The
closure of a simple pattern requires a number of steps equal to the
length of the longest substring which matches the closure in the text
string. These figures indicate tremendous improvements over ALAP,
as well as other approaches in the logic-with-pattern category.

4.3. Multiple response resolution
Inherent to any multiprocessing system, there is some multiple

response resolution scheme. For instance, a search of an associative
memory or associative processor may yield more than one responder.
Since there is usually only one common bus connecting the memory
cells or processors, the output of the responders must be serialized (or
prioritized) by a multiple response resolver (MRR). Multiple response
resolution schemes can be based on a bus-contention protocol such as
CSMA in Ethernet [MeBo76]. However, these protocols have poor
performance when the system load is high (i.e., has many responders).
Therefore, we only consider schemes which are collision free.

Collision-free multiple response resolution methods can be
divided into two classes. In the first class, responders are output
according to their physical locations in memory. That is, the responder
with the lowest (or highest) address is output first, then the responder
with the second lowest (or highest) address is output, and so on. We
call this retrieval scheme address-ordered retrieval. In the second class,
responders are output in sorted order according to their values rather
than their addresses. We call this approach value-ordered retrieval. *

4.3.1. Address-ordered retrieval
The method depicted in figure 10 (a) is perhaps the simplest way

of finding the responder which is closest to one "end" of the memory.
The tag bits of the cells are set according to their corresponding status
bits which identify the responders. The leftmost cell with the tag bit
set to one passes a reset signal along the priority line to all other cells
to its right, resetting the tag bits to zero along its way. Thus, after the
reset signal reaches the end of the array, only one (the leftmost) word
with tag bit set to one remains. This word can be output and subse
quently removed from the responder set by clearing its status bit. To
retrieve the second responder, the tag bits are again set to their

• In the literature, the second class is simply called ordered retrieval. We use address
ordered and value-ordered to distinguish the two classes explicitly.

Text Retrieval Machines 365

corresponding status bits, and the same process is repeated. The
advantage of this method is the simple and identical logic structure of
each cell. However, in the worst case, the reset signal has to propagate
through n-l OR gates, where n is the size of the memory. Given a
delay of 5 nsec per gate, a memory with 1000 words will generate a
delay of 5 JLsec, and one mega-word will require 5 msec to settle down.
This long settling time defeats the purpose of using high-speed associa
tive memories when retrieval is frequent.

priority
1 i n:..::e:.....,. __ -+-.,~

(a)

(b)

Figure 10: MRR with (a) a priority line,
(b) a priority tree

response
resolver
column
(ta9 bits)

memory
cells

A faster method, employing by-pass gates, has been proposed (see
figure lO(b» [Land771. The reset signal from cell i propagates to the

366 Office Automation

right as before. However, at the same time, the signal passes through
the by-pass gate directly to cellj+ 1. Hence, cell i to cell j and cell j + 1
to cell k are reset in parallel. More than one level of by-pass gates,
organized as a tree, can be used. In general, the settling time is propor
tional to logm n, where n is the number of cells and m is the fan-in of
the by-pass gates (Le., the degree of the tree). The disadvantage of
this method is that the tree not only requires more hardware but also
destroys the regular, one-dimensional structure of the cells. Thus, the
memory is more expensive to implement and difficult to expand.

In summary, address-ordered MRRs retrieve responders according
to their locations in memory, but independent of their values. The
time to select a responder depends on the size of the memory. As
such, care must be taken to ensure that the settling time is within a cer
tain limit (e.g., the time out period or the clock cycle of the system)
when the memory size is increased.

4.3.2. Value-ordered retrieval
One characteristic of the first class of MRRs is its asynchronous

and distributed decision process. After the controller has initiated the
retrieval operation, it is not involved in the process of selecting the first
responder. Instead, the cells decide among themselves which one is the
winner, by the use of priority circuits associated with them. When the
winner is selected, the memory controller is informed and the winner is
retrieved.

On the other hand, the decision process of value-ordered retrieval
can be centralized as well as distributed. In a centralized design, the
decision process is carried out solely by the memory controller.
Memory words have no communication with one another but respond
directly to the controller. The controller selects the first responder with
successive memory probes in which an increasingly restrictive search
criterion is used, and decides when the selection process is finished.
Therefore, the retrieval speed is measured in terms of the number of
memory probes. In a distributed design, the decision logic is distri
buted in each memory word. However, unlike address-ordered
retrieval, it does not make use of priority circuitry.

4.3.2.1. Centralized approach
Frei and Goldberg proposed a method which was based on a

binary search tree [FrG061]. In principle, the responders are examined
by bit slice from left to right. If the slice being examined contains all

Text Retrieval Machines 367

zero's, all responders are retained in the responder set. Otherwise, only
those responders with one's in the slice are preserved.

In Frei and Goldberg's design, the tree search is carried out by
probing the memory with binary patterns augmented with don't care
symbols (X's). As illustrated in figure 11 (a), the first digit in the initial
pattern is set to one, and all other digits are set to X's (e.g., lXXXXX
in step O. If there is at least one responder, the one in the pattern is
preserved, and the next X is set to one (Le., 11XXXX). Otherwise,
the one in the pattern is reset to zero, and the next X is set to one
(i.e., OlXXXX). The memory is searched again with the modified pat
tern, and the same procedure is repeated until all digits are set to either
one or zero. The resulting pattern represents the value of the largest
responder. Note that the smallest responder can be retrieved in a simi
lar way by replacing zero's in the pattern with one's and vice versa. It
is clear that w memory probes are required, where w is the word length
of the memory.

step 1 step 2 step 3 step 4 step 5 step 6

lXXXXX llXXXX lllXXX 1101XX 11001X 110011 +-patterns

1100P 110011 110011 110011 110011 11 00 II 110011
1l00lO 1100lO 1100lO llO0lO llO0lO 1l00lO
110000 110000 110000 110000 110000
00001l
OOOOlO
000000

(a)

step 1 step 2 step 3 step 4

lXOOXX l1001X 110011 +-patterns

110011 110011 110011 110011
1100lO ll00lO 110010
110000 110000
000011
OOOOlO
000000

--00-- 1100 .. 11001- +-column readouts

(b)

Figure 11: Examples illustrating the operations of
(a) Frei and Goldberg's method, and

(b) Lewin's method

368 Office Automation

An improvement based on this method was proposed by Lewin
[Lewi62]. As is evident from the above example, when a column con
taining all one's or all zero's is processed, the set of responders is not
reduced at all (steps 2, 3, and 4). In Lewin's method, special logic and
encoding techniques allow the controller to recognize the state of each
column. In each column, there are three possible outcomes: it contains
all zero's, all one's or both zero's and one's, denoted by 0, 1 and *,
respectively. Based on the column readout, the controller can skip over
columns which contain the same digits and only concern itself with
columns indicated by *'s. A pattern is obtained from the column
readout by setting the most significant * to 1 and all other *'s to X's,
leaving the O's and 1 's unchanged. For example, in step 1 of figure
11 (b), lXOOXX is obtained from **00**. The pattern obtained is used
to search the memory, reducing the size of the responder set as a
consequence, and producing a new column readout (1100* *). This pro
cedure is repeated until a column readout containing no *'s is found,
which then represents the largest responder in the responder set. The
best case performance of this method is one memory probe, when there
is only one distinct responder. The worst case is w probes, when the
active responders have both zero's and one's in every slice being exam
ined.

4.3.2.2. Distributed approach
Ramamoorthy, Turner, and Wah proposed a design which com

bined many desirable features of the designs previously discussed
[RaTW78J. In their design, responders are retrieved in order of their
values and at a speed proportional to the word length. However, like
address-ordered retrieval, the decision process is asynchronous and dis
tributed.

The organization of the memory cells is depicted in figure 12 (a),
and the logic diagram of a bit cell is shown in figure 12 (b). We con
sider the general case in which the responder set includes all n memory
words. A bit cell Bi ,} is said to be enabled if its input enable signal 4,}
is one. All enable signals of the first bit slice, Ei,1> are initialized to one
and then propagate across the bit slices. As the enable signals pass
through the bit slices, some enable signals are reset to zero, while oth
ers are allowed to retain their original values (i.e., one's), according to
the algorithm described below. When they reach the last bit slice,
exactly one enable signal, 4,w+1> remains set; all others are reset to
zero. This signal indicates that word i is the largest word in the
responder set and can be subsequently retrieved and disabled.

default
feedback
circuits

word 1

EZ,l

Hord Z

(a)

(b)

Text Retrieval Machines 369

feedback
bus, Rj

sync_ default
bus, Pj detec..! j on

bus, Qj

E j ,j+l

Figure 12: (a) The organization of memory cells; and
(b) the logic diagram of a bit cell of Ramamoorthy et al. 's MRR

The operations of a bit cell depend on the states of its residing bit
slice. A bit slice can have either one of two states: (1) at least one
enabled bit cell contains a one (called the compete state); (2) all enabled
bit cells contain zero's (called the default state). In the compete state,
every enabled bit cell containing a one passes its enable signal to the
next cell on the right, while cells containing zero's pass zero's to their
right neighbour and thus exclude themselves from the responder set.
In the default state, all enabled bit cells pass their enable signals to the
next bit cells on the right. The retrieval process is detailed in algorithm
5. The loop in step (2) is executed w times. The operations of the /h

370 Office Automation

bit slice are represented by the /h loop, called the /h minor cycle, in
which the appropriate enable signals are passed to the (j + 1)th bit slice.

1) / * initialize enable signals to 1 * /
for all i do E;, 1 : = 1;

2) /* for every bit slice do the following */
for j = 1 to w do

if bi,j = 1 for some 1 ~ i ~ nand E;,j = 1 then
/* compete state */

else

for all 1 ~ i ~ nand E;,j = 1 do
if bi,j = 1 then

E;,j+l := E;,j
else

Ei,j+l := 0

/* default state; all enabled cells are O's */
for all 1 ~ i ~ n do E;,j+l := E;,j;

Algorithm 5. Retrieval operations of Ramamoorthy's method.

When enabled, a bit cell detects the state of its own bit slice by
means of the default detection bus Qj, which is pulled down to zero in
a compete state but remains at one in a default state (see figure 12(b)).
This signal is fed back to the inputs of the cells through the default
feedback circuitry and feedback bus, Rj . The output enable signal,
E;,j+1> is obtained from the disjunction of R j and bi,j' That is, E;,j+l is
set only when the slice is in a default state (Rj = 1), or in a compete
state and bi,j is one. The default feedback circuitry of a slice is initially
disabled by its sync bus signal, Pj . It is released after one of the cells is
enabled and Qj is stabilized.

We can observe that Ramamoorthy et al.'s method and Frei and
Goldberg's method are both based on the same principle of binary
search in which the responders are represented as a tree and the largest
(smallest) responder is obtained by following the rightmost (leftmost)
branches of the tree. The responder set (or the subtree at the node
being visited) is indicated by the enable signals in Ramamoorthy's
design and by the pattern in Frei and Goldberg's design.

There is, however, one major difference between them. In
Ramamoorthy et al. 's method, the state of a bit slice is detected by its
constituent bit cells. According to the state detected, each bit cell
determines locally, by setting its output enable signal appropriately,
whether the word it constitutes should remain in the responder set. In

Text Retrieval Machines 371

Frei and Goldberg's method, the selection process is carried out by the
memory controller. When a bit slice contains at least a one, the con
troller eliminates the words with zero's in that bit slice by putting a one
at the corresponding position in the pattern. When a bit slice contains
only zero's, the controller replaces the one with zero, thus retaining all
responders in the responder set.

Since Ramamoorthy et al. 's design is asynchronous, signals can
propagate across bit slices at the highest speed of the underlying logic.
Each retrieval requires w minor cycles, or one major cycle. * In terms of
gate delays, a minimum of w gate delays and a maximum of 4w gate
delays are required.

Note also that a pitfall of asynchronous designs is that the propa
gation delay of even the same type of logic gates is not constant. If the
enable signals, ~,j 's, do not reach a bit slice at the same time, errone
ous results may be produced. The situation becomes worse if the word
length is large, since the difference in propagation delays in each cell
accumulate. An example is given below to show that Ramamoorthy et
al. 's design may function incorrectly under such circumstances. Sup
pose word 1 = 1110 and word 2 = 1111. If the enable signal of word
1 travels much faster than that of word 2, B[4 is enabled before B24•

Then B[,4 will gate to the feedback bus an' erroneous value of Qj'
which is one, but would have been zero if B2,4 had been enabled on
time. As a result, E[5 is set to one, indicating that word 1 is the larg
est responder. This p~oblem can be avoided by adopting a synchronous
design. However, both the best-case and worst-case performance will
be 4w gate delays, since the clock cycle has to accommodate the worst
propagation delay across a cell, namely, 4 gate delays.*

Ramamoorthy et al. had compared their design to other designs.
It was concluded that their design was equal to or better than all other
designs considered in terms of speed and the number of cycles needed
to retrieve a word from memory. ** Furthermore, the design was suit
able for VLSI implementation, due to the regularity of its bit cells.

Value-ordered retrieval has a number of advantages. First, the
speed only depends on the word length of the memory, which is rarely
changed. Therefore, increasing the memory size will not affect the

• In Ramamoorthy et al.'s design, additional logic was provided to retrieve the larg
est and smallest responders at the same time, thus reducing the average retrieval
time to half a major cycle per retrieval. However, we feel that this technique can be
generally applied to other designs as well. For fairness, we still consider its speed as
one major cycle per retrieval.
• A synchronous design usually has a longer delay per cell, since additional flip flops
or latches must be introduced to synchronize the signals .
•• An absolute comparison is not possible since the speed of some designs depends
on the memory size.

372 Office Automation

speed of retrieval. Second, responders can be retrieved in ascending or
descending order of their values. Thus, this class of MRRs provides a
very attractive way for fast sorting. Third, if the address of each word
is stored explicitly as part of the word, or in a separate register associ
ated with each word, address-ordered retrieval is also possible. Finally,
the regularity of each cell is preserved. Thus, VLSI implementation of
the memory is easier.

In the rest of this section, we describe a MRR which has a
number of improvements over Ramamoorthy et al.'s design. In
Ramamoorthy et al. 's design, the speed can be further increased by ter
minating the selection process as soon as the largest responder is
identified. There are two situations in which the largest responder can
be identified before the enable signal reaches the last bit slice. First,
the responder set contains only one responder. On the average, the
number of words remaining in the responder set drops exponentially to
one as the enable signal propagates through the first few bit slices.
Second, if the largest responder includes all the other responders, then
the disjunction of the responders will have the same value as the largest
responder. This situation can be detected as follows. All memory
words output their values onto the default detection bus, and the values
are superimposed (wired-OR). After the bus has settled down, the
memory words read the bus value and compare it with their own values
and, upon a match, identify themselves as the largest responder by
interrupting the memory controller. Note that the first situation is just
a special case of the second, and thus can be detected in the same way.
As soon as one of these situations is recognized, the controller reads
the responder's value from the default detection bus. Unfortunately,
there is virtually no communication between the bit cells of a word in
Ramamoorthy et al. 's design to allow the detection of these situations.

There is yet another possible improvement. In Ramamoorthy et
al. 's design, if n responders are to be retrieved, the same retrieval pro
cess has to repeat n times, since after a word is eliminated from the
selection process, it forgets all history of the selection process it has
gone through. Therefore, every retrieval has to start from the same
initial state. However, it can be observed that responders dropped out
in an early stage of the selection process have a smaller value than
those dropped out in a later stage. Specifically, the responders dropped
out in the /h minor cycle are larger than those dropped out in the
(j _1)lh cycle. Therefore, after the largest responder is retrieved in the
/h (1 <j ~ w) minor cycle, only those dropped out in the (j _1)lh
minor cycle are re-activated, with their states at which they were
dropped out re-installed. The selection process then continues with this
smaller set of responders, from a state at which these responders were
dropped out (rather than starting from the initial state). In this case,
every responder is required to retain its state when it is dropped out

Text Retrieval Machines 373

until it is re-activated.

Figure 13 shows the organization of memory cells in the improved
design. For clarity, the clock signal connected to each cell is not
shown.

F

Figure 13: Organization of the memory cells

Every cell is connected to three busses, namely, an enable bus, E;,
a default detection bus, Dj , and an interrupt bus, 1;. One enable bus and
one interrupt bus are dedicated to each word, and each bit slice has its
own default detection bus. Therefore, there are a total of n enable
busses, n interrupt busses, and w default detection busses.

A bus signal is the result of the wired-AND of the corresponding
signals of the bit cells connecting to the bus. The enable bus signal
indicates that the words with E; set to one are in the responder set, and
thus can continue in the selection process. The default-detection bus
has the same functions as that of Ramamoorthy et al.'s design, except
that it also serves as the data bus for the memory controller to read a

374 Office Automation

responder from the memory. A memory word interrupts the memory
controller, through the interrupt bus, when it knows it is the largest
responder in the active responder set. When an interrupt occurs, the
(negated) value of the responder is already on the default-detection
bus, and thus can be read by the memory controller.

The cells of a word are connected by a serial contra/line, Cj. Ini
tially, all Ci,/s are set to one. When the retrieval operation starts, the
first column of the control signals, Ci ['s, is reset to zero by the con
troller (details not shown in the diagrams), and then propagates
through the bit slices. When the control signal reaches a cell, the cell
compares its stored bit value with the value on the default detection
bus. A match in a bit cell indicates that the slice is either in a default
state or in a compete state, but the cell contains a one. Thus, the cell
can pass the control signal to the right. A mismatch in a cell indicates
that the slice is in a compete state and that the cell has failed in the
competition. The cell then enters an inactive state, in which it disables
its residing word by pulling down the enable bus, but continues moni
toring the default detection bus until a match is found. As more and
more responders are disabled and removed from the default detection
bus, eventually one of the responders will find a match in all its consti
tuent cells. This responder will then interrupt the controller, and sub
sequently disable itself permanently after being read.

After the largest responder is retrieved, the default detection bus
values may change, so that a slice previously in a default state transits
to a default state. Thus, the responders disabled when that slice was
processed may now be re-activated. The selection process then contin
ues with these reactivated responders (rather than all disabled
responders) to determine the second largest responder.

To retrieve the first largest responder, the MRR has a speed of 1
clock cycle in the best case, w cycles in the worst case, and 0 (tog2n)
cycles on the average, where n is the total number of responders.

5. Conclusion
In this paper, we discussed various aspects of the design of a text

retrieval machine based on superimposed coding. We emphasized
superimposed coding as an indexing technique, because a considerable
amount of research has been devoted to it[Robe79, ThTa82, ChFa84]
and it has shown that it is very suitable for text retrieval.

After briefly surveying various software approaches to text
retrieval, three major components, namely, the signature processor, the
text processor, and the multiple response resolver of a TRM were dis
cussed. We first surveyed existing designs for signature processors,

Text Retrieval Machines 375

then described a new design based on a WPBS organization and com
pared it with a WSBP design proposed by Ahuja and Roberts 1980.
Text processors, originally proposed for full text scanning, were
categorized and discussed. Then, ALTEP, a new design with significant
improvement on speed as well as pattern matching capability, was out
lined. Finally, designs of a multiple response resolver (MRR) , an
important but often ignored component of associative memories and
processors, were discussed. An improved design over existing ones was
also presented.

6. References
[AhRo80] [ArGi8l] [BeKu79] [BiNT78] [Burk82] [ChFa84] [Chi 82]
[EpHa80] [FiLo77] [FoKu80] [FrGo6l] [Grav78] [HaHo83] [Harr7l]
[Hask80] [HoIl79] [HoIl83] [HoUl79] [Hsia80] [KeDe83] [Land77]
[Lee84] [Lewi62] [Loch8l] [Love77] [Lowe82] [Mall 80] [MeBo76]
[Mukh79] [Mukh80] [RaTW78] [Robe78] [Robe79] [Salt7l] [ScOS76]
[Shaw80] [Song80] [ThTa82]

Epilogue

15
Objectworld

D. Tsichritzis

ABSTRACT An environment is outlined in which programming
objects collect and disseminate information, using analogies
from the animal world. Objects have their own rules of
behaviour. They coordinate their activities by participating in
events. Objects get -born, move around, communicate and
receive information and, finally, die.

1. Introduction
The purpose of Office Information Systems is hard to define.

Offices usually deal with everything which has any significance in an
organization. It is easier to define what offices are not. They are not
plants producing goods. Any other centre of activity can potentially be
called an office. We can also generally accept that offices deal with
information. Information is a resource for the organization like money,
personnel, etc. It is critical for decision support within the organiza
tion. Like other resources, information has to be mobilized in order to
achieve certain results, e.g., arriving at a proper decision. We can,
therefore, assume that one of the primary goals of offices is the mobili
zation of information. That is, to concentrate the "right" information at
the "right" time at the "right" place, in order to help office workers in
their functions. There are two aspects of mobilization, give and take.
It follows that, in order to mobilize information, offices should be able
to collect and disseminate information effectively. Office Information
Systems should therefore provide the appropriate tools for collecting
and disseminating information. In this paper we mainly discuss the
concepts which, in our opinion, are needed for the implementation of

380 Office Automation

such tools.

One way of viewing the information present in an organization is
as part of a global Knowledge Base from which office workers draw the
proper subset when they need it. It is implied that when office workers
have relevant information they voluntarily introduce it into the
Knowledge Base. In this way the Knowledge Base is kept current and it
accurately reflects the cummulative knowledge of all the people using it.
Such a model of the world is very appropriate when we deal with a rela
tively closed domain of discourse. It is also helpful if people accessing
the Knowledge Base usually draw rather than add information. For
example, an expert can create a Knowledge Base by distilling his exper
tise into facts, data and rules, and encoding it into a Knowledge Base.
From then on other experts can draw on this knowledge, occasionally
adding to it. We claim that this situation is far removed from what
happens in most offices.

There are several difficulties to viewing information in an office
environment as being part of one logically integrated Knowledge Base.
First, the domain of discourse is not adequately focused, hence it will
be difficult to view all knowledge in an Office System within a general
and consistent framework. Second, Office Systems are distributed. It
will be too much to expect that all persons will voluntarily place their
knowledge in one system. Third, the knowledge in the office is con
tinuously updated in a distributed fashion. There is a significant danger
that the centralized, integrated Knowledge Base is not kept current of
the latest activities and its usefulness will greatly diminish. It is a com
mon practice, for instance, for people to keep their own databases on
their personal machines without voluntarily notifying a central database
about all their latest changes. Fourth, knowledge in the office is not
monolithic. There are many inconsistencies among the Knowledge
Bases of different persons, departments, etc. These inconsistencies are
not unwelcome since they represent different opinions on common sub
jects. To integrate all these opinions in one Knowledge Base will be
rather difficult. Many contexts will have to be defined which will create
problems for inference. It is better to leave them in independent
Knowledge Bases and collect them only when there is a need for con
census. If, however, we view the Knowledge Base as consisting of a set
of independent yet cooperating Knowledge Bases then there is a need
for tools for such cooperation. Probably the most important tool is a
knowledge collector and disseminator, that is, an object that goes into
different Knowledge Bases and obtains and leaves information on a
specific topic. This knowledge carrier is fairly independent and able to
have an existence of its own. We need, therefore, to view it as an
object in an object-oriented environment with its own data, rules and
behaviour.

Objectworld 381

We will define a KNOwledge collection and dissemination object
(in short kno, pronounced no) as an object whose main purpose is to
carry information around.

As an object, a kno consists of:

id: an identifier identifying it uniquely systemwide

ri: rules, each rule consisting of preconditions and actions

Vi: variables providing storage and data structures for the object.

We do not elaborate on the exact definition of kno's as objects.
We can assume without loss of generality that it follows the Oz
definitions given in the companion paper by O.M. Nierstrasz, or any
other reasonable definition of objects [ABBH84]. Kno's as objects have
acquaintances, i.e., other objects with which they are supposed to coor
dinate their behaviour. They participate in events. When an event
occurs all participating objects execute their corresponding rules and
change state.

We will now elaborate on how such objects can help achieve the
primary goal of Office Information Systems, i.e., the mobilization of
information through collection and dissemination. In the scenario we
will use analogies from the animal world. We hope to illustrate the
points better and more easily in this manner. The reader is, therefore,
advised to visualize kno's as funny animals (figure 1) in a funny ima
ginary world (for example, the world of OZ). Worms as in [Brun75,
ShHu82] are such animals and we will see that there are others.

2. Kno Environment
Like animals, kno's have to live in a certain environment created

by computers, telecommunications and their software systems. To
begin, we need a notion of god. In conventional systems god
corresponds to the end user. All actions emanate from him and he
absolutely controls his environment. This is not the case in the world
of kno's. In order to achieve any degree of automation we prefer that
kno's are freed from the bondage of the users. In this way, users are
not bothered with detailed control of kno's (being god creates over
head). As far as kno's are concerned the object manager is god (figure
2). It controls their actions according to their scripts. In a distributed
environment there are many object managers. As in Olympian times
having many gods creates trouble. We will assume that a kno is within
only one god's jurisdiction at any point in time. Problems between
gods are handled by a superior god, i.e., we propose a hierarchy of
object managers.

382 Office Automation

Figure 1: A Kno

The reader may argue that object managers are not gods because
people (system programmers) can go around changing them. We have
to accept that situation. System programmers are high priests who
define god and interpret its actions. However, as far as the kno's are
concerned there is only one god, the object manager to which they
currently belong.

We will assume that for each user there is a special anthropo
morphic kno. It is not god, but it has special capabilities. This user
kno (see example in O.M. Nierstrasz's paper) is capable of independent
and unpredictable behaviour. It is capable of inspiration. Users interact
with other kno's by changing their own special kno using 110 rules.

Kno's interact with other kno's which happen to be their acquain
tances and are within the same object manager. In addition, kno's pass

Objectworld 383

Figure 2: A kno environment and its object manager

from one object manager to another at their own request. Such a
request is triggered by events and can be initiated by users through
their special kno's.

Kno's, like animals can be alive or dead. An alive kno is one
which can potentially participate in events. A dead kno cannot partici
pate in events and the object manager does not worry about it. Alive
kno's are active when they participate in an event. Most of the time
they are asleep waiting for an event. During that time the object
manager worries about the event's preconditions and wakes up all the
appropriate kno's when the event occurs.

Kno's are born by having the object manager blow life into them.
They have to have a proper body which can be created from data struc
tures copied from other kno's. More than one kno can be involved in
creating a new kno through a coordination event. We depart here
slightly from the animal world by allowing one, two, or more parents
for the newborn kno (figure 3). The usual case is for kno's to die and
be resurrected intact, or to clone themselves by producing another simi
lar kno.

Kno's die by committing suicide. They participate in an event
which makes them go to their terminating condition. They immediately

384 Office Automation

Figure 3: Kno's mating to give life to a new kno

become permanently inactive. Since the killing event can be triggered
by another kno we can say that kno's can get killed, or more accurately
they can be induced to commit suicide. However, it is important to
note that a kno gets killed only because it has an a priori weakness, a
tendency to die. It is also killed by an acquaintance which triggers the
event, not by any old kno. Kno's can also die from malnutrition, age
and natural disasters. Malnutrition corresponds to the absence of
events. Kno's can be programmed to become totally inactive (dead) if
there are no events in which they participate over a long time. Age
corresponds to timer intervals after which the object becomes inactive.
Finally, a natural disaster implies that the system and the object
manager go beserk and wipe out a kno population. All kno's die
because god (the object manager) declares them dead and takes their
souls. Any kno can ask to die, but the object manager is the one who
decides when.

It is tempting in an object world to avoid the distinction between
alive and dead objects. We could treat all objects as sleeping or active
but never dead. The implication is that a memory manager underneath
deals with their needs. We claim that the issue is more than addressing
space. If all objects are alive the object managers will have to worry

Objectworld 385

about them. This will create overhead which may limit the number of
objects which we can effectively have. We believe that, especially in
office systems, many objects, e.g., letters and memos have a definite
lifespan. After a certain time they are literally dead and we should not
be bothered with them. Their information content may still be needed
but they are inactive until further notice.

Dead kno's are very important because they include the facts
which they had when they were alive. We will assume that there are
cemeteries of dead kno's, which are called databases. If we assume that
any input into the system involves a transaction which creates an
object, this is a reasonable analogy. Cemeteries of dead kno's, very
much like databases, are nicely arranged so that we can stack dead
kno's very effectively. For instance, kno's of the same kno class are
stripped of their rules when they get buried. The class stores the rules
only once. After all, we only need to find dead kno's; we do not need
to keep all their acquaintance relationships for firing events. Since
everything in the system is an alive or dead kno we can stretch things a
little and look at databases not only as cemeteries but as mother earth.
All kno's end up as part of mother earth and most of them emanate
from mother earth.

3. Kno Behaviour
Kno's like animals move, eat, produce and mate. Before we can

explain such behaviour, we need to elaborate more on the nature of
kno's. We have already indicated that a kno at any point in time is
under the juristiction of one object manager. This does not necessarily
imply that a kno cannot span more than one object manager. The limi
tation is that all its parts are ultimately controlled by one object
manager. We can think of kno's as having a brain (the master object)
and legs (copies of the object). The legs can be with separate object
managers, possibly different from the brain's object manager. How
ever, the brain is only in one object manager at any point in time. This
type of kno resembles the imessages as they appear in J. Hogg's com
panion paper. A distributed imessage can have many copies but only
one master copy. The coordination among the copies is achieved
through metamessages between the object managers. A kno can gen
erate legs at will. It can also lose some of its legs without any serious
problem. It only becomes inactive if the brain is killed. We also make
the restriction that legs cannot generate other legs. Only the brain can
generate legs. We can visualize such a kno as an octopus with an
unlimited number of legs (figure 4). The legs can be generated or cut
off dynamically. We do not allow animals whose legs can be cloned to
generate many more legs (the metamessage overhead would probably

386 Office Automation

get very large).

Figure 4: A complex kno

We are ready now to discuss how kno's move. The simplest way
they move is by hopping around (figure 5). Consider, for example, a
simple kno with one copy (brain, legs and all). The kno can move
from object manager to object manager at its request by doing a hop.
No trace is left in the previous object manager and the kno is taken
over by the next object manager. The kno's complete body moves as a
message between them. Such hopping can be predefined, dynamic, or
random. In the predefined case the kno's script has the exact series of
locations that a kno has to pass through. In the dynamic case the
environment of the object manager in each hop determines the subse
quent destination (s). For example, imessages in J. Hogg's paper could
be routed dynamically. Finally, in the random case the kno's follow-up
destination (s) is determined at random or according to a probability dis
tribution. This case is not as funny as it seems. It can be useful for
sampling information in an office environment. A randomly moving
kno can also do other useful things like cleaning, reducing populations,
etc. This may remind the reader of a commercial swimming pool clean
ing device, which is thrown into a pool and moves around randomly
eating up dirt. The result is that the swimming pool is continuously

being cleaned.
Objectworld 387

Figure 5: Kno's hopping around

Hopping around can also be visualized for complex kno's. In
their case, the legs and/or brain can hop around independently. This
type of movement can get very confusing (and it will probably generate
much overhead since the brain has to know where the legs are). It is,
therefore, better to move the legs and the brain in a much more organ
ized way. A simple solution is to keep the brain static and to move
only the legs. This is again the case of the centralized imessages in J.
Hogg's companion paper. However, when "distances" between the legs
and brain become large there is difficulty in providing the necessary
coordination between them. We need, therefore, to move the brain.
The safest operation is to move the brain to where a leg has already
been. In this case the kno has already tried the environment by ven
turing a leg (which is, after all, dispensable and can grow back). When
the leg becomes secure, control can pass over to the leg object, making
it the brain. In this way, the kno can crawl all over by venturing out
with legs then moving its brain then again venturing out, etc. The
order and the rhythm with which the legs and brain move give us many
kinds of kno's. For instance, a worm type kno has a sequence of legs
with the brain somewhere in the middle (figure 6). It moves forward

388 Office Automation

by moving a leg up front, then moving the rest of its legs and its brain,
in sequence. The size (number of legs) of the worm and the position
of the brain give us many types of worms.

Figure 6: A worm-like kno

A spider type of kno has many legs moving independently. The
decision about when to move the brain can become complicated,
depending on where the legs are and how securely they are fastened
(figure 7). We hope that the reader is persuaded that kno's can move
around in many complicated ways. One important aspect, therefore, of
their definition is their way of moving. Like animals, kno's can be
categorized by the way they move.

Another important aspect of kno behaviour is the way in which
they eat and produce. We visualize information as the food that kno's
eat and also as what they can produce. This information can be both
data and rules. Kno's can obtain (eat) information from mother earth
(databases) and from other kno's. Since information can be copied,
food is not strictly consumable (here is a case of eating your cake and
having it too!). Kno's can also produce information which they have
assembled during their lifespan while visiting places. Like animals
kno's do not eat indiscriminately nor do they produce indiscriminately.
They have rules which regulate what they eat, how they will digest it
and how they will combine the information they eat in their product.
We will call these rules eating, digestion and producing rules. Eating
rules are filters, like database queries, which specify what kind of

Objectworld 389

Figure 7: A spider-like kno

information a kno wants to get. Digestion rules take account of what
the kno knows in its own variables to break down the information into
what it keeps and what it discards. Producing rules indicate how a kno
transforms the information into a form ready to be given out. For
example, a kno (like an imessage) can ask questions and obtain answers
(it eats answers). It then can discard some answers (digestion rules).
It keeps and produces only statistics about the answers (producing
rules). Such a kno can be sent out on a random walk to poll people's
opinions on a subject. Like a cow, what a kno eats (grass) can be very
different in format from what it produces (milk). The digestion rules
can be arbitrarily complicated (data translation and text manipulation
techniques apply here).

Finally, kno's mate (figure 8). Mating corresponds to coordina
tion among objects as acquaintances to fire events and execute their
rules together. Mating is under the strict supervision and initiation of
the object manager. The case of complex kno's with many legs is
interesting. In this case, the coordination can be among legs and/or
among brains. It is reasonable to expect that complex objects will first
coordinate among their legs and then move to coordinate among their
brains. In this way, they can withdraw from the courtship by cutting a

390 Office Automation

leg (no big loss) while preserving the purity of their brains. Complex
objects can participate in many coordination activities through their legs
(even concurrently), before they decide on the proper coordination for
their brain.

Figure 8: Kno's mating through a coordination event

As a result of coordination, two kno's can start moving together.
This mating-turned-into-marriage allows kno's to coordinate moves and
actions over the long term. We hope that the reader is persuaded that
there are many ways for kno's to mate depending on courtship patterns,
mating behaviour and after-the-fact behaviour. It should also be
apparent that some very weird kno's can be defined. In the next sec
tion, however, we will concentrate on some well behaved species.

4. Kno Species
It will take a very long time to sort out useful from useless or

even harmful kno's. We do not expect end users to be able to create
nice kno's easily. We would expect that kno's are predefined by
experts, and are mainly taken over and used by end-users. Giving peo
ple in the office object-oriented programming environments may create
more problems than it solves. What people in offices need is useful
objects. In the rest of this section we will outline some examples of
what we consider to be useful objects. Most of these objects can be

Objectworld 391

readily defined within an object-oriented programming environment.

A useful type of kno is a carrier kno (horse, camel). A carrier
kno moves around on a prespecified, or dynamic path. It has storage in
its variables to store one or more records, documents, etc. It takes
information and moves it around intact, without complex digestion and
producing rules. Carrier kno's can be used not only to transmit infor
mation, e.g., messages, but also to request information. A request is
indicated by sending out an empty carrier kno which waits patiently,
obtains its load and brings it back to the sender.

~~~ ~~ ~~ 
C7C7C7C7C7C7C7C7C7C7 

Figure 9: A herbivore kno feeding from Mother Earth 

Another type of useful kno is a herbivore kno (figure 9). Its pur
pose is to peruse databases and obtain and reduce information from 
them. It can have arbitrarily complex eating, digestion and producing 
rules. It can either be static or it can move around. We can keep a 
herbivore static and feed it data continuously. Alternatively, we can 
have a free roaming herbivore that is sent out to feed on data and 
reduce information from it. A kno can also copy information from 
another kno which it meets through a coordination event. An interest
ing case is a parasite kno which continuously follows another kno, draw
ing information from it (Figure 10). 

Another useful type of kno is a hunter kno (figure 11). A hunter 
kno moves around and assembles other kno's that may have gone 
astray, e.g., randomly-moving kno's. The hunter kno coordinates with 
each hunted kno, taking over their path specification and bringing it 
back to a particular place. In this way we can send out kno's not caring 
where they go and later on we can collect them. The hunter kno can 
move on a prespecified path, dynamically, or randomly. It can collect 
all or a fixed number of hunted kno's. 



392 Office Automation 

Figure 10: A parasite kno 

Another useful kno is the killer kno. Its purpose is population 
control. It kills certain types of kno's by inducing their suicide when it 
coordinates with them within a particular object manager. Killer kno's 
only kill certain types of kno's, and only when they catch them. Killer 
kno's allow us to issue kno's which never die from old age. At some 
later time we may decide to kill all or some of these kno's, or thin 
them out by sending out killer kno's. The killer kno's can themselves 
be killed or can die. For instance, they can be programmed to die after 
a certain time (old age), or if they cannot find kno's to kill (malnutri
tion). Killer kno's can be simple killers or predators. In the first case 
they kill and move on. In the second case they feed on the victims by 
retaining certain information (figure 12). For example, a predator may 
retain how many, or the id's of the kno's it has killed, for future refer
ence. 



Object world 393 

Figure 11: A hunter kno collecting other kno's 

Figure 12: A predator kno eating up another kno 



394 Office Automation 

This description may sound like a jungle book. It certainly resem
bles it. It is a tough world out there for the kno's. It has to be, or they 
will overburden the systems. We also expect that user's workstations 
will be farms where only nice, well behaved, kno's are allowed to exist. 
Crazy kno's may be defined and turned loose on the networks but users 
can strictly control the kno's coming into their farms. They can keep 
out harmful kno's. This can be done by issuing guardian kno's which 
kill all unwelcome kno's on sight. The object manager can also change 
an incoming kno's behaviour by altering its rules before it takes over 
the kno. In this way even a weird or ferocious kno can be killed or 
made docile just before it enters a nice farm of friendly kno's. 

Kno farms will be either like family farms or like big commercial 
farms. The first case is a user workstation where the user has many 
different useful kno's for local use. A commercial farm corresponds to 
a large application system where a large population of kno's are bred, 
fed and sold. A user can get a newborn kno for his farm (predefined 
object) from a commercial place. He can also get a ready-to-consume 
kno (database query or other transaction) from a commercial place. 

5. Kno Intelligence 
In our discussion so far, we have had objects being born, dying, 

mating, killing, etc. All of these actions were according to the fixed 
predefined rules of the objects. Objects could change behaviour, but 
they always had to conform to their scripts. This brings out an impor
tant issue, i.e., can objects change their scripts? A kno whose rules can 
change dynamically is a superior kno capable of "learning". We will dis
cuss in this section such a notion of "learning" and its different manifes
tations. 

A simple way for a kno to change behaviour is through its 
offspring. The kno gives birth to a new kno with new rules. The 
parent kno may instantly die which means that the new kno takes its 
place. This situation is not exactly self "learning". However, it can be 
fairly powerful. The limitation is that the new kno will have a different 
id, hence it will not inherit all its parents history and actions. We can 
anticipate, however, a kno gathering rules in its history, and encoding 
them as data. It then gives rise to a new "smarter" kno by using the 
rules (experience) it has accumulated. 

A second way for kno's to change behaviour is through their 
acquaintances. We do not allow a kno to change its own rules, but we 
allow a kno to export some rules to an acquaintance kno. Since users 
are represented by special kno's this capability allows users to indirectly 
change rules in kno's. It allows transfer of "intelligence" between 



Objectworld 395 

kno's. The users can also inspire kno's to actions different from those 
with which they have been programmed. Notice, however, that apart 
from this user inspiration there are no new rules, no new form of 
"intelligence", no originality. 

A third way for kno's to change behaviour is by godly command, 
i.e., by the intervention of the object manager. So far, the object 
manager has only coordinated kno events. We could, however, visual
ize a more sophisticated object manager which fixes kno's, especially 
when they are overstepping their boundaries. This may sound arbitrary 
but it is less arbitrary than allowing an object manager, or a user to kill 
a difficult-to-deal-with kno. The object manager can enforce global 
constraints in a kno population by arbitrarily refusing to allow their 
events and actions. It is probably better to tame them by introducing 
special temporary rules while the objects are within its juristiction. The 
object manager's intervention is not restricted to negative actions. It 
can also introduce rules which are helpful to a kno. For example, it 
can provide local structures of data, endow kno's with access privileges, 
etc. Finally, the object manager can introduce rules to kno's uniformly 
or selectively. These additional rules may form the precondition for an 
object manager to take over an incoming kno. 

The fourth way and probably the most intriguing is to allow for 
kno's to change behaviour by changing their own rules. Since rules are 
encoded as programs, there is no magic in that; it is simply programs 
changing other programs. This capability is very powerful, but it is also 
extremely dangerous. A self-changing kno can do many tricky things. 
It can masquerade as a benevolent kno while being a malicious kno. It 
can go absolutely crazy, so that we need to burn the forest and bring 
the system down to get it under control. It provides, however, the 
most intriguing examples of kno species. For instance, we can visualize 
a kno with no fixed rules a priori. It goes around borrowing rules from 
allover the place. It can grow up into almost anything, including a kno 
which nobody has ever thought of before. As much as we are intrigued 
by such potential, we will probably be better off without this capability. 
Not only because it will be hard to implement, but because it will prob
ably be too dangerous to have around. 

Finally, a philosophical note on kno intelligence. Most work on 
Knowledge Bases and Expert Systems concentrates on inference from a 
large set of facts, data and rules. This is similar to a guru in the 
Himalayan Mountains providing deep reasoning on a large but fixed 
amount of knowledge. Kno's do not provide exactly such intelligence. 
They do not know too much. Neither do they have complicated infer
ence; but they can travel. They can travel far and wide collecting and 
giving information. Their intelligence is like Sinbad the sailor's. It 
comes not from reasoning and inference but from experience through 
travels. We feel that such intelligence is very useful, especially in an 



396 Office Automation 

office environment. We leave the deep reasoning to humans, so long 
as kno's can gather the appropriate knowledge. To end with a pun: kno 
intelligence is a form of intelligence. 

6. Concluding Remarks 
A kno environment is not very difficult to prototype but it will be 

hard to implement well. Some of the issues have already been dis
cussed in the companion papers, "Object Oriented Systems" (O.M. Nier
strasz) and "Intelligent Mail Systems" (J. Hogg). 

Simple kno's within one object manager are straightforward 
objects, e.g., OZ objects. We need, however, to expand their capabili
ties in many significant ways. First, they should be able to issue 
queries on a database and deal with the replies. Some of the problems 
of tying programming variables to databases have already been dealt 
with in other systems, e.g., PASCAL R [Schm77]. The same approach 
can be followed. Second, we need to expand their rules to manipulate 
the data they receive (digestion and producing rules). We will inevit
ably have to deal with data translation and text manipulation issues for 
reformatting the information [Klug78, AhKW78J. Third, we need to 
have a birth capability. Most object-oriented systems deal with new 
objects as instances of a well-known class from which they inherit their 
rules. To define an arbitrary object or a new class, the user reverts to a 
complex programming language. We need to provide tools for the 
definition of new objects. We also need to allow objects to issue a 
request to the object manager for the creation of a new object. This 
problem is similar to spawning processes in an Operating System. The 
main difference is that the new object does not inherit resources from 
its parent, nor is it tied up for life to its parent. Processes in Operating 
Systems are strictly structured. Objects float around in the system in an 
independent fashion. They certainly do not obey their parents, nor do 
their parents care about them. Objects only inherit properties from 
their parents. 

Killer and hunter objects do not present many problems. Killing 
is easily done through a coordinating event that fires the victim's rule 
leading it to termination. For hunter objects we need to develop the 
notion of a leader object in a group. The implication is that the group 
moves together to the place where the leader object points. The leader 
object has the precondition in its rule of deciding where to move. The 
rest of the group has rules without preconditions which coordinate with 
the leader object. All this can be done easily if we allow the splicing of 
a rule in an object by a "superior" object. Such capability is also needed 
for exporting rules as was discussed in the kno intelligence section. 
Care should be taken, however, in exporting rules so that we do not 



Objectworld 397 

end up with conflicting rules. We will have to assume that in the case 
of a discrepancy either the new or the old rules take precedence. 

Complex objects present many more problems. We need to 
establish communication between object managers. Since the object 
managers are fairly independent and sometimes live incommunicado, 
we may have problems. We need to accept that the legs of the complex 
kno's can live for quite some time without proper direction from the 
brain. If they are fairly independent and start moving around we may 
end up with the brain losing track of its own legs! One solution is to 
restrict the legs to be fairly unsophisticated, e.g., they stay put unless 
they are told by the brain to move. Another solution is to allow com
plex kno's to disintegrate and lose their limbs. Finally, we can force 
object managers to cooperate by supervising their actions through other 
object managers. There is a complex trade-off here which is influenced 
by the properties of the communication network connecting the object 
managers. Clearly, in an environment of many personal computers 
occasionally talking to each other we can not expect their object 
managers to cooperate fully and continuously. On the other hand, 
perhaps this is not the proper environment for the survival of complex 
kno's. 

When complex kno's move around we may need to pass control 
from the brain to one of the legs. This is different from doing a hop
ping operation of the brain. We feel that such change of control is 
smoother and more useful. It brings us back to the notion of a pack of 
objects with a clear leader. In this case the pack is distributed in 
different object managers and the leadership may change. We can 
encode leadership by placing a token among the set of grouped objects 
which can move around. Notice that a group of objects is different 
than a set of coordinating objects. Coordination is only temporary, 
while grouping is longer-range. We still have the problem of coopera
tion between different object managers. This problem looks similar to 
cooperation for firing events in a distributed fashion, which we do not 
allow. It has, however, the important difference that coordination 
allows interference and competition between objects for firing events. 
Grouping does not allow objects to be in different and conflicting 
groups. The cooperation between object managers to keep the group 
together is therefore minimal. 

Finally, if people are going to use kno's we need a nice user 
model. Our discussion can hopefully point to such a user model. We 
can illustrate kno behaviour with animation to explain their properties 
to users. Figures 1 to 12 are sketches which can be useful for visualiz
ing kno's. The reader is asked to use his imagination to fantasize how 
all this kno behaviour will look in animation. Computers are used for 
animation. Kno animation can be useful for documentation of object
oriented systems for user interfaces and for tracing kno movements. 



398 Office Automation 

In conclusion, we should ask ourselves what the difference is 
between kno's and known concepts in Computer Science, such as 
objects, abstract data types, processes, actors, etc. Theoretically there is 
not much difference. In practice there are two important differences in 
emphasis. First, kno's are great in number, relatively stupid, and travel 
around. Second, kno's are not supposed to be a programming 
language. They are a user's tool, like spreadsheets or Query-By
Example. Everything we can do with kno's can be done in a program
ming environment. This is immaterial. Everything we can do with 
spreadsheets can be done within a programming language. Try, though, 
to substitute for a user MULTIPLAN or Lotus 1-2-3 with FORTRAN. 

7 . References 
[ABBH84] [AhKW78] [Brun75] [Klug78] [Schm77] [ShHu82] 



References 

[ABBH84] M. Ahlsen, A Bjornerstedt, S. Britts, C. Hulten and L. 
Soderlund, "An Architecture for Object Management in 
OIS", ACM Transactions on Office Information Systems, 
2(3), pp. 173-196, July 1984. 

[Abri74] J.R. Abrial, "Data Semantics", in Data Base Management, 
ed. J.W. Klimbi and K.L. Koifeman, North-Holland, 
Amsterdam, 1974. 

[ACM80] ACM, Proceedings of the Workshop on Data Abstraction, 
Databases and Conceptual Modelling, ed. M. Brodie and S. 
Zilles, June 1980. 

[AdNg84] M. Adiba and G. Nguyen, "Information Processing for 
CAD/VLSI on a Generalized Data Management System", 
Proceedings of the Tenth International Conference on Very 
Large Data Bases, Singapore, August 1984. 

[AhC075] AV. Aho and M.J. Corasick, "Fast Pattern Matching: An 
Aid to Bibliographic Search", Communications of the A CM, 
18(6), pp. 333-340, June 1975. 

[AhHU74] AV. Aho, J.E. Hopcroft and J.D. Ullman, The Design and 
Analysis of Computer Algorithms, Addison Wesley, 1974. 

[AhKW78] AV. Aho, B. Kernighan and P. Weinberger, "Awk - A 
Pattern Scanning and Processing Language", Report, Bell 
Telephone Laboratories, September 1978. 

[AhR080] S.R. Ahuja and C.S. Roberts, "An Associative/Parallel 
Processor for Partial Match Retrieval Using Superimposed 
Codes", Proceedings of the Seventh Annual Symposium on 
Computer Architecture, pp. 218-227, May 1980. 

[AhUl72] AV. Aho and J.D. Ullman, The Theory of Parsing, Trans
lation and Compiling, Prentice Hall, 1972. 

[AhUl79] AV. Aho and J.D. Ullman, "Optimal Partial Match 
Retrieval when Fields are Independently Specified", ACM 
TODS, 4(2), pp. 168-179, June 1979. 

[AlC083] A Albano, L. Cardelli and R. Orsini, Galileo: A Strongly 
Typed, Interactive, Conceptual Language, CSRG Technical 



400 Office Automation 

Note #30, University of Toronto, 1983. 

[AlOr83] A. Albano and R. Orsini, "Dialogo: An Interactive 
Environment for Conceptual Design in Galileo", in Metho
dology and Tools for Database Design, ed. S. Ceri, North
Holland, 1983. To appear. 

[Andr84] H.L. Andrews, "Speech Processing", IEEE Computer, pp. 
315-324, October 1984. 

[AnFW83] R.C. Angell, G.E. Freund and P. Willet, "Automatic Spel
ling Correction Using a Trigram Similarity Measure", 
Information Processing and Management, 19(4), pp. 255-
261, 1983. 

[ArGi81] B.W. Arden and R. Ginosar, "A Single-Relation Module 
for a Database Machine", Proceedings of the Eighth Annual 
Symposium on Computer Architecture, pp. 227-237, May 
1981. 

[Astr76] M.M. Astrahan, et al., "System R: Relational Approach to 
Database Management", ACM TODS, 1(2), pp. 97-137, 
June 1976. 

[AtBS79] G. Attardi, G. Barber and M. Simi, "Towards an 
Integrated Office Work Station", AI Laboratory, MIT, 
Cambridge, 1979. 

[BaBr82] D. Ballard and C. Brown, Computer Vision, Prentice Hall, 
1982. 

[BaMc72] R. Bayer and E. McCreight, "Organization and Mainte
nance of Large Ordered Indexes", Acta Informatica, 1 (3), 
pp. 173-189, 1972. 

[BAMT84] IF. Bucy, W.W. Anderson, M.L. McMahan, R.T. Tarrant 
and H.R. Tennant, "Ease of Use Features in the Texas 
Instruments Professional Computer", Proceedings of the 
IEEE, Special Issue on Personal Computers, 72(3), March 
1984. 

[BeGo82] P.A. Bernstein and N. Goodman, "A Sophisticate's Intro
duction to Distributed Concurrency Control", Proceedings 
of the Eighth International Conference on Very Large Data 
Bases, pp. 62-76, 1982. 

[BeKu79] lL. Bentley and H.T. Kung, "A Tree Machine for Search
ing Problem", Proceedings of the International Conference on 
Parallel Processing, pp. 257-266, 1979. 

[Bent75] J.L. Bentley, "Multidimensional Binary Search Trees Used 
for Associative Searching", Communications of the ACM, 
18(9), pp. 509-517, September 1975. 



References 401 

[BFHL83] W.A.S. Buxton, E. Fiume, R. Hill, A. Lee and C. Woo, 
"Continuous Hand-Gesture Driven Input", Proceedings of 
Graphics Inter/ace '83, Edmonton, Alberta, May 1983. 

[BiNT78] R.M. Bird, lB. Newsbaum and J.L. Trefftzs, "Text File 
Inversion: An Evaluation", Proceedings of the Fourth 
Workshop on Computer Architecture for Non-Numeric Pro
cessing, pp. 42-50, August 1978. 

[BLNS82] A.D. Birrell, R. Levin, R.M. Needham and M.D. 
Schroeder, "Grapevine: An Exercise in Distributed Com
puting", Communications of the ACM, 25(4), pp. 260-274, 
April 1982. 

[Bloo70] RH. Bloom, "Space/Time Trade-offs in Hash Coding with 
Allowable Errors", Communications of the ACM, 13(7), pp. 
422-426, July 1970. 

[Bolt80] R.A. Bolt, '''Put-that-there': Voice and Gestures at the 
Graphics Interface", Proceedings Sigraph '80, 14(3), pp. 
262-270, July 1980. 

[BoMo77] R.S. Boyer and J.S. Moore, "A Fast String Searching Algo
rithm", Communications of the ACM, 20(0), pp. 762-772, 
October 1977. 

[BoMu76] J.A. Bondy and U.S.R. Murty, Graph Theory with Applica
tions, North Holland, New York, 1976. 

[Bour63] C.P. Bourne, Methods of Information Handling, Wiley, New 
York 1963. 

[BoWi77] D.G. Bobrow and T. Winograd, "An Overview of KRL, a 
Knowledge Representation Language", Cognitive Science, 
10), pp. 3-46, 1977. 

[Brod78] M.L. Brodie, Specification and Verification of Data Base 
Semantic Integrity, Ph.D. dissertation, Department of 
Computer Science, University of Toronto, 1978. 

[Brod80] M.L. Brodie, "Data Abstraction, Databases and Concep
tual Modelling", Proceedings of the Sixth International 
Conference on Very Large Data Bases, pp. 105-108, 1980. 

[Brod81] M.L. Brodie, "On Modelling Behavioural Semantics of 
Databases", Proceedings of the Seventh International Confer
ence on Very Large Data Bases, pp. 32-42, 1981. 

[Brot83] D.K. Brotz, "Message System Mores: Etiquette in Laurel", 
ACM Transactions on Office Information Systems, 1(2), pp. 
179-192, 1983. 

[BrPe83] G. Bracchi and B. Pernici, "SOS: A Conceptual Model for 
Office Information Systems", Proceedings of the ACM SIG
MOD Conference, pp. 108-116, 1983. 



402 Office Automation 

[BrPe84] G. Bracchi and B. Pemici, "Design Requirements of Office 
Systems", ACM Transactions on Office Information Systems, 
2(2), pp. 151-170, 1984. 

[Brun75] J. Brunner, The Shockwave rider, Ballantine, New York, 
1975. 

[BSdJ82] R.J. Byrd, S.E. Smith and P. deJong, "An Actor-Based 
Programming System", SIGOA Conference on Office Infor
mation Systems, SIGOA Newsletter, 3(1,2), 1982. 

[BuHR84] W.A.S. Buxton, R. Hill and P. Rowley, "Issues and Tech
niques in Touch-Sensitive Tablet Input", 1984. Working 
paper. 

[Burk82] F.J. Burkowski, "A Hardware Hashing Scheme in the 
Design of a Multiterm String Comparator", IEEE Transac
tions on Computers, C-31(9), pp. 825-834, September 
1982. 

[BuSn80] W.A.S. Buxton and R. Sniderman, "Iteration in the 
Design of the Human-Computer Interface", Proceedings of 
the Thirteenth Annual Meeting of the Human Factors Associ
ation of Canada, pp. 72-81, 1980. 

[Buxt83] W.A.S. Buxton, "Lexical and Pragmatic Considerations of 
Input Structures", Computer Graphics, 17(1), January 
1983. 

[BySD82] R. Byrd, S. Smith and P. de Jong, "An Actor-Based Pro
gramming System", Proceedings of the First ACM SIGOA 
Conference, pp. 67-78, 1982. 

[BYTE81l Special issue on "Small talk", Byte, 6 (8), August 1981. 

[Cann83] R.G. Canning, "Is VOICE in Your Future Systems?", EDP 
Analyzer, Canning Publications Inc., 21(8), August 1983. 

[CCIT83] CCITT/SG/VIII Working Party 4, "Document Interchange 
Protocol for Telematic Services", Third draft, October 
1983. 

[Chen76] P.P.S. Chen, "The Entity-Relationship Model: Toward a 
Unified View of Data", ACM TODS, 1(1), pp. 9-36, 
March 1976. 

[Cheu79] C. Cheung, OFS: A Distributed Office Form System with a 
Micro Relational System, M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1979. 

[ChFa84] S. Christodoulakis and C. Faloutsos, "Design Considera
tions for a Message File Server", IEEE Transactions on 
Software Engineering, SE-10(2), pp. 201-210, March 1984. 



References 403 

[Chi82) C.S. Chi, "Advances in Computer Mass Storage Technol
ogy", IEEE Computer, 15(5), pp. 60-74, May 1982. 

[Chri83) S. Christodoulakis, "Access Files for Batching Queries in 
Large Information Systems", Proceedings ICOD II, August 
1983. 

[Chri84a) S. Christodoulakis, "Implications of Certain Assumptions 
in Data Base Performance Evaluation", ACM TODS, June 
1984. 

[Chri84b) S. Christodoulakis, "Framework for the Development of a 
Mixed-Mode Message System", Proceedings of the ACM
BCS Symposium on Research and Development in Informa
tion Retrieval, Cambridge, England, 1984. 

[CODA 71) CODASYL, CODASYL Data Base Task Group Report, 
Conference on Data Systems Languages, 1971. 

[Codd70) E.F. Codd, "A Relational Model for Large Shared Data 
Banks", Communications of the ACM, 13(6), pp. 377-387, 
June 1970. 

[Codd71) E.F. Codd, "Further Normalization of the Database Rela
tional Model", in Database Systems, Courant Computer Sci
ence Symposia 6, ed. R. Rustin, Prentice-Hall, Englewood 
Cliffs, N.J., pp. 33-64, 1971. 

[Codd79) E.F. Codd, "Extending the Database Relational Model", 
ACM TODS, 4(4), pp. 397-434, December 1979. 

[Come79) D. Comer, "The Ubiquitous B-Tree", ACM Computing Sur
veys, 11 (2), pp. 121-137, June 1979. 

[Coop70) W.S. Cooper, "On Deriving Design Equations for Infor
mation Retrieval Systems", JASIS, November-December 
1970. 

[Coul76) G. Coulouris et al., "The Design and Implementation of 
an Interactive Document Editor", Software Practice and 
Experience, 6 (2), April 1976. 

[CrCZ83) J.B. Crampes, C. Chrisment and Y. Zurfluh, "The BIG 
Project", Proceedings of the Second International Conference 
on Databases, Cambridge, England, September 1983. 

[Crof83) W.B. Croft, "Applications of Information Retrieval Tech
niques for the Office", Proceedings of the Sixth ACM SIGIR 
Conference on Research and Development in Information 
Retrieval, pp. 18-23, 1983. 

[CVLL84) S. Christodoulakis, J. Vandenbroek, J. Li, T. Li, S. Wan, 
Y. Wang, M. Papa and E. Bertino, "Development of a 
Multimedia Information System for an Office Environ
ment", Proceedings of the Tenth International Conference on 



404 Office Automation 

Very Large Data Bases, Singapore, August 1984. 

[Datt79] R. Dattola, "FIRST: Flexible Information Retrieval Sys
tem for Text", JASIS, 30, pp. 9-14, January 1979. 

[deBy80] 

[deJo80] 

[deZl77] 

P. de Jong and R.J. Byrd, "Intelligent Forms Creation in 
the System for Business Automation", IBM Research 
Report, RC #8529, 1980. 

P. de Jong, "The System for Business Automation: A 
Unified Application Development System", Proceedings of 
IFIP Congress 80, pp. 469-474, Tokyo, 1980. 

P. de Jong and M. Zloof, "The System for Business Auto
mation (SBA): Programming Language", Communications 
of the ACM, 20(6), pp. 385-396, June 1977. 

[DKLM83] V. Domzeau-Gouge, G. Kahn, B. Lang, B. Melese and E. 
Marcos, "Outline of a Tool for Document Manipulation", 
Proceedings IFIP-83, General Conference, Paris, 1983. 

[DuHa73] R.O. Duda and P.E. Hart, Pattern Classification and Scene 
Analysis, Wiley, 1973. 

[EcLo83] P. Economopoulos and F.H. Lochovsky, "A System for 
Managing Image Data", Proceedings of the Ninth IFIP 
Congress, pp. 89-94, 1983. 

[ECMA83] ECMA, "Office Document Architecture", Fourth Working 
Draft, TC 29/83/56. 

[Econ82] P. Economopoulos, An Image Database Management Sys
tem, M.Sc. Thesis, Department of Computer Science, 
University of Toronto, 1982. 

[EGLT76] K.P. Eswaran, IN. Gray, R.A. Lorie and LL. Traiger, 
"The Notions of Consistency and Predicate Locks in a 
Database System", Communications of the A CM, 19 (11), 
November 1976. 

[EHLR80] L.D. Erman, F. Hays-Roth, V.R. Lesser and D.R. Reddy, 
"The Hearsay II Speech-Understanding System: Integrating 
Knowledge to Resolve Uncertainty", ACM Computing Sur
veys, 12(2), June 1980. 

[ElBe82] C. Ellis and M. Bernal, "OfficeTalk-D: An Experimental 
Office Information System", Proceedings First ACM SIGOA 
Conference, Philadelphia, pp. 131-140, June 1982. 

[Elec83] "Special Report on Voice Systems", Electronics, pp. 126-
143, April 1983. 

[ElNu80] C. Ellis and G. Nutt, "Computer Science and Office Infor
mation Systems", ACM Computing Surveys, 12(1), pp. 27-
60, March 1980. 



References 405 

[EpHa80] R. Epstein and P. Hawthorn, "Design Decisions for the 
Intelligent Database Machine", Proceedings of the National 
Computer Conference, 49, pp. 237-241, 1980. 

[FaCh84] C. Faloutsos and S. Christodoulakis, "Signature Files: An 
Access Method for Documents and its Analytical Perfor
mance Evaluation", ACM Transactions on Office Informa
tion Systems, 1984. To appear. 

[Falo82] C. Faloutsos, Extending a DBMS to Handle Text, M.Sc. 
Thesis, Department of Computer Science, University of 
Toronto, 1982. 

[Falo85] C. Faloutsos, "Signature Files: Design and Performance 
Comparison of some Signature Extraction Methods", 
ACM-SIGMOD, 1985. submitted for publication. 

[FeND81] S. Feiner, S. Nagy and A van Dam, "An Integrated Sys
tem for Creating and Presenting Complex Computer
Based Documents", Computer Graphics, 15 (3), August 
1981. 

[Ferr82] J.C. Ferrans, "SEDL - A Language for Specifying Integrity 
Constraints on Office Forms", Proceedings of the First ACM 
SIGOA Conference, pp. 123-130, 1982. 

[FiHu69] lR. Files and RD. Huskey, "An Information Retrieval 
System Based on Superimposed Coding", Proceedings 
AFIPS FlCC, 35, pp. 423-432, 1969. 

[Fike8I] R.E. Fikes, "Odyssey: A Knowledge-Based Personal Assis
tant", Artificial Intelligence, 16(3), pp. 331-361, July 1981. 

[FiLo77] C.A Finnila and H.H. Love, "The Associative Linear 
Array Processor", IEEE Transactions on Computers, C-
26(2), pp. 112-125, February 1977. 

[FlUl80] Floyd and Ullman, "The Compilation of Regular Expres
sions into Integrated Circuits", Proceedings of the Twenty
first Symposium on Foundations of Computer Science, 
October 1980. 

[FNPS79] R. Fagin, J. Nievergelt, N. Pippenger and H.R. Strong, 
"Extendible Hashing - A Fast Access Method for Dynamic 
Files", ACM TODS, 4(3), pp. 315-344, September 1979. 

[FoKu80] M.l Foster and H.T. Kung, "The Design of Special
Purpose VLSI Chips", IEEE Computer, 13 (I), pp. 26-40, 
January 1980. 

[Fong83] AC. Fong, "A Model for Automatic Form-Processing 
Procedures", Proceedings of the Sixteenth Annual Hawaii 
International Conference on System Sciences, pp. 558-565, 
1983. 



406 Office Automation 

[FoVa82] J.D. Foley and A. Van Dam, Fundamentals of Interactive 
Computer Graphics, The Systems Programming Series, 
Addison Wesley Publishing Company, 1982. 

[FoWC81] J.D. Foley, V.L. Wallace and P. Chan, "The Human Fac
tors of Graphic Interaction - Task and Techniques", The 
George Washington University Report GWU-IIST-81-3, 
January 1981. 

[Fox 84] E.A. Fox, "Extended Information Retrieval with Data and 
Text", PODS, 1984. submitted for publication 

[Fras80] C.W. Fraser, "A Generalized Text Editor", Communica
tions of the ACM, 23(3), pp. 154-158, March 1980. 

[Fras81] C. W. Fraser, "Syntax-Directed Editing of General Data 
Structures", Proceedings of the ACM Symposium on Text 
Manipulation, pp. 17-21, June 1981. 

[Free83] D.H. Freedman, "OCR Moves Into Office Automation", 
Mini-Micro Systems, pp. 211-219, May 1983. 

[FrG061] E.H. Frei and J. Goldberg, "A Method for Resolving Mul
tiple Responses in a Parallel Search File", IEEE Transac
tions on Computers, EC-I0(4), pp. 718-722, December 
1961. 

[Fuji 84] L. Fujitani, "Laser Optical Disk: The Coming Revolution 
in On-Line Storage", Communications of the ACM, 27(6), 
pp. 546-554, June 1984. 

[FuSS79] A.L. Furtado, K.c. Sevcik and C.S. Dos Santos, "Permit
ting Updates Through Views of Data Bases", Information 
Systems, 4, Pergamon Press Ltd., pp. 269-283, 1979. 

[FuSS82] Richard Furuta, Jeffrey Scofield and Alan Shaw, "Docu
ment Formatting Systems: Survey, Concepts and Issues", 
ACM Computing Surveys, 14(3), pp. 417-472, September 
1982. 

[GaKu81] J.J. Garcia-Luna-Aceves and F.F. Kuo, "Addressing and 
Directory Systems for Large Computer Mail Systems", 
Computer Message Systems, Proceedings of International 
Symposium on Computer Message Systems, IFIP TC-6, 
Ottawa, April 1981, ed. R.P. Uhlig, North Holland Pub
lishing Co, pp. 297-313, 1982. 

[GaVa75] R.G. Gallager and D.C. Van Voorhis, "Optimal Source 
Codes for Geometrically Distributed Integer Alphabets", 
IEEE Transactions on Information Theory, IT-21, pp. 228-
230, March 1975. 

[Geha82] N. Gehani, "The Potential of Forms in Office Automa
tion", IEEE Transactions on Communications, Com-30(1), 



References 407 

pp. 120-125, January 1982. 

[GeMS77] C.M. Geschke, J.H. Morris Jr. and E.H. Satterthwaite, 
"Early Experience with Mesa", Communications of the 
ACM, 20(8), pp. 540-553, August 1977. 

[Gibb79] S.J. Gibbs, OFS: An Office Form System for a Network 
Architecture, M.Sc. Thesis, Department of Computer Sci
ence, University of Toronto, 1979. 

[Gibb84] S.J. Gibbs, "An Object-Oriented Office Data Model", 
CSRG Technical Report 154, University of Toronto, 1984. 

[GIIT83] Graphical Input Interaction Technique Workshop Sum
mary, Computer Graphics, 17(1), January 1983. 

[GiTs83] S.J. Gibbs and D.C. Tsichritzis, "A Data Modelling 
Approach for Office Information Systems", ACM Transac
tions on Office Information Systems, 1(3), pp. 299-319, 
1983. 

[GoBo80a] I.P. Goldstein and D.G. Bobrow, "Descriptions for a Pro
gramming Environment", Proceedings of the First Annual 
Conference of the National Association for Artificial Intelli
gence, August 1980. 

[GoBo80b] I.P. Goldstein and D.G. Bobrow, "Extending Object
Oriented Programming in Smalltalk", Proceedings of the 
Lisp Conference, August 1980. 

[Gold84] A. Goldberg, Smalltalk 80: the Interactive Programming 
Environment, Addison-Wesley, 1984. 

[Golo66] S.W. Golomb, "Run Length Encodings", IEEE Transac
tions on Information Theory, IT-12, pp. 399-401, July 1966. 

[Gonn82] G.H. Gonnet, "Unstructured Data Bases", Technical 
Report CS-82-09, University of Waterloo, 1982. 

[Good81a] M. Good, "Etude and the Folklore of User Interface 
Design", Proceedings of the ACM SIGPLAN SIGOA Sympo
sium on Text Manipulation, Portland, Oregon, June 8-10, 
1981. 

[Good81b] M. Good, An Ease of Use Evaluation of an Integrated Editor 
and Formatter, M.Sc. thesis, Technical Report TR-266, 
MIT Laboratory for Computer Science, November 1981. 

[GoRo77] I.P. Goldstein and R.B. Roberts, "NUDGE, a Knowledge
Based Scheduling Program", Proceedings Fifth International 
Joint Conference on ArtifiCial Intelligence, pp. 257-263, 
1977. 

[GoRo83] A. Goldberg and D. Robson, Smalltalk 80: the Language 
and its Implementation, Addison-Wesley, May 1983. 



408 Office Automation 

[GoWi77] R. Gonzalez and P. Wintz, Digital Image Processing, 
Addison -Wesley, 1977. 

[Grav78] C.M. Gravina, "National Westminster Bank Mass Storage 
Archiving", IBM System Journal, 17(4), pp. 344-358, 1978. 

[Gray81] J. Gray, "The Transaction Concept: Virtues and Limita
tions", Proceedings of the Seventh International Conference 
on Very Large Data Bases, pp. 144-154, 1981. 

[GrMy83] S.J. Greenspan and J. Mylopoulos, "A Knowledge 
Representation Approach to Software Engineering: The 
Taxis Project", Proceedings of the Conference of the Cana
dian Information Processing Society, pp. 163-174, May 1983. 

[Guib82] L.J. Guibas and J. Stolfi, "A Language for Bitmap Mani
pulation", ACM Transactions Graphics, 1 (3), pp. 191-214, 
July 1982. 

[Gust71] R.A. Gustafson, "Elements of the Randomized Combina
torial File Structure", ACM SIGIR, Proceedings of the Sym
posium on Information Storage and Retrieval, pp. 163-174, 
April 1971. 

[GuSt82] A. Guttman and M. Stonebraker, "Using a Relational 
Database Management System for Computer Aided 
Design Data", Bulletin of the IEEE Computing Society, Tech
nology of Communications and Database Engineering, 5 (2), 
pp. 21-28, June 1982. 

[Gutt77] J. Guttag, "Abstract Data Types and the Development of 
Data Structures", Communications of the ACM, 20(6), pp. 
396-404, June 1977. 

[HaHo83] R.L. Haskin and L.A. Hollaar, "Operational Characteristics 
of a Hardware-Based Pattern Matcher", ACM TODS, 8(1), 
pp. 15-40, March 1983. 

[HaKS83] M. Hammer, J.S. Kunin and S. Schoichet, "What Makes a 
Good User Interface?", Proceedings AFIPS Office Automa
tion Conference, Philadelphia, Pennsylvania, February 21-
23, 1983. 

[HaKu80] M. Hammer and J.S. Kunin, "Design Principles of an 
Office Specification Language", Proceedings of the NCC, pp. 
541-547, 1980. 

[HaLo82] R.L. Haskin and R.A. Lorie, "On Extending the Functions 
of a Relational Database System", Proceedings of the ACM 
SIGMOD Conference, pp. 207-212, 1982. 

[HaMc75] M. Hammer and D. McLeod, "Semantic Integrity in a 
Relational Database System", Proceedings of the First Inter
national Conference on Very Large Data Bases, pp. 25-47, 



References 409 

1975. 

[HaMc78] M. Hammer and D. McLeod, "The Semantic Data Model: 
A Modelling Mechanism for Database Applications", 
Proceedings of the ACM SIGMOD Conference, pp. 26-36, 
1978. 

[HaMc8I] M. Hammer and D. McLeod, "Database Description with 
SDM: A Semantic Database Model", ACM TODS, 6(3), 
pp. 351-386, September 1981. 

[HaMo82] F. Halasz and P. Moran, "Analogy Considered Harmful", 
Proceedings, Human Factors in Computer Systems, Gaithers
burg, Maryland, March 15-17,1982. 

[Harr71] M.C. Harrison, "Implementation of the Substring Test by 
Hashing", Communications of the ACM, 14(12), pp. 777-
779, December 1971. 

[HaSi80] M. Hammer and M. Sirbu, "What is Office Automation ?", 
Office Automation Conference, Georgia, pp. 37-49, 1980. 

[Hask80] R.L. Haskin, "Hardware for Searching Very Large Text 
Databases", Proceedings of the Fifth Workshop on Computer 
Architecture for Non-numeric Processing, pp. 49-56, March 
1980. 

[Hask8I] R.L. Haskin, "Special Purpose Processors for Text 
Retrieval", Database Engineering, 4(1), pp. 16-29, Sep
tember 1981. 

[HeBS73] C. Hewitt, P. Bishop and R. Steiger, "A Universal Modu
lar ACTOR Formalism for Artificial Intelligence", Proceed
ings of the Third International Joint Conference on Artificial 
Intelligence, pp. 235-245, August 1973. 

[HePa79] Hewlett-Packard, "HP 3000 Computer System VIEW/3000 
Reference Manual", 32209-90001, Hewlett-Packard, 1979. 

[Hewi72] C. Hewitt, "Description and Theoretical Analysis (Using 
Schemata), of PLANNER: A Language for Proving 
Theorems and Manipulating Models in a Robot", MIT AI 
Laboratory, AI-TR-258, 1972. 

[Hewi77] C. Hewitt, "Viewing Control Structures as Patterns of 
Passing Messages", ArtifiCial Intelligence, 8(3), pp. 323-364, 
June 1977. 

[HGLS78] R. Holt, G. Graham, E. Lazowska and M. Scott, Structured 
Concurrent Programming with Operating Systems Applica
tions, Addison-Wesley, Reading, U.S.A., 1978. 

[HHKW77] M. Hammer, W.G. Howe, V.J. Kruskal and I. Wladawsky, 
"A Very High Level Programming Language for Data Pro
cessing Applications", Communications of the ACM, 



410 Office Automation 

20(1), pp. 832-840, November 1977. 

[HIAG81] M. Hammer, R. TIson, T. Anderson, E. Gilbert, M. Good, 
B. Niamir, L. Rosenstein and S. Schoichet, "The imple
mentation of Etude, an Integrated and Interactive Docu
ment Production System", Proceedings of the ACM SIG
PLAN SIGOA Symposium on Text Manipulation, Portland, 
Oregon, June 8-10, 1981. 

[Hill 85] R. Hill, "Using Production Systems to Specify Multi
Threaded Dialogues in User Interface Development Sys
tems", Research Proposal, 1985. 

[HMGT83] J. Hogg, M. Mazer, S. Gamvroulas and D.C. Tsichritzis, 
"lmail - An Intelligent Mail System", IEEE Database 
Engineering, 6(3), September 1983. 

[HoGa84] J. Hogg and S. Gamvroulas, "An Active Mail System", 
SIGMOD '84 Proceedings, SIGMOD Record, 14(2), June 
1984. 

[Hogg81] J. Hogg, TLA: A System for Automating Form Procedures, 
M.Sc. thesis, Department of Computer Science, Univer
sity of Toronto, 1981. 

[HoKr84] W. Horak and G. Kroenert, "An Object-Oriented Office 
Document Architecture Model for Processing and Inter
change of Documents", Proceedings of the Second ACM
SIGOA Conference, Toronto, June 1984. 

[Ho1l78] L.A. Hollaar, "Specialized Merge Processor Networks for 
Combining Sorted Lists", ACM TODS, 3(3), pp. 272-284, 
September 1978. 

[Ho1l79] L.A. Hollaar, "Text Retrieval Computers", IEEE Computer, 
12(3), pp. 40-50, March 1979. 

[Ho1l83] L.A. Hollaar, "Architecture and Operation of a Large, 
Full-Text Information-Retrieval System", in Advanced 
Database Machine Architecture, ed. D.K. Hsiao, Prentice
Hall, Englewood Cliffs, New Jersey, pp. 256-299, 1983. 

[HoNT81] J. Hogg, O.M. Nierstrasz and D.C. Tsichritzis, "Form Pro
cedures", in Omega Alpha, ed. D.C. Tsichritzis, CSRG 
Technical Report 127, University of Toronto, pp. 101-133, 
March 1981. 

[HoPa74] S. Horowitz and T. Pavlidis, "Picture Segmentation by a 
Directed Split-and-Merge Procedure", Proceedings of the 
Second International Joint Conference on Pattern Recogni
tion, pp. 424-433, August 1974. 

[Hort81] M. Horton, "How to Read the Network News", Bell Labs, 
Columbus, Ohio 1981. 



[HoSa76] 

[HoUl79] 

[HSCE83] 

[Hsia80] 

[Hudy78] 

[IBM79] 

[Inga78] 

[Inst82] 

nSO-83a] 

nSO-83b] 

[John75] 

[JoT084] 

[Joy80] 

[KaMi69] 

References 411 

E. Horowitz and S. Sahni, Fundamentals of Data Structures, 
Computer Science Press, 1976. 

J.E. Hopcroft and J.D. Ullman, Introduction to Automata 
Theory, Languages, and Computation, Addison Wesley, 
1979. 

L.A. Hollaar, K.F. Smith, W.H. Chow, P.A. Emrath and 
R.L. Haskin, "Architecture and Operation of a Large, 
Full-Text Information-Retrieval System", in Advanced 
Database Machine Architecture, ed. D.K. Hsiao, Prentice
Hall, Englewood Oifrs, New Jersey, pp. 256-299, 1983. 

D.K. Hsiao, "Data Base Computers", in Advances in Com
puters, Volume 19, ed. c.Y. Marshall, Academic Press, 
New York, pp. 1-64, 1980. 

R. Hudyma, Architecture of Microcomputer Distributed Data
base Systems, M.Sc. thesis, Department of Computer Sci
ence, University of Toronto, 1978. 

STAIRS/VS: Reference Manual, IBM System Manual, 
1979. 

D. Ingalls, "The Smalltalk-76 Programming System: 
Design and Implementation", Conference Proceedings of the 
Fifth Annual A CM Symposium on Principles of Programming 
Languages, pp. 9-16, January 1978. 

Education and Information Systems Inc., Operating 
Manual for the Instavox RA-12 Rapid Access Audio Unit, 
Education and Information Systems Inc., Champaign, nli
nois, 1982. 

ISO TC 97/SC 18/WG 3N 292, "General Introduction". 

ISO TC 97/SC 18/WG 3N283, "Office Document Archi
tecture", Fifth working draft. 

S.C. Johnson, Yacc: Yet Another Compiler Compiler, Com
puter Science Technical Report No. 32, Bell Laboratories, 
Murray Hill, NJ, USA, 1975. 

J.H. Johnson and F.W. Tompa, "Approximate String 
Matching in Query Languages", PODS, 1984. submitted 
for publication. 

W. Joy, "An Introduction to the C Shell", UNIX 
Programmer's Manual, Volume 2c, Department of Electri
cal Engineering and Computer Science, University of Cali
fornia, Berkeley, USA, 1980. 

R.M. Karp and R. Miller, "Parallel Program Schemata", 
Journal of Computer and Systems Science 3, pp. 167-195, 
May 1969. 



412 Office Automation 

[KaSi64] W.H. Kautz and R.C. Singleton, "Nonrandom Binary 
Superimposed Codes", IEEE Transactions on Information 
Theory, IT-10, pp. 363-377, October 1964. 

[KCBC75] J. Kulick, T. Challis, C. Brace, S. Christodoulakis, I. Mer
rit and P. Neelands, "An Image Processing Laboratory for 
Automated Screening of Chest X-rays", Proceedings of the 
Third IEEE International Conference on Pattern Recognition, 
November 1975. 

[KeDe83] J.P. Kearns and S. DeFazio, "Locality of Reference in 
Hierarchical Database Systems", IEEE Transactions on 
Software Engineering, SE-9(2), pp. 128-134, March 1983. 

[KeKT76] L. Kershberg, A. Klug and D.C. Tsichritzis, "A Taxonomy 
of Data Models", Proceedings of the Second International 
Conference on Very Large Data Bases, pp. 43-64, 1976. 

[Kent79] W. Kent, "Limitations of Record-Based Information 
Models", ACM TODS, 4(1), pp. 107-131, March 1979. 

[KeRi78] B.W. Kernighan and D.M. Ritchie, "The C Programming 
Language", Prentice-Hall Software Series, 1978. 

[Klug78] A. Klug, Theory of Database Mappings, Ph.D. Thesis, 
Department of Computer Science, University of Toronto, 
1978. 

[KnMP77] D.E. Knuth, J.H. Morris and V.R. Pratt, "Fast Pattern 
Matching in Strings", SIAM Journal of Computing, 6(2), 
pp. 323-350, June 1977. 

[Knot71] G.D. Knott, "Expandable Open Addressing Hash Table 
Storage and Retrieval", Proceedings SIGFIDET, pp. 187-
206, 1971. 

[Knut73] D.E. Knuth, The Art of Computer Programming, Volume 3: 
Sorting and Searching, Addison-Wesley, Reading, Mass, 
1973. 

[Knut79] D.E. Knuth, TEX and METAFONT: New Directions in 
Typesetting, American Mathematical Society and Digital 
Press, 1979. 

[KoLo82] I. Kowarski and M. Lopez, "The Document Concept in a 
Data Base", Proceedings of the ACM SIGMOD Conference, 
pp. 276-283, 1982. 

[KoMi83] I. Kowarski and C. Michaux, "A Microcomputer System 
for the Management of Structured Documents", Proceed
ings IFIP Congress, 1983. 

[Korn79] J.Z. Kornatowsky, The MRS User's Manual, Computer 
Systems Research Group, University of Toronto, 1979. 



References 413 

[KuRo81] H.T. Kung and J.T. Robinson, "On Optimistic Methods 
for Concurrency Control", ACM TODS, 6(2), June 1981. 

[Ladd79] I. Ladd, A Distributed Database Management System Based 
on Microcomputers, M.Sc. thesis, Department of Computer 
Science, University of Toronto, 1979. 

[Lamp78] B.W. Lampson, "Bravo Manual", in Alto User's Handbook, 
Xerox Palo Alto Research Center, Palo Alto, California, 
November 1978. 

[Land77] D. Landis, "Multiple-Response Resolution in Associative 
Systems", IEEE Transactions on Computers, C-26(3), pp. 
230-235, March 1977. 

[Land83] J. Landau, "How is a Computer Like an Onion ?", BYTE, 
8(12), December 1983. 

[Lang 77] B. Langefors, "Informations Systems Theory", Information 
Systems, 2(4), pp. 207-219, 1977. 

[Lang 80] B. Langefors, "Infological Models and Information User 
Views", Information Systems, 5(1), pp. 17-32, 1980. 

[Lars78] P. Larson, "Dynamic Hashing", BIT, 18, pp. 184-201, 
1978. 

[Lars83] P.A. Larson, "A Method for Speeding up Text Retrieval", 
Proceedings of ACM SIGMOD Conference, May 1983. 

[Lee72] E.T. Lee, "Proximity Measures for the Classification of 
Geometric Figures", Journal of Cybernetics, 2(4), pp. 43-
59, 1972. 

[Lee81l D.L. Lee, A Voice Response System for an Office Informa
tion System, M.Sc. Thesis, Department of Computer Sci
ence, University of Toronto, 1981. 

[Lee82] D.L. Lee, "A Voice Response System for an Office Infor
mation System", Proceedings of the First ACM SIGOA 
Conference, pp. 113-121, 1982. 

[Lee84] D.L. Lee, A Text Retrieval Machine, Thesis proposal, 
Department of Computer Science, University of Toronto, 
1984. 

[Lefk79] H.C. Lefkovits, et al., "A Status Report on the Activities 
of the CODASYL End User Facilities Committee 
(EUFC)", ACM SIGMOD Proceedings, 10(2 & 3), pp. 1-
26, August 1979. 

[LeLo83] D L. Lee and F.H. Lochovsky, "Voice Response Systems", 
ACM Computing Surveys, 15(4), December 1983. 

[LeSc75] M.E. Lesk and E. Schmidt, Lex - A Lexical Analyzer Gen
erator, Computer Science Technical Report No. 39, Bell 



414 Office Automation 

Laboratories, Murray Hill, NJ, USA, 1975. 

[Lesk79] M.E. Lesk, "Some Applications of Inverted Indexes on the 
UNIX System", UNIX manual, Bell Laboratories, Murray 
Hill, New Jersey, 1979. 

[Lewi62] M.H. Lewin, "Retrieval of Ordered Lists from a Content
Addressed Memory", RCA Review, 23(2), pp. 215-229, 
June 1962. 

[LeWL84] A. Lee, C.C. Woo and F.H. Lochovsky, "Officeaid: An 
Integrated Document Management System", Proceedings 
of ACM SIGOA Conference, pp. 170-180, June 1984. 

[Litw80] W. Litwin, "Linear Hashing: A New Tool for File and 
Table Addressing", Proceedings of the Sixth International 
Conference on Very Large Data Bases, pp. 212-223, 
October 1980. 

[LiZi74] B. Liskov and S. Zilles, "Programming with Abstract Data 
Types", Proceedings of the ACM Symposium on Very High 
Level Languages, SIGPLAN Notices, 9(4), pp. 50-59, 1974. 

[Lloy80] J.W. Lloyd, "Optimal Partial-Match Retrieval", BIT, 20, 
pp. 406-413, 1980. 

[LlRa82] J.W. Lloyd and K. Ramamohanarao, "Partial-Match 
Retrieval for Dynamic Files", BIT, 22, pp. 150-168, 1982. 

[Loch81] F.H. Lochovsky, "Human Factors Issues in Office Infor
mation Systems", Proceedings of the International Congress 
on Applied Systems Research and Cybernetics 5, pp. 2497-
2501, 1981. 

[Lodd83] K.N. Lodding, "Iconic Interfacing", IEEE Computer Graph
ics and Applications, Marchi April, 1983. 

[Love77] H.H. Love, "A Modified ALAP Cell for Parallel Text 
Searching", Proceedings of the International Conference on 
Parallel ProceSSing, pp. 23-16, August 1977. 

[LoVe 84] M. Lopez and F. Velez, "Modelling and Handling Gen
eralized Data in the TIGRE Project", Report, Centre de 
Recherche CII Honeywell Bull, clo IMAG, St. Martin 
d'Heres, France, 1984. 

[Lowe82] E. Lowenthal, "Multiuser Microprocessor Systems Get a 
Data-base Manager", Electronics, 55(13), pp. 113-117, 
June 1982, 

[LSAS77] B. Liskov, A. Snyder, R. Atkinson and C. Schaffert, 
"Abstraction Mechanisms in CLU", Communications of the 
ACM, 20(8), pp. 564-576, August 1977. 



References 415 

[LSTC81] V.Y. Lum, N.C. Shu, F. Tung and c.L. Chang, "Automat
ing Business Procedures with Form Processing", IBM 
Research Report, RB050, March 1981. 

[LuCS82] V.Y. Lum, D.M. Choy and N.C. Shu, "OPAS: An Office 
Procedure Automation System", IBM System Journal, 
21(3), pp. 327-350, 1982. 

[LuYa81] D. Luo and S.B. Yao, "Form Operation By Example: A 
Language for Office Information Processing", Proceedings 
of the ACM SIGMOD Conference, pp. 212-223, 1981. 

[LyMc84] P. Lyngback and D. McLeod, "Object Management in Dis
tributed Information Systems", ACM Transactions on Office 
Information Systems, 2 (2), pp. 96-122, 1984. 

[MaCa83] R.E.A. Mason and T.T. Carey, "Prototyping Interactive 
Information Systems", Communications of the ACM, 26, 
pp. 347-354, 1983. 

[Mall 80] V.A.J. Maller, "Information Retrieval Using the Content 
Addressable File Store", IFIP 80, pp. 187-192, 1980. 

[Mall 82] W.R. Mallgren, "Formal Specifications of Graphic Data 
Types", ACM Transactions on Programming Languages and 
Systems, 4(4), pp. 687-710, October 1982. 

[MaLo83] M.S. Mazer and F.H. Lochovsky, "Routing Specification in 
a Message Management System", Proceedings of the Six
teenth Hawaii International Conference on System Science, 1, 
pp. 566-575, January 1983. 

[MaLo 84] M.S. Mazer and F.H. Lochovsky, "Logical Routing 
Specification in Office Information Systems", ACM Tran
sactions on Office Information Systems, 2 (4), October 1984. 

[Mart79] G.N.N. Martin, "Spiral Storage: Incrementally Augment
able Hash Addressed Storage", Theory of Computation, 
Report No. 27, University of Warwick, Coventry, Eng
land, March 1979. 

[Mart 84] T.P. Martin, A Communication Model for Message Manage
ment Systems, Ph.D. Thesis, Department of Computer Sci
ence, University of Toronto, 1984. 

[Maxe80] N.F. Maxemchuk, "An Experimental Speech Storage and 
Editing Facility", Bell Systems Technical Journal, 59, pp. 
1383-1395, 1980. 

[Maye81] R.E. Mayer, "The Psychology of How Novices Learn 
Computer Programming", ACM Computing Surveys, 13(1), 
March 1981. 

[Maze83] M.S. Mazer, The Specification of Routings in a Message 
Management System, M.Sc. Thesis, Department of 



416 Office Automation 

Computer Science, U. of Toronto, 1983. 

[McIl82] M.D. McIlroy, "Development of a Spelling List", IEEE 
Transactions on Communications, COM-30(1), pp. 91-99, 
January 1982. 

[McKi81] D. McLeod and R. King, "Semantic Database Models", in 
Principles of Database Design, ed. S.B. Yao, Prentice-Hall, 
1981. 

[McLe76] D. McLeod, "High Level Domain Definition in a Rela
tional Database System", Proceedings of the ACM 
SIGPLANISIGMOD Conference on Data: Abstraction, 
Definition, and Structure, pp. 47-57, 1976. 

[McLe78] D. McLeod, A Semantic Database Model and Its Associated 
Structured User Interface, Ph.D. dissertation, Laboratory 
for Computer Science, MIT, 1978. 

[McLe81] I.A. McLeod, "A Data Base Management System for 
Document Retrieval Applications", Information Systems, 
6(2), pp. 131-137, 1981. 

[McLe83] R. McLeod, Management Information Systems, SRA, 
Second Edition, 1983. 

[McSm80] D. McLeod and J.M. Smith, "Abstraction in Databases", 
Proceedings of the Workshop on Data Abstraction, Data
bases, and Conceptual Modelling, ed. M. Brodie and S. 
Zilles, June 1980. 

[MeBo76] R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed 
Packet Switching for Local Computer Networks", Com
munications of the ACM, 19(7), pp. 395-404, July 1976. 

[Me Va82] N. Meyrowitz and A. Van Dam, "Interactive Editing Sys
tems", ACM Computing Surveys, 14(3), September 1982. 

[Mill 82] M.I. Mills, "'Visual Thinking' Reconsidered: Some Impli
cations for Computer Graphics", Proceedings of Graphics 
Interface' 82, Toronto, Ontario, May 1982. 

[Moon84] J. Mooney, Oz: An Object-based System for Implementing 
Office Information Systems, M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1984. 

[Mora81] T.P. Moran, "Guest Editor's Introduction: An Applied 
Psychology of the User", A CM Computing Surveys, 13 (1), 
March 1981. 

[Morg80] Howard L. Morgan, "Research and Practice in Office 
Automation", Proceedings 1980 IFIP Congress, pp. 783-
789. 



References 417 

[MoR079] H.L. Morgan and D. Root, "A Concept of Corporate 
Memory", Proceedings of the NYU Symposium on Office 
Automation, May 1979. 

[Mukh79] Mukhopadhyay, A, "Hardware Algorithms for Non
numeric Computation", IEEE Transactions on Computers, 
C-28(6), pp. 384-394, June 1979. 

[Mukh80] Mukhopadhyay, A, "Hardware Algorithms for String Pro
cessing", Proceedings of the International Conference on Cir
cuits and Computers, pp. 508- 511, October 1980. 

[MyBW78] 1. Mylopoulos, P.A Bernstein and H.K.T. Wong, "A Prel
iminary Specification of TAXIS: A Language for Interac
tive Systems Design", Technical Report CCA-78-02, Com
puter Corporation of America, 1978. 

[MyBW80] J. Mylopoulos, P.A Bernstein and H.K.T. Wong, "TAXIS: 
A Language Facility for Designing Database-Intensive 
Applications", ACM TODS, 5(2), pp. 185-207, June 1980. 

[Myer85] B. Myers, "The Importance of Percent-Done Progress 
Indicators for Computer-Human Interfaces", Proceedings of 
the ACM SIGCHI '85 Conference, April 1985. 

[Naff81a] N. Naffah, "Distributed Office Systems in Practice", 
ONLINE Conference, May 1981. 

[Naff81b] N. Naffah, "Editing Multitype Documents", Proceedings of 
the International Workshop on Office Information Systems, 
October 1981. 

[NeSp79] W.M. Newman and R.F. Sproull, Principles of Interactive 
Computer Graphics, (Second ed.), Computer Science 
Series, McGraw-Hill Book Company, 1979. 

[Nier81l O.M. Nierstrasz, Automatic Coordination and Processing of 
Electronic Forms in TLA, M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1981. 

[Nier84] O.M. Nierstrasz, Message Flow Analysis, Ph.D. thesis, 
Department of Computer Science, University of Toronto, 
CSRI Technical Report #165, 1984. 

[NiMT83] O.M. Nierstrasz, 1. Mooney and K.1. Twaites, "Using 
Objects to Implement Office Procedures", Proceedings of 
the Canadian Information Processing Society Conference, 
Ottawa, pp. 65-73, May 1983. 

[OpDa83] D.C. Oppen and Y.K. Dalal, "The Clearinghouse: A 
Decentralized Agent for Locating Named Objects in a Dis
tributed Environment", ACM Transactions on Office Infor
mation Systems, 1 (3), pp. 230-253, July 1983. 



418 Office Automation 

[OrTa56] G. Orosz and L. Tackacs, "Some Probability Problems 
Concerning the Marking of Codes into the Superimposed 
Field", Journal of Documentation, 12(4), pp. 231-234, 
December 1956. 

[PaSt82] Christos H. Papadimitriou and Kenneth Steiglitz, Com
binatorial Optimization, Prentice-Hall, 1982. 

[Pavl77] T. Pavlidis, Structural Pattern Recognition, Springer-Verlag, 
1977. 

[Pete83] J.L. Peterson, Petri Nets Theory and the Modeling of Sys
tems, Prentice-Hall, 1983. 

[PfBC80] J.L. Pfaitz, W.H. Berman and E.M. Cagley, "Partial Match 
Retrieval Using Indexed Descriptor Files", Communications 
of the ACM, 23(9), pp. 522-528, September 1980. 

[Prop83] D.L. Propp, A Forms Programming By Example System for 
Non-programmers, M.Sc. thesis, Department of Computer 
Science, University of Toronto, January 1983. 

[PuFK83] R. Purvy, J. Farrel and P. Klose, "The Design of Star's 
Records Processing: Data Processing for the Noncomputer 
Professional", ACM Transactions on Office Information Sys
tems, 10), pp. 3-24, 1983. 

[Quin81l V. QUint, "Editing Mathematics on the Buroviseur", 
Proceedings of the International Workshop on Office Informa
tion Systems, October 1981. 

[RaGi82] F. Rabitti and S.J. Gibbs, "A Distributed Form Manage
ment System with Global Query Facilities", in Office Infor
mation Systems, ed. N. Naffah, North-Holland, 1982. 

[RaTW78] C.V. Ramamoorthy, J.C. Turner and B.W. Wah, "A 
Design of a Cellular Associative Memory for Ordered 
Retrieval", IEEE Transactions on Computers, C-27(9), pp. 
800-815, September 1978. 

[RaZi84] F. Rabitti and J. Zizka, "Evaluation of Access Methods to 
Text Documents in Office Systems", Proceedings of the 
Third Joint ACM-BCS Symposium on Research and Develop
ment in Information Retrieval, 1984. 

[Redd75] D.R. Reddy, Speech Recognition, Academic Press, 1975. 

[Redd76] D.R. Reddy, "Speech Recognition by Machine: A 
Review", Proceedings of the IEEE, 64(4), pp. 501-531, 
April 1976. 

[Reis81l P. Reisner, "Formal Grammar and Human Factors Design 
of an Interactive Graphics System", IEEE Transactions on 
Software Engineering, SE- 7 (2), March 1981. 



References 419 

[Rhod81] Rhodnius Inc., "MISTRESS: The Query Language", 1981. 

[Rijs71] C.J. Van-Rijsbergen, "An Algorithm for Information 
Structuring and Retrieval", Computer Journal, 14(4), pp. 
407-412, 1971. 

[Rijs79] C.J. Van-Rijsbergen, Information Retrieval, Butterworths, 
London, England, 1979. Second edition. 

[Rive76] R.L. Rivest, Partial Match Retrieval Algorithms, SIAM 
Journal of Computing, 5(1), pp. 19-50, March 1976. 

[Robe78] D.C. Roberts, "A Specialized Computer Architecture for 
Text Retrieval", Proceedings of the Fourth Workshop on 
Computer Architecture for Non-Numeric Processing, pp. 51-
59, August 1978. 

[Robe79] C.S. Roberts, "Partial-Match Retrieval via the Method of 
Superimposed Codes", Proceedings of the IEEE, 67(12), pp. 
1624-1642, December 1979. 

[Robi81] J.T. Robinson, "The k-D-B-Tree: A Search Structure for 
Large Multidimensional Dynamic Indexes", Proceedings of 
the ACM SIGMOD Conference, pp. 10-18, 1981. 

[Robs81] D. Robson, "Object-Oriented Software Systems", Byte, 
6(8), August 1981. 

[Rocc71] J.J. Rocchio, "Relevance Feedback in Information 
Retrieval", in The SMART Retrieval System -- Experiments 
in Automatic Document Processing, ed. G. Salton, Prentice
Hall Inc., Englewood Cliffs, New Jersey, 1971. Chapter 
14. 

[RoLo74] J.B. Rothnie and T. Lozano, "Attribute Based File Organi
zation in a Paged Memory Environment", Communications 
of the ACM, 17(2), pp. 63-69, February 1974. 

[RoMy75] N. Roussopoulos and J. Mylopoulos, "Using Semantic 
Networks for Data Base Management", Proceedings of the 
First International Conference on Very Large Data Bases, pp. 
144-172, 1975. 

[RoSh82] L.A. Rowe and K.A. Shoens, "A Form Application 
Development System", Proceedings of the ACM SIGMOD 
Conference, pp. 28-38, June 1982. 

[Rous76] N. Roussopoulos, A Semantic Network Data Base Model, 
Ph.D. dissertation, Department of Computer Science, 
University of Toronto, 1976. 

[RoYe82] D. Rosenthal and A. Yen, "User Interface Models Sum
mary", Graphical Input Interaction Technique (GilT) 
Workshop Summary, pp. 27-36, 1982. 



420 Office Automation 

[Salt71l G. Salton (ed.), The SMART Retrieval Systems, Prentice
Hall, Englewood Cliffs, New Jersey, 1971. 

[Salt 80] G. Salton, "Automatic Information Retrieval", IEEE Com
puter, 13(9), pp. 41-56. September 1980. 

[SaMc83] G. Salton and M.J. McGill, Introduction to Modern Infor
mation Retrieval, McGraw-Hill, 1983. 

[SaW078] G. Salton and A. Wong, "Generation and Search of 
Clustered Files", ACM TODS, 3(4), pp. 321-346, 
December 1978. 

[Sche81l B. Scheurer, "Office Workstation Design", Proceedings of 
the International Workshop on Office Information Systems, 
October 1981. 

[Sche84] H.J. Schek, "Nested Transactions in a Combined IRS
DBMS Architecture", Proceedings of the Third joint BCS 
and ACM Symposium on Research and Development in Infor
mation Retrieval, Cambridge, England, July 1984. 

[Schi82] P. Schicker, "Naming and Addressing in a Computer
Based Mail Environment", IEEE Trans on Communications, 
COM-30(1), pp. 46-62, January 1982. 

[Schi84] D.E. Schiferl, Pragmatics of Interaction and User Interface 
Management Systems, M.Sc. thesis, University of Toronto, 
Department Computer Science, January 1984. 

[Schm77] J.W. Schmidt, "Some High-Level Language Constructs for 
Data of Type Relation", ACM TODS, 2(3), pp. 247-261, 
1977. 

[Schw83] J. Schwarz, "Emily Post for Usenet", 
net.announce.newusers, 1983. 

[ScOS76] S.A. Schuster, E.A. Ozkarahan and K.C. Smith, "A Virtual 
Memory System for a Relational Associative Processor", 
Proceedings of the National Computer Conference, 45, pp. 
855-862, 1976. 

[ScPi82] H.J. Schek and P. Pistor, "Data Structures for an 
Integrated Data Base Management and Information 
Retrieval System", Proceedings of the Eighth International 
Conference on Very Large Data Bases, pp. 197-207, 1982. 

[ScSw75] H.A. Schmid and J.R. Swenson, "On the Semantics of the 
Relational Data Model", Proceedings of the ACM SIGMOD 
Conference, pp. 211-223, 1975. 

[SeDu76] D.G. Severance and R.A. Duhne, "A Practitioner's Guide 
to Addressing Algorithms", Communications of the ACM, 
19(6), pp. 314-326, 1976. 



References 421 

[Senk75] M.E. Senko, "Information Systems: Records, Relations, 
Sets, Entities, and Things", Information Systems, 1(1), pp. 
3-13, 1975. 

[Seve74] D.G. Severance, "Identifier Search Mechanisms: A Survey 
and Generalized Model", ACM Computing Surveys, 6(3), 
pp. 175-194, September 1974. 

[Seyb81] J. Seybold, "Xerox's 'Star''', The Seybold Report, 10(16), 
April 1981. 

[Shaw80] D.E. Shaw, "A Relational Database Machine Architec
ture", Proceedings of the Fifth Workshop on Computer Archi
tecturefor Non-Numeric Processing, pp. 84-95, March 1980. 

[ShHu82] 1. Shoch and J. Hupp, "The Worm Programs - Early 
Experience with a Distributed Computation", Communica
tions of the ACM, 25(3), pp. 172-180, March 1982. 

[Ship81] D.W. Shipman, "The Functional Data Model and the Data 
Language DAPLEX", ACM TODS, 6(1), pp. 140-173, 
March 1981. 

[Shne83] B. Shneiderman, "Direct Manipulation: A Step Beyond 
Programming Languages", IEEE Computer, 16(8), pp. 57-
69, 1983. 

[Shoe79] K. Shoens, "Mail Reference Manual, Version 1.3", UNIX 
Manuals, 1979. 

[ShWu77] M. Shaw and W. Wulf, "Abstraction and Verification in 
Alphard: Defining and Specifying Iteration and Genera
tors", Communications of the ACM, 20(8), pp. 553-564, 
August 1977. 

[SIKH82] D.e. Smith, C. Irby, R. Kimball and E. Harslam, "The 
Star User Interface: An Overview", Proceedings AFIPS 
National Computer Conference, 51, pp. 515-528, June 1982. 

[SIKV82] D.C.S. Smith, C. Irby, R. Kimball, B. Verplank and E. 
Harlem, "Designing the Star User Interface", Byte, 7(4), 
pp. 242-282, April 1982. 

[SLTC82] N.e. Shu, V.Y. Lum, F.e. Tung and e.L. Chang, 
"Specification of Forms Processing and Business Pro
cedures for Office Automation", IEEE Transactions 
Software Engineering, SE-8(5), pp. 499-512, September 
1982. 

[SmFL81] J.M. Smith, S. Fox and T. Lancers, Reference Manual for 
ADAPLEX, Technical Report CCA-81-02, Computer Cor
poration of America, 1981. 

[SmSm77a] 1.M. Smith and D.e.P. Smith, "Database Abstractions: 
Aggregation", Communications of the ACM, 20(6), pp. 



422 Office Automation 

405-413, June 1977. 

[SmSm77b] J.M. Smith and D.C.P. Smith, "Database abstractions: 
Aggregation and Generalization", ACM TODS, 2(2), pp. 
105-133, June 1977. 

[SmSm79] lM. Smith and D.C.P. Smith, "A Database Approach to 
Software Specification", Technical Report CCA-79-17, 
Computer Corporation of America, 1979. 

[Song80] S.W. Song, "A Highly Concurrent Tree Machine for Data
base Applications", Proceedings of the International Confer
ence on Parallel Processing, pp. 259-268, August 1980. 

[Spar72] K. Sparck-Jones, "A Statistical Interpretation of Term 
Specificity and its Application in Retrieval", Journal of 
Documentation, 28(1), pp. 11-20, March 1972. 

[SSKH82] M. Sirbu, S. Schoichet, J. Kunin and M. Hammer, "OAM: 
An Office Analysis Methodology", in Office Automation 
Conference 1982 Digest, pp. 317-330, AFIPS, 1982. 

[SSLK83] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash and A. 
Guttman, "Document Processing in a Relational Database 
System", ACM Transactions on Office Information Systems, 
1(2), pp. 143-158, April 1983. 

[Stel77] W.H. Stellhorn, "An Inverted File Processor for Informa
tion Retrieval", IEEE Transactions on Computers, C-
26(12), pp. 1258-1267, December 1977. 

[Stia60] S. Stiassny, "Mathematical Analysis of Various Superim
posed Coding Methods", American Documentation, 11 (2), 
pp. 155-169, February 1960. 

[SuL079] S.Y.W. Su and D.H. Lo, "A Semantic Association Model 
for Conceptual Database Design", Proceedings International 
Conference on the Entity-Relationship Approach to Systems 
Analysis and DeSign, 1979. 

[Sun82] ----, "The SUN Workstation Architecture", SUN Microsys
terns Inc., April 1982. 

[SwBa82] W. Swartout and R. Balzer, "On the Inevitable Intertwin
ing of Specification and Implementation", Communications 
of the ACM, 25, pp. 438-440, 1982. 

[TaBu83] P.P. Tanner and W.A.S. Buxton, "Some Issues in Future 
Interface Management System Development", Invited 
paper presented at IFIP WG 5.2, Workshop on User Inter
face Management, Seeheim, Federal Republic of Ger
many, November 1-3, 1983. 

[TaFr76] R.W. Taylor and R.L. Frank, "CODASYL Database 
Management Systems", ACM Computing Surveys, 8(1), pp. 



References 423 

67-104, March 1976. 

[TayI83] R. Taylor R., "Databases for Office Workstations", Report 
RJ 4091 (45989), IBM Research Laboratory, San Jose, 
CA, 11/9/83. 

[TCEF83] D.C. Tsichritzis, S. Christodoulakis, P. Economopoulos, 
C. Faloutsos, A. Lee, D. Lee, J. Vandenbroek and C. 
Woo, "A Multimedia Office Filing System", Proceedings of 
the Ninth International Conference on Very Large Data 
Bases, Florence, Italy, pp. 2- 7, 1983. 

[TeFr82] T.J. Teorey and J.P. Fry, Design of Database Structures, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1982. 

[Teit77] W. Teitelman, "A Display-Oriented Programmer's Assis
tant", Report CSL-77-3 Xerox PARC, March 1977. 

[TesI81] L. Tesler, "The Smalltalk Environment", BYTE, 6(8), 
August 1981. 

[ThRi78] K. Thomson and D. Ritchie, "The UNIX Time-Sharing 
System", Bell System Technical Journal, 57 (6), pp. 1905-
1929, 1978. 

[ThTa82] A.L. Tharp and K. Tai, "The Practicality of Text Signa
tures for Accelerating String Searching", Software Practice 
and Experience, 12(1), pp. 35-44, January 1982. 

[ToGo74] J.T. Tou and R.C. Gonzalez, "Pattern Recognition Princi
ples", Addison Wesley, 1974. 

[TRGN82] D.C. Tsichritzis, F. Rabitti, S.J. Gibbs, O.M. Nierstrasz 
and J. Hogg, "A System for Managing Structured Mes
sages", IEEE Transactions on Communications, Com-30(1), 
pp. 66-73, January 1982. 

[TsCh83] D.C. Tsichritzis and S. Christodoulakis, "Message Files", 
ACM Transactions on Office Information Systems, 1 (1), pp. 
88-98, January 1983. 

[Tsic80] D.C. Tsichritzis, "OFS: An Integrated Form Management 
System", Proceedings of the Sixth International Conference 
on Very Large Data Bases, pp. 161-166, 1980. 

[Tsic82] D.C. Tsichritzis, "Form Management", Communications of 
the ACM, 25(7), pp. 453-478, July 1982. 

[Tsic84] D.C. Tsichritzis, "Message Addressing Schemes", ACM 
Transactions on Office Information Systems, 2(1), pp. 58-
87., January 1984. 

[TsLo76] D.C. Tsichritzis and F.H. Lochovsky, "Hierarchical Data
base Management: A Survey", ACM Computing Surveys, 
8(1), pp. 105-124, March 1976. 



424 Office Automation 

[TsL082] D.C. Tsichritzis and F.H. Lochovsky, Data Models, 
Prentice-Hall, Englewood Cliffs, N.J., 1982. 

[TTRC84] D.C. Tsichritzis, C. Thanos, F. Rabitti, S. Christodoulakis, 
S.l Gibbs, E. Bertino, A. Fedeli, C. Faloutsos and P. 
Economopoulos, "Design Issues of a File Server for Mul
timedia Documents", First ESPRIT Technical Week, 
Brussels, September 1984. 

[Tuck82] J. Tucker, "Implementing Office Automation: Principles 
and an Electronic Mail Example", Proceedings of the Second 
SIGOA Conference on Office Information Systems, SIGOA 
Newsletter, 3 (1) and 3 (2), June 1982. 

[Twai84] K.J. Twaites, An Object-based Programming Environment for 
Office Information Systems, M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1984. 

[Ullm82] J.D. Ullman, Principles of Database Systems, Second edi
tion, Computer Science Press, Rockville Maryland, 1982. 

[Vall 76] o. Vallarino, "On the Use of Bit Maps for Multiple Key 
Retrieval", Conference Proceedings on Data Abstraction, 
Definition and Structure, in ACM SIGPLAN Notices (Spe
cial issue), 11, pp. 108-114, March 1976. 

[Vitt811 J. Vittal, "Active Message Processing: Messages as 
Messengers", Proceedings of the International Symposium on 
Computer Message Systems, IFIP TC-6, Ottawa, April 
1981, ed. R.P. Uhlig, North Holland Publishing Co, pp. 
175-195,1982. 

[VLDB83a] "Panel on Complex Data Objects: Text, Voice, Images: 
Can DBMS Manage Them ?", The Ninth International 
Conference on Very Large Data Bases, 1983. 

[VLDB83b] "Panel on Office Information Systems: What is Our 
Role?", The Ninth International Conference on Very Large 
Data Bases, 1983. 

[VLDB84] "Panel on Multimedia Management Systems", The Tenth 
International Conference on Very Large Data Bases, 1984. 

[Walk811 lH. Walker, "The Document Editor: A Support Environ
ment for Preparing Technical Documents", Proceedings of 
the ACM Symposium on Text Manipulation, June 1981. 

[Wall 80] P.lL. Wallis, "External Representations of Objects of 
User-Defined Type", ACM Transactions Programming 
Languages and Systems, 2(2), pp. 137-152, April 1980. 

[WEFS84] F.A. Wang, A.H.M. El-Sherbini, S. Fry, M. Smutek and 
N. Webb, "The Wang Professional Image Computer: A 
New Dimension to Personal and Office Computing", 



[Wied83] 

[Will 83] 

[Will 84] 

References 425 

Proceedings of the IEEE, 72 (3), Special Issue on Personal 
Computers, March 1984. 

G. Wiederhold, "Database Design", McGraw Hill, 1983. 

G. Williams, "The Lisa Computer System", Byte, 8(2), pp. 
33-50, February 1983. 

G. Williams, "The Apple Macintosh Computer", BYTE, 
9(2), pp. 30-54, 1984. 

[WoCW82] KY. Wong, R.G. Casey and P.M. Wahl, "Document 
Analysis System", IBM Journal Research Development, 
26(6), November 1982. 

[WoLo83] C.c. Woo and P.H. Lochovsky, "A System for Interac
tively Designing Message Templates", Proceedings of the 
IEEE COMPCON Conference, pp. 27-34, September 1983. 

[WoLo84] C.c. Woo and F.H. Lochovsky, "Authorizations in a 
Computer-based Office Information System", Proceedings 
of the First IEEE OA Conference, December 1984. 

[WoMy77] H.KT. Wong and J. Mylopoulos, "Two Views of Data 
Semantics: Data Models in Artificial Intelligence and 
Database Management", IN FOR, 15(3), pp. 344-383, 
October 1977. 

[Wong83] H.KT. Wong, Design and Verification of Information Sys
tems, Ph.D. dissertation, Department of Computer Sci
ence, University of Toronto, 1983. 

[Woo83] C.c. Woo, A Communication Base DeSign System for a Mes
sage Management System, M.Sc. thesis, Department of 
Computer Science, University of Toronto, January 1983. 

[YHSL84] S. Bing Yao, Alan R. Hevner, Zhongzhi Shi and Dawel 
Luo, "FORMANAGER: An Office Forms Management 
System", ACM Transactions on Office Information Systems, 
2(3), pp. 235-262, July 1984. 

[YuLS82] C.T. Yu, K Lam and G. Salton, "Term Weighting in 
Information Retrieval Using the Term Precision Model", 
Journal of the ACM, 290), pp. 152-170, January 1982. 

[Zahn71] C.T. Zahn, "Graph-Theoretical Methods for Detecting and 
Describing Gestalt Clusters", IEEE Transactions on Com
puters, C-200), pp. 68-86, January 1971. 

[Zdon84] S. Zdonik, "Object Management System Concepts", 
Proceedings of the Second ACM SIGOA Conference, pp. 13-
19, 1984. 

[Zism 77] M. Zisman, Representation, Specification and Automation of 
Office Procedures, Ph.D. dissertation, Wharton School, 



426 Office Automation 

[Zism78] 

[210075] 

[210077] 

[210080] 

[210081] 

[210082] 

University of Pennsylvania, 1977. 

M. Zisman, "Use of Production Systems for Modelling 
Asynchronous Concurrent Processes", Pattern-Directed 
Inference Systems, Academic Press, pp. 53-68, 1978. 

M.M. 21oof, "Query-by-Example", Proceedings NCC, 44, 
May 1975. 

M.M. Zloof, "Query-by-Example: A Database Language", 
IBM System Journal, 16(4), pp. 324-343, 1977. 

M.M. 21oof, "A Language for Office and Business Auto
mation", 1980 AFIPS Office Automation Conference Digest, 
Atlanta, USA, March 1980. 

M.M. 21oof, "QBE/OBE: A Language for Office and Busi
ness Automation", IEEE Computer 14, pp. 13-22, May 
1981. 

M.M. Zloof, "Office-by-Example: A Business Language 
that Unifies Data and Word Processing and Electronic 
Mail", IBM System Journal, 21 (3), pp. 272-304, 1982. 



Subject Index 

Abstract 
data types 168,185,209,223,224,398 
objects 195 

Abstraction 
mechanisms, for data models 196-199, 

208 
from documents 45,51-52,85 

Access 27,317,342,350-351 
Acquaintances 

and knos 381,382,384,385,389,394 
and objects 169, 173, 182 

Actions 
and action sketch 147,148,149 
failing 163 
and object-oriented procedure 11 
and procedures 146, 151,289,290 
and sets 153 

Active message system see Intelligent mail, 
Imail, Imessage, Intelligent message 

Actor 114, 168, 201, 205, 398 
Addressing schemes, and messages 254, 

262-266 
Address-ordered retrieval 364-366 
Agents see Office roles 
Aggregation 198-199,230,237,243,244 

see also Cartesian aggregation, Cover aggre
gation 

AGORA 204 
ALAP see Associative Linear Array Pro

cessor 
Algorithms 76,258-259,308,322,344,345, 

347,370 
Alive, and dead objects 383,384-385 
AL TEP see Associative Linear Text Processor 
Annotation part, of multilmedia document 

71,74,75,86 
APL 183 
Apple see Lisa, Macintosh 
Architecture, for office document filing 

56-59 
ARPA IPrrCp protocols 53 

Array 
constructor 243, 244 
processors 69 

see also Associative Linear Array Pro
cessor 

of objects 184 
Artificial intelligence 138, 200, 224 
Associative 

entities, and objects 196 
Linear Array Processor (ALAP) 360-362 
Linear Text Processor (ALTEP) 362-364, 

375 
memory 355,356-357,359-360,364 

Asynchronous 184, 366, 368, 371 
Attribute 

category type of 197 
data types, in document management 

system 25 
information, in multimedia document 67 
as object property 196 
and text recognition 80 
values 44, 52, 83, 101 

Attributes 
of image part 73 
of multimedia document 71 
of relational data model 194 
and superimposed coding 325 
see also Message attributes 

Audio data 218,221,232 
Authorization conditions 96,97,224 
Automata theory see Finite state automaton, 

Finite state machines 
Automatic 

fields 140, 145, 150 
form processing 141, 145, 151 
insertion 67,68,69 
message processing 283,313 
procedures 145, 146, 151, 153, 154 
query processing 142-143 
recognition of text 77 
routing, of messages 283 



428 Office Automation 

scanning 247 
station 141 

Backtracking 180 
Bandwidth 58, 349 
Bar chart 46, 50 
Base 

classes 197, 199 
document type 38 

Basic semantic model 194, 196,212 
see also Semantic model 

BDL see Business Definition Language 
Bibliographic databases 325,328 
BIG project 230 
Binary 

semantic data model 199,200 
see also Semantic model 

search 320,366-367 
Bird's indexing 358 
Bit 

block compression 332, 333, 334 
map display 8,47,53,204 
maps 52,76,77,78,218 
per signature, and false drops 350-351 
rates, for voice/images transmission 58 
position, and signatures 52 

Blocking 
in message system 283,284,303-309,313 
states 305, 307, 308 
see also Recursive blocking 

Blocks 52, 344, 362 
see also Signatures 

Bloom filter 325 
BNF 186-189,235 
Boolean queries, and signature blocks 333 
Boxes 

and editing 132 
and messages 294,295,296 
and object orientation 208 
in SBA 114, 206 

Bravo 8,31 
Britten Lee 341 
Browsing 43,45,48,60,63,86,87,230 
B-trees 319,323,328,329 
Bulletin boards 95,96,98,105-106 
Buroviseur 204,205,209 
Bus, in multiple response resolution 364, 

373, 374 
Business Definition Language (BDL) 164, 

200 
roles 101-103 

see also Office roles, Roles 
By-example 62, 123 

see also Query-by-example 

C 
programming language 39, 139, 145, 167, 

176 
Shell 115, 118 

Cache memories 342 
CAFS 341 
Calendar manager 274,277-278,279-281 
CANPLA Y relationship 98,99100,102,104, 

108,109 
Captions 46,64,72,73 
Cartesian 

aggregation 198,208,213,214 
product, and message states 295 

CCD 341,347,348 
CClrr Commision 233-234 
Cellular logic array 356-357 

see also Associative memory 
Centralized 

environment 116 
imessage 125, 126, 128 

Chaining channel 360,362 
Characteristic 195, 196,200,212 

Chunking 9, 14, 15 
Classes 196, 197, 198,211 
Classification 196-197,198,199,208 
Closure 13, 14, 15, 20 
Clustering 326,328,330,331 
CODASYL 193-194, 200, 224 
Code 

executable, as object 184 
name, and region 77,78 

Collision-free multiple response resolution 
364 

Commands 50-51,115,175-176 
see also Menus 

Communication 
and document management systems 22, 

36-37,59 
networks 58, 93, 181 
of multimedia documents 86-88 
roles 97 

Completeness, and message addressing 
system 253,254-257,264,265,278 

Complex 
kno 386,387,389,390,397 
objects 184, 397 

Composition 13,15,20,117 
Compression 75, 88, 332, 333 
Conceptual 

level 227 
model 4,6,11,20,202 
structure 241, 242 

Concrete objects 195, 196,211 
Concurrency 126, 143,266 
Conditions 165,224 
Conjunctive queries 325,337 



Consistent state, of distributed databases 126 
Constituents, of object types 214-215 
Constraints 

of data model 199 
and decoupled objects 207 
enforcement of, as operation 221 
on field values 207 
in kno population 395 
specification of 28,39, 199,204,222,223 
see also Document constraints 

Containment relationship 215 
Content addressibility 328, 80-83 

of data and text 64 
of images 63,69,77,78,79,88 
of multimedia documents 45,67 
and query environment 68 
and storage utilization 76 
and texture code 79 
user-specified 82-83 
by values 68,72 
of voice 63, 69 

Context-free grammar 234,235 
Control attributes 293,294,296 
Coordinating 

addresses 264 
objects 397 

Coordination 
-free addressing scheme 254,257-260,274 
of imessage copies 128, 130-131 
and knos 383,385,389,391,395 
and message systems 131, 256, 262, 268, 

271,299 
prooffor 261 

Copies 
ofimessages 116-117,125,126 
of object 385,386,387 

Cover aggregation 198-199,214,215 
Create/append mode, for filter construction 

48 
CSMA 364 
Customizability, and user 17,18,20 
Cut sets, of message graph 100-101 
Cycle 257,258,259,260,262,264,307 

DANUBE 204 
DAPLEX 195, 200 
Data 

base see Database 
capture 340 
definition language (DDL) 220,222 
icon, and traditional files 203 
integrity 39, 173 
items, as leaves, of Structure tree 234 
and knos 383,389,396 
language 194, 195 

Office Automation 429 

management facility, of Star 204 
manipulation language (DML) 220 
model 193,196,206,207,220-222,228 
in objects 168, 173 
register 360, 361 
type constraints 222, 223 
types 25,32,217-218,222,231-232,249 

Database 
corporate type of 43 
and event-driven behavior 167-168,224 
and knos 385, 391 
machines 340 
management systems 25, 38, 43, 193, 204, 

209,215-217,224,328,339 
and message system 107-110, 291 
models, for filing and retrieving 231 
and objects 194 
queries 285 
record, as document 43 
relationships 108 
personal, in office enviroment 380 
as schema extension, and form instances 

228 
systems, and browsing 45 
updates, and object manager 176 

Datalogical realms 210 
Date field 28, 46 
Dead and alive objects 383,384-385 
Deadlock 262,264,283,284,303-304, 

306-307,313 
Decision 

-oriented procedures 138 
support 379 

Default 
detection bus 370,373,374 
environment 29,30-31 
state, of multiple response resolver 369, 

370 
Defined image dictionary 77,79,81,84 
Delete, as operation in data modelling 220 
Deletions 318,340 
Delphi experiment, as imessage 121-122 
Dependency constraint 195, 199 
Depth-first search 180, 305 
Descriptive manipulation 8, 10, 11 
Desk-top workstation see Workstation 
Destinations, of imail 116, 118, 130 
Deterministic finite state automaton 

(DFSA) 358,359 
Dialogue, and interface 12,17,18 
Dicomponent nodes 305, 307 
Digital 

as data type 218 
images 59, 328 

Direct manipulation, by user 8, 10, 11 
Directories, and roles 110 



430 Office Automation 

Display see Bit-map displays, Presentation 
Distributed 

approach, to multiple response resolution 
368 

databases 126-127 
lists 96,98 
office systems 201, 380 
queries 141 

Document 
administrator 23, 37 
clustering 326 
communication, and standardization 233 
constraints 27 
creation 246, 247 
data base of Office Filing System 54 
descriptor 74, 87 
editors 231 
fields 25-26,28 
filing 57,247 
flow, and office information systems 200 
formalism 230 
header 44 
as icons in Star 202 
instance 234 
internal structures 232, 234 
management 21-40 
model, criteria for 231 
modification 232, 248 
as object 30, 43 
presentation 233 

see also Presentation 
profile 33 
rendition 248 
retrieval 35,229,233,247 

see also Information retrieval 
server approach 57 
signatures 323, 326 

see also Signatures 
similarity matrix 327 
templates 26, 32 
transformation, and office information 

systems 200 
type 27,39,229,249 
types 26,58,232,317 
and OBE 205 

see also OBE 
see also Multimedia documents, Layout 

Domains 171,183,184,194,199,380 
of relational model, and constraints 199 

Dossiers 35,36,63, 140-141, 150,213,214, 
215 

Dynamic 58, 183, 200, 386 

Editing 6,21,30,31,32,230 
see also Text editing, Graphics editing 

Editors 10, 11,31,86 
see also Formatters, Graphics editors, 

Text editors 
Electronic 

desktop 8 
see also Office desktop, Workstation 

mail 36,93,94,207 
see also Intelligent mail, Intelligent 

messages, Imail, Imessages 
message system, and roles 93 

Emulation 5,6,20 
Enable bus, in multiple responser resolver 

373 
Entity 

as alternate term for object 195 
sets 196, 213 
type 108, 196 
migration 221 
relationship model 194,199,201,213,230 

Envelopes 25, 30 
see also Dossiers 

Environments 29,57,318 
ER model see Entity-relationship model 
Error messages 15-16 
Ethernet 53,124,202,204,364 
Etiquette 93,94,95, 110 
ETUDE 8,31 
EUFC (end users facilities committee) of 

CODAYSL 200 
European Computer Manufacturers 

Association 233 
Event 

firing 186 
manager 181, 182 
searching 180-181, 182, 184 

Events 
to activate SBA boxes 206 
and knos 381,383,384,389,395 
and object manager 179 
of objects 169-171,379 
and triggers 170,285 

Exceptions 6, 138 
Existence dependency 195-196, 199 
Expert systems 395 
Explicit 

constraints 199, 200 
query 142 

Extended 
BNF 235 
relational model 194 
semantic hierarchical modelling 237 

External representation 26,70,209,223 

Facsimile format, for input 247 
False 



dismissals 318 
drops 334-335,336,345,350-351,354 
hits 318, 321 

Fasttalk 46,51,52,54,56,60,61 
Fault-tolerant FSA, for full text scanning 332 
Feedback 15-16,20,327,340 
Field 

condition 142 
constraints, and automatic procedures 

150, 151 
restriction 49 
types, of object 173 
see also Document fields 

File 30,54, 110, 152 
cabinets 30, 34, 35 
folders 25,30,34-35 
of forms 139, 141 
server 57,58,59,202 
structures 317 

Filing 21,34-35,36,231 
Filter 48,49,63,81,84,233,388 
Filtering 45,60,323,345 
Finite 

automata 172,291,302 
state automata 284, 292, 298, 299, 313, 

358, 359 
First Normal Form (INF) 212 

see also Normalization 
Fixed-length don't care 356, 361 
Flat structure 198, 208, 212 
FLDC see Fixed-length don't care 
FOBE (Form Operation by Example) 201 
Folders 202 

see also Dossiers 
Form 

blanks 58, 139, 140, 146 
database 139 
definition 200 
description language 228 
fields, types of 140 
file 139, 141 
flow, between stations 164 
and format system 33-34 
images 142, 154, 163 
instances 139, 140, 147, 152, 228 
as object type 213 
operations, types of 140 
queries 201 
revisable for storage 232-233 
specification facility 165 
template 141, 145 
type 139,142,173,228 
see also Forms 

Formatted 
data 317,319-321,331,340 
databases 342 

Office Automation 431 

document 209 
Formatter 70,87,88 

see also Editors, Text editors 
Formatting 21,32-33,86 

see also Editing, Text editing 
Forms 

and by example approach 62,214 
and relational database 211,285 
and SBA 206 
data models for 209,210,212,214,215 
library of 145 
-oriented procedures 137,139,211 
systems for 139, 201 
message as 284 

FORTRAN 398 
Frei and Goldberg method, of multiple respon-

se resolution, 366-367, 370-371 
FSA see Finite state automaton 
FSM see Finite state machine 
Full text scanning 321,330,331,343,354 

Galileo 195, 197, 198, 199 
Game environment 43,54,60,63 
Garbage 30, 150 

see also Wastebasket 
Gateway server 202 
Generalization 197,230 
Generic 

objects, categories of 24 
operations, of Officeaid 30 

Geometric editor 31 
Gestures, as dialogue techniques 13 
Global 

behaviour, in message management 
systems 283,284,286,292 

conditions 147,155,160 
constraints 151, 155 
query 142 
restriction 147 
variables, of imessages 119 
see also Local 

Glue system, and interface, development 18, 
19,32 

Graph 
chasing 159-163 
and messages 254,256,267,268 
model, and classes 197 
in multimedia document 46,50,71,73 
relations, of RM/T 217 
subsets, algorithm for 161 
traversal, of message state automata 306 

see also Subgraph 
Graphic 

based user interface 201, 202 
data, and unformatted data 209 



432 Office Automation 

document, and data types 231 
objects, and SBA 206 
see also Image, Region 

Graphics 7, 10, 12, 14,25 
editing 14,31,86,87 

Hardware 330, 349 
Hashing 320,323,326,328,329,333,356 
HASPATH relationship 100-104,108,109 
Help 8,17,30,175 
Hierarchical 

data model 193, 194, 198 
database structures, and OBE 205 
menus 12 
polylines 79 
structure, of format environment 33 
relationships of objects 83 
semantic categories, for multimedia concep-

tual structure 242 
Histogram 71,73 
Homomorphic statements 240 
Hopping, as kno movement 385,386,397 
Horizontal expansion, for multiple response 

resolver 350, 351 

IBM 202,205 
ICL 341 
Icons 7,13,49,50,202,203,208 
IDBM 341 
iDBP 341 
IDEAL 31 
Image 

content addressibility 80,83,88 
data 209,219,221 
description 51, 52 
dictionary 77-78,81 
document and data types 43, 218, 231 
and document management systems 25 
editing tools 31, 52, 88 
filter 64, 81 
in multimedia document 44,67,71,73 
objects 71,72 
queries 81 
recognition 64 
regions of 77, 78 
restrictions 50 
scrolling 60 
structure for 32 
text part 73 
types 50, 52, 60, 71 
see also Digital images, Graphics 

Imail 
distribution 118, 124-132 
language 117, 119, 123 

prototype 117-124, 132 
receiving of 117 -118 
see also Intelligent mail, Intelligent 

messages 
Imessage 385,387 

centralized 126 
example of 120,121,122 
creation of 119-120 
dynamic routing of 386 
interaction of 115, 116, 117 
and kno 389 
polling by 121-122 
spawning of 117,125,130,132 
stages of 117 
and volunteers 121, 129 
see also Intelligent message, Intelligent mail 

Inconsistencies, in knowledge bases 380 
Independent objects 195,212 
Index states 358, 359 
Indexing 340,342 
Infinite 

firing, and Petri net, proof 311-312 
loops, and message flow 260,283,305,309 

Infological realms 210 
Information 

control nets (ICN) 201 
extraction 70,86,87,339 
for kno 388 
mobilization 379,381 
in organization 379 
retrieval 326, 339 

Inherent constraint of data model itself 199 
Inheritance scheme 33 

see also Multiple inheritance 
Innovation approach 5,6,20 
Input 

and blocking 303 
and message states 299 
devices 7,8,13,20 
tuple, of messages 289,290 

INRIA 201 
Insertion 67,68,69 

in data modelling 220 
into Office Filing System 53, 55 
in office system 317 
in text retrieval system 331,340 
time 77 

Instance 
category 24, 30 
graph 155, 156, 157, 159 
level, and type level of HASP A TH 

relationship 103 
of object class 169 
variables 169,171,172,179,180,183,197, 

199 
see also Document instance 



Instantiation 197, 236, 239 
Instavox RA-12 Rapid Access Audio Unit 

53, 61 
Integration 21,328,337 
Intel 341 
Intelligence, of knos 394-396 
Intelligent 

mail 114,396 
see also Imail 

messages 109,113,173,313 
see also Imessages 

objects 124 
Interactive 

formatters 33 
system 7,9 
text-editors 8 

Interface 8, 115, 286 
for browsing and extraction 86, 87 
see also User interface 

Internal 
representation 26, 67, 70, 74, 223 
structure 232, 236 

International Standards Organization 233 
Interpretation of data, and user 195 
Interpreter, and translation phase of actions 

163 
Intersection of Structure Trees 239-240 
Inversion 322,323,329,330,331 
Inverted file 319,343 
I/O 

intensive, document searching as 57 
rule 174, 175, 180, 382 

Joins 39,142,157-158,160,194 
Joystick 13, 61 
Junk mail 93,110,117 

Kayak Project 201,204-205 
K-d trees 319,330 
Key 28,199 

access methods 328,329,330 
Kleene closure 363 
Kno 

behaviour of 389,390,394,395,397 
birth of 383 
copies of 385,386,387,390,397 
courtship 389, 390 
death of 383, 392 
definition of 381 
environment of 396 
intelligence of 394-396 
object coordination and 389,390 
rules for 388, 389 
species 390-394, 396 

spider 389 
worm 388 

Office Automation 433 

see also Simple kno, Complex kno 
Knowledge bases 380,395 
KRL (knowledge representation language) 

201 

Language see Imail, Oz 
Laurel electronic message system 95-96 
Layout, for documents 26, 227, 241, 242, 

243, 248, 249 
see also Screen layout 

Leaf statement, of Structure Tree 237, 238 
Lec, and imail 118 
Letters 50, 58, 385 
Lewin's method, of multiple response 

resolution 367, 368 
Lisa 8, 15,48,202 
LISP 138, 183,229 
Live 

node 234, 238 
statement 237,238,249 

Local 
area network 53,57,124 
conditions, and sketch graph 159-160 
constraints, for forms 151, 152, 155 
query 142 
restrictions, for sketchs 147 
variables, of imessages 119 
see also Global 

Locations, in message model 288, 291 
Locking 118, 124, 127, 129, 153, 155 
Log, for message routing 267,268,269, 

270-271, 280 
Logical 

independence, and modelling 
methodology 195 

integration, for editing facility 32 
level, for document internal structure 227 
relationships, and physical access paths 

194 
structures, and documents 243,246,248 

Logic-with-pattern/-with-text, as pattern 
matcher 354,355-360 

Loops see Infinite loops 
Lotus 1-2-3 398 
LSI-11123 165 

Macintosh 8, 15 
MacPaint 31 
Magnetic bubble 347 
Mail 

address, to originate and receive mesages 
254 



434 Office Automation 

and automatic procedures 
and default environment 

153, 154 
30 

and document management facility 21,36, 
205 

forwarding 286 
handling, as message addressing with 

completeness 275-277 
trays 30,36, 141, 154,202 
see also Electronic mail, Imail, Imessages, 

Intelligent mail 
Mailboxes 98, 116, 118, 124, 287 
Mailing list role 106-107 
Management and communication 93,94,98, 

110-111 
Manager, as office role 23 

see also Object manager 
Manipulation techniques 18, 20 
Manual 

fields, of form 140 
functions, concurrent with automatic 146 

Mapping 108,207,219 
Mask see Query mask, Signature masking 
Mass storage, and moving-head magnetic 

disks 341-342 
MC68010 53,60,68 
MD see Multimedia document 
MEDLARS 323 
Membership-testing functions 223 
Memory 182,260,341,347,373 
Memoryless addressing schemes 254, 

257-260,274 
Memos 385 

see also Letters 
Mental model see User's mental model 
Menus 7,12-13,15,47,123,205 
Message 

addressing scheme 253,254,278 
attributes 96, 288 
behavior 283-284,298 
content, and system based decisions 254 
creation, and blocking 304 
dead-end for 304-305 
domains 283,284,288,292,294 
enabling of 290 
flow 292,297,300 
forwarding 101, 116,254 
instance 288 
loop 284,309,310 
number, as system command of Oz 176 
ordering of 94 
passing language 205 
passive and active 114 
paths 291-294,297 
procedure execution and 268 
processing, on first in first out basis 257 
receipients, evaluation of 254 

routing 114, 144,270 
states 274,291-296,299,303,305 
systems 94-97, 100, 107-110, 204, 283, 

285 
type 96, 101, 113, 288 
values 288, 292 
see also Imessages, Imail, Intelligent 

messages, Intelligent mail 
Meta 

class 197 
grammar 241, 249 
messages 116, 125, 127, 129, 385 
type 24,30 

Miniatures 37,43,45,46,47,51,54,56,60, 
62,83,86 

MISTRESS relational data base 40 
Mnemonics 8 
Modes 13-14,20,48 
Mouse 7,12,13,60,202 

see also Unformatted data 
Movement 30, 144, 391 
MPC 341 
MRR see Multiple response resolution, see 

Multiple response resolver 
MRS 139,141,165 
Multiattribute 

hashing 329, 330 
tree access 319 

Multimedia 
data 205, 209, 210, 217, 218 

see also Unformatted data 
document 204 

model 249 
structure 44,67,71,72 

documents 
and commerical data base management 

systems 27 
and concept of type 25,227 
creation of 70 
editing and formatting of 229 
and filing 43 
interface for 86, 87 
storage and retrieval 60 

and office 67,219,325 
and signatures 325 

MULTIPLAN 398 
Multiple 

inheritance 198, 201, 339 
response resolution 364-374 
response resolver 341,350,356,366,375 

Multipletype documents, of Kayak 204 
Multivalued property 196, 212, 213 
MUMBLE 218 



Name catalogues 241 
Naming/addressing logic 253 
Natural structure 194, 195 
Negative dictionary 326, see also Stop list 
Network 59, 107, 116, 124, 130, 132, 139, 

186,328 
model 193, 194 
loosely-coupled type of 116, 132 

see also USENET 
ring type of 204 

Newsgroup 95, 96, 98 
NFSA see Non-deterministic finite state 

automaton 
Non-determinism, and message flow analysis 

291 
Non-deterministic finite state automaton 

358, 359 
Normalization 194 

see also First normal form 
NUDGE 200, 201 
Null field restriction 49 

OBE 107,108,141,146,164,205,206 
Object 

alpha rule for 171 
assert statement for 184 
BNF for 187 
caption 72 
classes 168-169, 171-172, 176, 187 
composite type of 242 
definition 179 
domains 183, 185-186 
environment, and rule specification 104 
and fail statement 184 
as free agent 183 
form, and internal representation 74 
as imessage 115 
identification, and object swapping 181 
implementation, and suitable architecture 

177-178 
instances 171, 220 
for knowledge base 380 
kno brain as master type of 386, 386, 387 
management 176, 179-181 
manager 

communication 386, 397 
and events 179, 180 
and knos 381,384,385,394,395 
messages 175,178,385 
and pipes 177 
and system programmers 382 
and user processes 178 
and virtual memory 181 

model 168-173 
modularity of 168 

Office Automation 435 

movement, and data model requirements 
208 

orientation 208, 210 
oriented 

approach 195 
programming 167,168,181,390 
systems 109,396,397 
view 22,23,39 

overseer type of 186 
owner of 169 
as real-word entity 195 
representations, and real-word enttities 

195 
rule actions, and procedure object 171, 172 
specifications 170, 184 
systems 114, 186 
as tree 212 
types 196,210-217,224 
universe 176, 183, 186 
world, hierarchical type of 173 

Objects 
and analogies from animal world 379 
compared to other data types 168 
complex 184 
contents of 168 
and databases 194 
interactions of 115, 116, 117 
as interfaces 181 
lists of 184 
as messages 313 
nonentity associations of 196 
and SBA 206 
and specification changes 185 
storing and retrieving 179-180 
symbol table of 179 
as tuples 212 
see also Characteristic objects, Concrete 

objects, Independent objects, 
Generic objects 

OCR see Optical character recognition 
Odyssey 200,201 
Office 

activities, and event-driven behavior 167 
automation, and procedures 137 
-by-Example see OBE 
data model 208, 210, 212, 213, 215, 218, 

220,222,224 
desktop 8,202 
Document Architecture standards 227, 

231,233 
Document Interchange Formats 233 
environment, and knowledge base 380 
filing system 43,46,50-51,53,57 

see also OFS 
of the future 124 
information systems 59,167,193,200,379 



436 Office Automation 

objects 43,207 
procedures 138, 139, 172 
roles 22, 23, 36 

see also Roles 
simulation of, and user acceptance 285 
systems, integration of 21 
Talk-D 201 
Talk-Zero 201 
users, and imail interface 123 
workers 139, 164, 165 
workstation 201,204 

Officeaid 21,22,24-27,29,30,32,33,36, 
39-40 

Officetalk 164 
OFS 35, 139, 141, 145, 163, 165, 201 

see also Office filing system 
OIS see Office information system 
OPAS (Office Procedure Automation 

System) 201 
Operating systems 131, 182 
Operations 8,9,39,137,220 

see also Generic operations, Systems 
facilities 

Optical 
character recognition 59, 69, 70 
disks 57, 59, 337, 342 

Organization hierarchy, and electronic mail 
94 

OSL 138 
Output 290, 299 

see also 110 devices 
Ownership 116, 169 
Oz system 168, 172, 174, 176, 180, 181-184 

Paper 62,67,70 
Parallel comparator, and associative 

memory 355 
Parallelism 349,359-360 
Parameter values 71, 72, 78 
Pascal 167,197,229 
PASCALR 396 
Path 

in message system 96,257,258,259,292 
type 101, 102, 107 

Pattern 
and finite state transition table 358 
matching 339,340,354,355,356 
recognition 44,45,69,77,80 

PBX (private branch exchange) 124 
Perceptual level of contact, of user and 

systems 3 
Perimeter descriptor, as region parameter 

78-79 
Petition, as immessage 127 
Petri nets 172,283,284,201,291,292, 

299-303, 309, 310, 313 

PFSA see Finite state automaton 
Physical 

access paths, and logical relationships 194 
document, as presentation form 75 
level of contact, of user and system 3 
message structure 76 

PIC 31,87 
Picture 

box 207,209 
as image type 50 
units, as attributes of entity class 230 

Pie charts 46,50, 71, 73 
PIE (Personal Information Environment) 

200 
Pipes 54,177 
PLll 229 
Play, and browsing method 45 
PLUME 204,205,208,209 
Pointer file, of document data base 54 
Pointing device, of Kayak 204 

see also Mouse 
Polygon, and PLUME document 205 
Polylines 71, 72, 79 
Post office, as central machine for imail 124 
Postcondition 27, 150, 151, 224 
Postfix syntax 9, 10 
Precision, and recall 318, 340 
Precondition 27,146,224,396 

sketch 147,151-156,158 
Predefined hopping 386 
Preemption, dilemma of, and modes 14 
Prefix 9, 10, 175, 326 
Preprocessing procedures, and TLA 153 
Presentation 74, 75, 86-88, 210, 219, 221, 

233, 241, 248 
Print command 119,230 
Printers 30.59.202 
Priority circuity, and multiple response 

resolution 365,366 
Procedural 

approach, to message system 109 
interface, for imail 123 

Procedure 
executions 268-269 
loops 284, 308-313 
for message processing 289,291 
specification 37, 137 
and state transitions 284, 296, 298, 302 
and workstations 286, 313 

Processes 176, 177,398 
Production rules, and interactive system 9 
Program, in objects 168 
Programmers 174,382 
Programming environment see Object-ori

ented programming environment 
Programming-by-example 286 



Projection, on base document type 39 
Propagation delay 371 
Properties 

as attributes 212 
of objects 192, 194, 196,211,242 
see also Multivalued property, Single-valued 

Property 
sheets, and data icons 203 
value, as constraint 199-200 

Protocols 29,94 
Prototyping 4, 18 

see also Imail prototype 
Pseudo 

forms 148 
sketch, example of 149, 150, 165 
stations, for object creation and 

destruction 287 

QBE (Query-by-Example) 35,36, 141, 146, 
205,206,207,398 

Queries 
on forms 139,285 
on images 80-81, 85, 88 
and inverted files 343 
and knos 396, 398 
on parts of words 331 
scope of 142, 144 
see also Cognitive queries 

Query 
-by-Example see QBE 
formulation 88,229,247,340 
fuzzy type of 35 
as generic operation 30 
group type of 142 
language, user-oriented 58 
manager 143, 144 
mask 349 
processing 144,248,345 
reformulation 63,67,83,88 
on signature file 324 
sketch 141, 143 
signatures 345 
and traditional DBMS 68,69,70 
types, as instances 240 
vector representation of 327 

Questionnaire, as imessage 120 
Queue 180, 182 

R2D2 (Research-to-Development-Tool for 
Message Processing) 114 

Ramamoorthy, Turner & Wah method, of 
multiple response resolution 368, 
370-373 

Raster 51 

Office Automation 437 

display, of image data 219 
form 71,72,74 
graphics 204, 218 
objects, part of raster form 72 

Real-world entities 195, 215 
Recall, and precision 318,340 
Record instances and types 194 

see also Documents 
Rectangles, of physical pages 75 
Recursive blocking 307-309 
Rewon 71,72,77,78-79,83,205 

expansion techniques 77, 83 
Regular expressions 354,359,362,363 
Relation, as document type 27 
Relational 

data base management system 27, 142, 328 
data model 193,194, 199,211,212,230 
queries 205 
schema, and object to relations map 215 

Reports 62,205,213 
Representation see External representation, 

Internal representation 
Responders 366, 367, 368, 370, 372 
Response, and imessages 115, 118, 119, 127 
Restrictions 

statements, and document type definition 
249 

and user's ability to recall 6 
as dynamic constraints, in Structure Tree 

237 
on images 50 

Retrieval 21,30,35-36,220,331 
see also Information retrieval 

RMrr 194,196,197,215-217 
Roles 

authorization types of 96, 97 
bulletin board and 105-106 
and communication 97, 100 
directed acyclic graph of 99 
and mailboxes 98 
mailing list and 106-107 
in message system 94, 96, 101 
as objects 104, 173 
relationships of 98-99 
and relationship to persons 104-105, 110 
system supplied form for 234 
trees of 99, 100 
types of 98,101-103,108,109,201 
see also CANPLA Y, HASP A TH 

Routing 
actions 296 
address, to forward message 254 
attributes 293, 296 
by each message independently 257 
dynamic vs. static 116 
functions, in message system 291 



438 Office Automation 

knowledge, of message system 254 
logical and physical 254 
logs 267 

see also Logs 
of imessages by copies 126 
of message set and correctness 266 
procedure 254, 256 
see also Hopping 
specification, and application-specific envi

ronment 37 
Rules 

BNF for 187 
dynamically invoked 170,185 
as instances variables 185 
for knos 381,395,396-397 
in message system 96,97,103-107 
and objects 109, 168, 169, 171, 184 
statements for 179 
triggering and 180 

Run-
length coding 333, 334 
time support tools, and user interface 18 

SBA (System for Business Administration) 
114, 141, 146, 164, 165, 168, 202, 
205-208,209 

Scheduling 144,201 
Schema, and data definition 220, 228 
SCOOP 138, 164, 201 
Screen 

layout 31,47,176 
of Oz interface 175 
real estate 12, 16,47, 137 

Scribe 31 
Script 115, 205, 394 
Scrolling 51, 60 
SDM 194,197,199 

see also Semantic data model 
Search 44,55,56,327,345,347,351,352 
Selection 

attributes 293,294,296 
conditions 141-142 
on base document type 39 

Semantic 
binary data model 194 
data models 194, 195, 196, 198, 208, 209, 

212,213,214,230 
see also Specific model type, ego entity-

relationship model 
hierarchy model 194, 197 
integrity constraints 199-200, 208, 223 
modelling, and aggregation concept 237 
network interfaces 248 
objects 206 
overloading, and relational model 194 

Semaphores, for imessages 131 
Sender 46, 115, 117, 118 
Sequence constructor 243,244 
Sequential 

file 44,346 
states 358-359 

Serial 
comparator, and associative linear array 

processor 360 
log 271,272 
routing 266 

Serializability 253,254, 266, 267, 271-274, 
278 

Serialization 126, 128 
Server 58, 202 

see also Document server, File server, 
Gateway server 

Set 
currency, as operation in data modelling 

220 
types, of CODASYL model 194 

Shade and colour 79,81 
Side effects 163, 186 
Signature 

document field 28 
extraction 317, 332, 334 
file 54,317,320-321,329,330,331,337, 

344-346, 362 
and masking 348 
methods 332-337 
processor 339,341,345,346-353, 

374-375 
size 336 
store, memory design for 353 
techniques, for multimedia documents 43, 

52 
Signatures 323- 326 

as access method 60,67,84,85-86 
and attribute values 85 
bits in 350-351 
concatenation of 204 
as document abstraction 51 
of region 86 

Similarity functions 82, 83, 85 
Simple 

condition, for form query 142 
knos 386,396 
pattern 363 

Sink 257, 287 
Sketch graph 155, 156, 158, 159, 163 
Sketches 145, 146, 147, 151, 152, 155 
Smalltalk 11,15,168,200,203 
Snobol 183 
Sorting, and multiple response resolvers 372 
Source 257, 287 
Spanning tree 298 



Specialization 197-198,213,221 
Specification 139, 239 
Speech 61,69,204 
Spiral hashing 320 
STAIRS 323,330 
Standards 227,231,233,242 
Star Information System 8,9,16,32,48,201, 

202-204,205,206,208,209 
State 

for address memory 260 
changes 270,381 
compete type of 369 
and context-sensitive 13 
of document data base 28 
of imessage 115, 127, 130 
and message domains 283, 284 
of message system 254, 292 
snapshot approach to 200 
transitions 19,200,261,296-299,304 

States, avoidable or unreachable 304, 305, 
306, 307 

Stop list 324 
Storage 76,341-342,343 
String searching 44,321,322,331 

see also Pattern matching 
Strong type 231,239 
Structure 

editors 229 
tree 229,234,236,239,249 

Subgraphs, of instance and sketch graphs 
157-158 

Substring test 321-322,324 
see also Pattern matching 

Suffix list 326 
SUN 39,47,53,56,60,176 
Superimposed coding 84, 321, 323-326, 

328-329,332,334,337-339,341,352, 
354 

Synonyms 323,327,331 
Syntactic 

integrity constraints, and syntax directed 
editors 229 

structure of document 241 
Syntax directed 

approach 227,249 
editors, and flexible internal structures 234 
modelling approach 229,231 

System 
administrators, and interface to Oz 174 
commands, of object-oriented programming 

system 175-176 
facilities 28, 39 
model see Conceptual model 
resources 23, 24 
state, of message system 289 
status feedback 16 

Office Automation 439 

type, of multimedia document 247 
types, as classification 248 

Systolic array 356, 357 

Tables 25,46,50,71,73,206 
Tablets 7, 12 
TARO (TAble ROnde) 204 
Taxis 172,194,197,198,199,200,220 
Templates 37,123,139,219,221,233 

see also Document templates 
Temporary 

rules 175,181 
variables 179, 185 

Terminal 
node, of Structure Tree 238 
and object interface 181 
as objects of default environment 30 
production, and context-free grammar 235 
statements, of Structure Tree 236, 238 

Termination 115, 383 
Test-and-set, for imessages 131 
Text 

data, operations on 221 
data types 25, 204, 218 
databases 339,341 
document 43,44,231 
editing 6, 8, 14, 35, 54 

see also Formatters, Editors 
formatting systems 209 
graphic system, and operations syntax 10 
of image 71, 72 
and kno 389,396 
in multimedia document 67, 71 
object 184 
processor 339, 341, 345, 354-364 
retrieval 

access methods for 317,321-323, 
330-331 

machines 57,340,343,374 
system 339, 340, 346 

scanning filter 57 
units, as attributes of entity class 230 
values, and signature technique 52 
see also Unformatted data 

Texture code 79,81 
Thesauraus 84, 340 
Throughput, for distributed databases 127 
TIGRE project 230 
Time 

conditions, as system state 145 
independence 253,254,274,278 

Timeout, and imessage termination 118 
Timer intervals, as kno age process 384 
Timestamps, for query processing 144 
TLA (Three Letter Acronym) 144,146,147, 

151,152,163,164,201 



440 Office Automation 

Token 
as alternate term for object 195 
and imessages 129, 130-132 
in message state 302 

Transactions 126, 221 
Transfer 

performance 4, 10 
rate, and optical disks 342 

Transitions, in petri net 302 
see also State transitions 

Transmission, of multimedia document 67 
Transposed file 347, 348, 350 
Tree 158, 180, 194, 212, 229, 319, 320, 341, 

366 
machines 341 
see also B-trees, Binary trees, K-d trees 

TRIE 323 
Trigger 

condition 171,172,284,289,294,295,299, 
303,305 

deletions 211 
for knos 383 
procedure, in message system 290 
and query 285 

Triggers 223-224,296 
automatic 139 
and events 285 
for execution of rule 169 
for forms 137, 151 
of messages 296-297 
of object rules 168 
and object types 224 
as semantic integrity constraints 223 
and TLa 153 

TRM see Text retrieval machine 
Troff formatter 87 
TRS see Text retrieval system 
Type 

and additional properties, in TAXIS 198 
and classes 197 
category 24, 30 
concept 228, 230, 232 
constraint 199 
definition 229,240 
for generalized letter, example of 244 
for product annnouncement letter, example 

of 245 
Typeless class 197 

Undo operation 17,30 
Unformatted data 209, 217, 218, 221, 317, 

340 
Uniqueness constraint 199 
University of Toronto Computer Systems 

Research Institute 22 

UNIX 39,44,53,87,118,139,145,165,176, 
177 

USENET 95,107,124-126,131 
User 

acceptance 3, 5 
aids 16,20 
and browsing 46, 47 

see also Browsing 
and cognitive burden 9, 12 
controllable grouping, and aggregation 

198 
and data capture 340 
and errors 9 
and knos 381,394-395 
defined data types 218 
environment, and design choice 139 
of imail system 123-124 
input, to message system 291 
interaction, and automatic procedures 164 
interface 3, 18, 19,20,37, 138, 173,201, 

397 
level of 12, 285 
and mental model 4, 11 
messages, and object manager 178 
and modes 14 
object 173-175 
and offices roles 22 
queries, as regular expressions 354 
and rule creation 174 
specifications of constraints by 39 
status feedback 15 

see also Feedback 
workstation 59 

Value-ordered retrieval 364,366-368,371 
Variable 

bit-block compression 333, 334, 338 
lenght don't care 356, 357, 358 

Variables 
for kno 389 
of imessages 118, 119, 129 
see also Instance variables, Temporary 

variables 
VAX 111780 57, 176 
Vector 

addition system, as Petri net 310 
form, of image 71 
graphics, as data type in Kayak 205 

Vertical expansion, of words for multiple 
response resolver 350, 351 

View 
of document types 27 
and external representations 209 
mode 48,49 
and object 173 



of stored document 38 
specification, and templates 219 

Virtual 
document, as view of stored representa

tion 38 
input device 7 
memory 181 

Visual representation 7-8,11 
VLDC see Variable-length don't care 
Voice 

annotation 46, 54, 74 
and content addressibility 83 
document 43,44,53,75 
editor 32, 54, 86 
excerpt 43,46 
hardware 8 
in multimedia document 67 
recognition 13,64 
response system 201 
restriction, in document retrieval 50 
segments, as document annotations 64 
structure for 32 
words, of voice document 73 

Office Automation 441 

Wastebasket station, for destroying forms 
141 

Weak 
entities, and dependent objects 195 
type 239,247 

Windows 7,32,203,209 
Word 

level indexing 323 
recognition 204 
-parallel, bit-serial approach 350-352,375 
-serial, bit-parallel approach 347-349,375 
signature 332, 334 

Working set 146,150,151-153,155-164 
Workstation 53, 58, 139,202,204, 284, 285, 

313,394 
see also User workstation 

Worm 124,381,387,388 
WPBS see Word-parallel, bit-serial 
WSBP see Word-serial bit-parallel 

Xerox 6,201 
see also Star 

Yacc, and imail 118 



Springer-Verlag 
Berlin 
Heidelberg 
New York 
Tokyo 

On Conceptual 
Modelling: 
Perspectives from Artificial 
Intelligence, Databases, and 
Programming Languages 

Editors: M.L.Brodie, J.Mylopoulos, J.W.Schmidt 

1984. 25 figures. XI, 510 pages 
(Topics in Information Systems) 
ISBN 3-540-90842-0 

Conceptual modelling relates to all areas of computer 
science, but especially to articificial intelligence, data
bases, and programming languages. Here is the first 
published collection of state-of-the-art research papers 
in these domains. Its purpose is to consider concep
tual modelling as a topic in its own right, rather than 
as an aspect of data modelling, and to present and 
compare research on knowledge representation, 
semantic data models, and data abstraction in this 
context. 

The contributions consist of overviews and reports, 
each chapter having been written and edited for 
readers in all three areas. Also included are transcripts 
of symposium discussions which took place among 
the contributors during a workshop on conceptual 
modelling at Intervale; these interdisciplinary discus
sions of each paper clarify many aspects which might 
otherwise remain obscure to nonspecialists. Key 
features of the book include introductions to pertinent 
concepts, and the integration of recent results; focus 
in twelve research projects, involving specific applica
tions such as database design; and challenging sugges
tions for further research, especially in the concluding 
comments by leading experts in the three main fields 
of inquiry. 



Springer-Verlag 
Berlin 
Heidelberg 
New York 
Tokyo 

Query 
Processing 
in Database 
Systems 
Editors: W.Kim, D.S.Reiner, D.S.Batory 

1984. Approx. 127 figures. 
Approx. 352 pages 
(Topics in Information Systems) 
ISBN 3-540-13831-5 

Contents: Introduction to Query Processing. 
- Query Processing in Distributed Database 
Manegement Systems. - Query Processing 
for Multiple Data Models. - Database 
Updates through Views. - Database Access 
for Special Applications. - Techniques for 
Optimizing the Processing of Multiple 
Queries. - Query Processing in Database 
Machines. - Physical Database Design. -
References. - List of Authors. 

This book is an anthology of research and 
development results in data-based query 
processing during the past decade. The book 
guides the reader through most of the impor
tant topics in query processing, organised 
around 7 sections. These sections each 
include one to three articles that summarize 
different views and emphasize different 
asp ects of research. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




