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Let Eo ::; El ::; E2 ::; ... be the energy levels (eigenvalues) of the 
Schrodinger operator H = -~.1 + U(q) on a closed d-dimensional Rie­
mannian manifold I'v[d. Here 

1 8 .. 8 -.1 = ___ .(ygg'J_.) 
yg 8q' 8gJ 

(1) 

is the Laplace-Beltrami operator and to ensure the discreteness of the spec­
trum of H we assume, in the case of a non-compact M d , that limq-+oo U (q) = 
00. For simplicity we assume also that Md has no boundary. Otherwise it is 
neccessary to supply H with Dirichlet (or some other) boundary conditions. 

The main problem we are interested in is the statistics of the energy 
levels {Ek' k ::::: O} in large spectral intervals. To be more precise we describe, 
following works [4], [7], two concrete problems. Let N(E) = #{k I Ek ::; E} 
be the counting function of the energy levels. By #A we denote the number 
of elements in a set A. 

1 Distribution of Level Spacings. Let .1Ek = Ek - Ek- 1 , k ::::: 0, be 
spacings between neighboring energy levels. We are interested in the limit 
distribution of .1Ek in the spectral interval Eo ::; Ek ::; E, when E --+ 00. 

Let us define the distribution function of the spacings, 

where 

P( . E) = #{ k I Ek ::; E, .1Ek ::; x.1E} 
x, N(E) 

E-Eo 
.1E = N(E) 

is the mean spacing. The problem is: Does the limit 

(2) 
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P(x) = lim P(Xj E) (3) 
E-+oo 

exist and if so, what is P( x)? 

2 Distribution of the Number of Energy Levels in Intervals of a 
Prescribed Length. Let A > 0 be a fixed constant. Let us define 

An (E) = {Eo :s; E' :s; E I #{k IE' :s; Ek :s; E' + ALlE} = n}, n;::: 0, (4) 

and 
7r(nj E) = (E - Eo)-t [ dE'. 

JAn(E) 

One can see that 7r( nj E) is the probability that a spectral interval 
E' :s; Ek :s; E' + Af).E, with E' uniformly distributed in [Eo, EJ, contains 
exactly n energy levels. The problem is the existence and the calculation of 

lim 7r(nj E) = 7r(n) , n;::: o. 
E-+oo 

(5) 

A general conjecture is the following. Assume that the flow in the cotan­
gent bundle T* Md over Md generated by the Hamilton equations 

. 8H(p, q) 
q= 

8p 
. 8H(p, q) 
p=-

8q 

with H(p, q) = tp2+U(q) is a completely integrable system, i.e. there exist d 
Poisson-commuting independent integrals ofthe motion It(p, q), ... , Id(p, q). 
Then in 'typical case' the limit distribution P( x) in (3) is exponential, i.e. 

_ dP(x) 
p(x) = -a;;- = exp( -x) (6) 

and the limit distribution 7r(n) in (5) is Poisson, i.e. 

An 
7r(n) = -, exp( -A) . 

n. 
(7) 

It is noteworthy, that the limit distributions (6), (7) are the same as if the 
energy levels Ek were independent random variables, uniformly distributed 
in the interval Eo :s; Ek :s; E. Therefore (6), (7) can be interpreted as the 
absence of an interaction between energy levels. 

A proof of (6) was given in the pioneer work [4J of Berry and Tabor, but 
it was not completely rigorous. The ideas of [4J were used by Sinai in [7J to 
prove (7) for the Laplace-Beltrami operator on two-dimensional revolution 
surfaces. In that case the geodesic flow is integrable because of the Clairaut 
integral. The strategy of Sinai was the following. Let M2 be a periodic 
revolution surface in R3 which is defined in cylindric coordinates (r,cp,z) 
by the equation r = J(z), where J(z) > 0 is a smooth periodic function, 
J( z + a) = J( z). Let ds 2 be the Euclidean metric, restricted to M2. Because 
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of the periodicity of f(z) we may consider z as a cyclic coordinate, so that 
M2 is a compact Riemannian manifold diffeomorphic to a torus. For the 
sake of simplicity we will assume that f( z) has only one maximum and one 
minimum, both non-degenerate, in a period. One can choose a new cyclic 
coordinate s = s(z) in such a way that the eigenvalue problem -L1u = Eu 
on M2 is written as 

82u 82u 
-- - - = Ef2(S)u 

8s2 8cp2 
(8) 

We look for u in the form u( s, cp) = v( s )eincp , and for v( s) we get the 
equation 

(9) 

with periodic boundary condition. The integer n is a parameter of the equa­
tion. For every n we have, obviously, a sequence of eigenvalues Emn , m 2:: 0, 
of (9). 

Now the problem is decomposed into two stages. At the first stage we 
solve (9) in the quasi-classical approximation (QCA) and at the second 
one we deal with a geometric probability problem. The main difficulty of 
the first stage is to obtain uniform estimates of the remainder term of the 
QCA and to show that almost all eigenvalues of (9) can be found in the 
QCA. This problem was solved in [1]. It is important to stress here an 
aspect of multiplicity of the eigenvalues. Let us note first that actually 
every eigenvalue Emn is twice degenerate, when n # 0, since Em,-n = Emn. 
Besides, an analysis of the QCA shows that for every n 2:: 0 there are two 
series of eigenvalues, 

E~l) = {Emn I Emnf!in - n2 > O}, fmin = minf(s), 
8 

such that the eigenvalues of the first series are asymptotically twice degen­
erate, namely for all N > 0, 

while the eigenvalues of the second series are strongly separated each from 
other. The Bohr-Sommerfeld quantization condition is written as 

118 (a) 
- JEmnj2(S) - n2ds = 2m', 
7r 0 

m = 2m' - 1, 2m' 

for the first series of eigenvalues and as 

1182 1 - JEmnj2(S) - n2ds = m + -
7r 81 2 
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where 81,82 are the turning points, EmnP (81) - n2 = EmnP (82) - n 2 = 0, 
for the second one. Because of different asymptotic multiplicity of eigen­
values in the two series, it is neccessary to establish the Poisson law (7) 
for each of them separately. With the help of quasi-classical quantization 
conditions this problem is reduced to a geometric probability problem. Sim­
plifying it somewhat, we can formulate it in the following way (see [7J; for 
a full formulation see [1]). 

Let, be a curve in the plane which is defined in polar coordinates (r, Q') 
by the equation 7· = G( Q'), Q'o :::; Q' :::; Q'1, where G( Q') is a positive continuous 
function. Let ,R with R> 0 be the curve which is defined by the equation 
r = RG( Q'), Q'o :::; Q' :::; Q'1, so that ,R is just the homothety of , with the 
coefficient R. Let II R be the strip in the sector Q'o :::; Q' :::; Q'1 between, Rand 
'R+...L, where'\ > 0 is the same as in (4). Let 7rk(E) be the probability that 

2R 

IIR contains exactly k integer points (m, n) assuming that R2 is uniformly 
distributed in [0, EJ. The problem is to prove that 

,\k 
lim 7rk(E) = -k' exp( -,\) 

k--+CXJ . 
(10) 

A 'stochastic' version of this problem was solved by Sinai and Major 
(see [8], [5]). They introduced a class of probability distributions on the 
space Lip+([Q'o, Q'd) of positive continuous Lipschitz functions on [Q'o, Q'1], 
for which they proved the following theorem: For every probability dis­
tribution P from this class, (10) is true for P-almost every function 
G(Q') E Lip+([Q'o,Q'd). In particular, it proves an existence theorem of 
curves, = {r = G(Q')}, for which (10) is true. In this respect it resem­
bles the famous Cantor's proof of the existence of transcendental numbers. 
The situation here is however even more surprising: No example of, for 
which (10) is true is known now. On the contrary, there exist examples for 
which (10) is known to be false, e.g. ellipses with rational principal axes (it 
corresponds to a plain torus with rational periods as M2) and some others. 

The Sinai - Major result combined with the estimates of QCA in [IJ 
supports strongly the following 'stochastic' version of the Poisson conjec­
ture (7): For almost every revolution surface with respect to a probability 
distribution P, limE--+CXJ 7r( n, E) = 7r( n) exists and is a mixture of Poisson 
distributions with multiplicities 2 and 4. This problem remains open. 

Let us turn now to linear quantum systems. In that case the Schrodinger 
operator is written as 

H = ~ ~ (-~ + w~ q~) 
2 ~ 8q2 J J 

J=l J 

and its energy levels are Em = Eo + (m,w), where m = (m1, ... ,md), 
m1,···,md 2: 0, w = (W1, ... ,Wd), (m,w) = m1Wl + ... + mdWd, Eo = 
1/2(Wl + ... + Wd), so we are dealing here with the statistics of numbers 
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of the form (m,w). Let d = 2. Since mtWt + m2W2 = wt(mt + m20:), 

0: = wdwl, it is enough to consider the numbers {Amn = m+no:; m, n ~ O}. 
Let .,:1Amn = Amn - Amini be the spacing between Amn and the previous 
level, and Pa(x; E) be the distribution of .,:1Amn/.,:1A in the spectral interval 
0:::; Amn :::; E. Here .,:1A = E/n(E) is the mean spacing. Again the problem 
is: Does limE ..... oo Pa(x; E) = Pa(x) exist and what is Pa(x)? This problem 
was studied in works [4], [6], [2,3] and others. We present here the main 
result of [2,3]. 

Let 0 < 0: < 1 be an irrational number, represented by a continued 
fraction [at, a2, .. . ]. Let ~ = [at, a2, ... , ak], k ~ 1, be the approximants of 
0:. We are interested in 

and we formulate two results, negative and positive. 

Theorem 1 (negative result) For almost every 0:, lim Pa(X;Pk) does not 
k ..... oo 

exist. 

k 

Theorem 2 (positive result) For almost every 0:, lim t E Pa(x;pj) = 
k ..... oo j=t 

P( x) exists and does not depend on 0:. 

Actually in [2,3] a more detailed description of Pa(x; E) is given, but 
we have no place here to discuss it. 
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