Skip to main content

The Nucleoproteinic System

  • Chapter
Chirality
  • 221 Accesses

Abstract

Our roots reach back to the depths of the past. The grand process — at least within our view of space and time — seems to have endeavored over a period of 10–20 billion years to gain a certain consciousness and understanding of itself. Together with the universe, life patterns originated in their early infancy from an alien phase transition between nothingness and existence in the incomprehensible beginning. In all our insufficiencies, we were a part of these patterns at the very beginning, and we will share their final termination.

In memory of Jiři Beránek who made essential contributions in Prague in the years between (1968–1989) to the sense of scientific community and the progress of science among nucleic acid people, and dedicated to the memory of Richard Altmann who coined the term “nucleic acids” in 1889 in Leipzig

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burns JO (1990) Kosmologie und Teilchenphysik. Spektr Wiss Verlagsges, Heidelberg, 10

    Google Scholar 

  2. Kelker H (1988) Mol Cryst Liq Cryst 165: 1

    CAS  Google Scholar 

  3. Kelker H (1986) Naturwiss Rundschau 39: 239

    Google Scholar 

  4. Kelker H (1986) In: Sackmann H (ed) Zehn Arbeiten über flüssige Kristalle — 6. Flüssigkristallkonferenz sozialistischer Länder. Wiss Beitr Martin-Luther-Univ 1986/52 (N17), 193

    Google Scholar 

  5. Kelker H, (1973) Mol Cryst Liq Cryst 21: 1

    Article  CAS  Google Scholar 

  6. Trefil S (1983) Big Bang Physics. Scribner’s New York

    Google Scholar 

  7. Hoffmann S (1989) In: Braun D (ed) Polymers and biological function. Angew Makromol Chem 166/167: 81

    Google Scholar 

  8. Hoffmann S (1989) Wiss Z Univ Halle 38/X4: 3

    Google Scholar 

  9. Hoffmann S (1987) Z Chem 27: 395

    Article  CAS  Google Scholar 

  10. Hoffmann S (1985) In: Blumstein A (ed) Polymeric liquid crystals. Plenum Publ Co, New York, 423

    Chapter  Google Scholar 

  11. Haken H (1981) Naturwissenschaften 68: 293

    Article  Google Scholar 

  12. Hoffmann S (1978) Molekulare Matrizen (I Evolution, II Proteine, III Nudeinsäuren, I V Membranen). Akademie-Verlag, Berlin

    Google Scholar 

  13. Hoffmann S Witkowski W (1978) In: Blumstein A (ed) Mesomorphic order in polymers and polymerization in liquid crystalline media. Am Chem Soc Symp-Ser 74: 178

    Google Scholar 

  14. Pasteur L (1886) In: Leçons de chimie professées en 1860 par MM. Pasteur, Cahours, Wurtz, Berthelot, Sainte-claire Deville, Barral et Dumas, Hachette, Paris 1861, Sur la dissymétrie moléculaire, Collection Epistème, Paris

    Google Scholar 

  15. Janoschek R (1986) Naturwiss Rundschau 39: 327

    CAS  Google Scholar 

  16. Hegstrom RA Kondepudi DK (1990) Scientific American 262: 98

    Article  Google Scholar 

  17. Freedman DZ Nieuwenhuizen P van (1988) In: Teilchen, Felder und Symmetrien. Spektr Wiss Verlagsges, Heidelberg, 170

    Google Scholar 

  18. Freedman DZ Nieuwenhuizen P van (1990) In: Kosmologie und Teilchenphysik. Spektr Wiss Verlagsges, Heidelberg, 120

    Google Scholar 

  19. Bouchiat M-A Pottier L (1988) In: Elementare Materie, Vakuum und Felder. Spektr Wiss Verlagsges, Heidelberg, 130

    Google Scholar 

  20. Weinberg S (1980) Science 210: 1212

    Article  CAS  Google Scholar 

  21. Mason S (1986) Trends Pharmacol Sci 20

    Google Scholar 

  22. Mason S (1985) Chem Brit 21: 538

    CAS  Google Scholar 

  23. Mason S (1986) Nouv J Chim 10: 739

    CAS  Google Scholar 

  24. Tranter GE (1986) Nachr Chem Techn Lab 34: 866

    Article  CAS  Google Scholar 

  25. Tranter GE (1985) Nature 318: 172

    Article  CAS  Google Scholar 

  26. Tranter GE (1985) Mol Phys 56: 825

    Article  CAS  Google Scholar 

  27. Tranter GE (1986) J theor Biol 119: 469

    Article  Google Scholar 

  28. Kondepudi DK Nelson GW (1985) Nature 314: 438

    Article  CAS  Google Scholar 

  29. Wainer IW Caldwell J Testa B (ed) (1989) Chirality 1: 1

    Google Scholar 

  30. Mainzer K (1988) Chimia 42: 161

    CAS  Google Scholar 

  31. Schadt W Petrzila M Gerber PR Villiger A (1985) Mol Cryst Liq Cryst 122: 241

    Article  CAS  Google Scholar 

  32. Langridge R Ferrin ThE Kuntz ID Conolly ML (1981) Science 211: 661 —courtesy of Laurence H Hurley

    Google Scholar 

  33. Nir S Garduno R Rein R Coeckelenbergh Y MacElroy RD Egan JT (1977) Int J Quant Chem Quant Biol Symp 4: 135

    CAS  Google Scholar 

  34. Katchalsky A (1973) Naturwissenschaften 60: 215

    Article  CAS  Google Scholar 

  35. Katchalsky A (1970) Nature 228: 636

    Article  Google Scholar 

  36. Miescher F (1897) Über die chemische Zusammensetzung der Eiterzellen, Hoppe-Seyler’s med Unters 1871; Die histochemischen und physiologischen Arbeiten (FCW Vogel, ed) Leipzig

    Google Scholar 

  37. Haeckel E (1917) Kristallseelen. Kröner-Verlag, Leipzig

    Google Scholar 

  38. Fischer E (1894) Ber Dtsch Chem Ges 27: 2985, 3189

    Article  CAS  Google Scholar 

  39. Eschenmoser A (1988) Angew Chem 100: 5

    Article  CAS  Google Scholar 

  40. Schrödinger E (1944) What is life Cambridge University Press, New York

    Google Scholar 

  41. Chargaff E (1950) Experientia 6: 201

    Article  Google Scholar 

  42. Chargaff E (1965) On some of the biological consequences of base-pairing in the nucleic acids in development and metabolic control mechanisms and neoplasia. Williams and Wilkins, Baltimore

    Google Scholar 

  43. Chargaff E (1970) Experientia 26: 810

    Article  CAS  Google Scholar 

  44. Chargaff E (1974) Building the tower of Babble. Nature 248: 776

    Article  CAS  Google Scholar 

  45. Pauling L Corey RB (1951) Proc Nat Acad Sci USA 37: 205, 735

    Google Scholar 

  46. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca-New York

    Google Scholar 

  47. Rawn JD (1983) Biochemistry. Harper & Row Publ, New York

    Google Scholar 

  48. Watson JD Crick FHC (1953) Nature 177: 964

    Article  Google Scholar 

  49. Watson JD (1968) The double helix. Athenaeum

    Google Scholar 

  50. Guschlbauer W (1988) In: Encyclopedia of polymer science and engineering. Wiley & Sons, New York 12: 699

    Google Scholar 

  51. Dickerson RE Geis I (1971) The structure and action of proteins 1971; Struktur und Funktion der Proteine. Verlag Chemie Weinheim

    Google Scholar 

  52. Chadrasekaran R Mitra AK (1983) In: Srinavasan R Sarma RH (eds) Conformations in biology. Adenine Press, New York, 91

    Google Scholar 

  53. Urry DW Venkatachalan CM Lang MM Prasad KU, ibid, 11

    Google Scholar 

  54. Chou KC Pottle M Nemethy G Ueda Y Scheraga HA (1982) J Mol Biol 162: 89

    Article  CAS  Google Scholar 

  55. Scheraga HA Chou K-Ch Némethy G (1983) In: Srinavasan R Sarma RH (eds) Conformations in biology. Adenine Press, New York, 1

    Google Scholar 

  56. Jaenicke R (1987) Progr Biophys Mol Biol 49: 117

    Article  CAS  Google Scholar 

  57. Jaenicke R (1988) Naturwissenschaften 75: 604

    Article  CAS  Google Scholar 

  58. Mutter M Vuilleumier S (1989) Angew Chem 101: 551

    Article  CAS  Google Scholar 

  59. Katchalski-Katzir E (1988) Makromol Chem Macromol Symp 19: 1

    Article  CAS  Google Scholar 

  60. Hoffmann S Witkowski W (1984) In: Possin H (ed) Wirkstofforschung ‘82. Wiss Beitr Martin-Luther-Univ Halle 1984/4(S40), 57, 102

    Google Scholar 

  61. Jurka J Smith TF (1987) J Mol Evol 25: 15

    Article  CAS  Google Scholar 

  62. Dickerson RE (1989) J Mol Biol 205: 787

    Article  Google Scholar 

  63. Barton JK (1988) Chem Eng News 30

    Google Scholar 

  64. Arnott S Chandrasekaran R Banerjee AK He R Walker JK (1983) J Biomol Struct Dyn 1: 437

    Article  CAS  Google Scholar 

  65. Olson WK (1977) Proc Acad Sci USA 74: 1775

    Article  CAS  Google Scholar 

  66. Sarma MH Gupta G Dhingra MM Sarma RH (1983) J Biomol Struct Dyn 1: 59

    Article  CAS  Google Scholar 

  67. Sobell HM (1985) In: Jurnak McPherson (eds) Biological macromolecules and assemblies. Wiley & Sons, New York 2: 172

    Google Scholar 

  68. Clementi E (1983) In: Clementi E Sarma RH (eds) Structure and dynamics: nucleic acids and proteins. Adenine Press, New York, 321

    Google Scholar 

  69. Hoffmann S (1985) In: Beranek J Piskala A (eds) Plenary lectures — Symp Chem Heterocycl Compounds (VIIIth) and of Nucleic Acids Components (VIth). Czechoslovak Acad Sci Inst Macromol Chem Press, Prague, 48

    Google Scholar 

  70. Hoffmann S (1984) Nucleic Acids Symp Ser 14: 7

    Google Scholar 

  71. Hoffmann S (1983) In: Geissler E Scheler W (eds) Darwin today. Akademie-Verlag, Berlin, 192

    Google Scholar 

  72. Hoffmann S (1987) In: Scheel F (ed) VI. Int Tagung Grenzflächenaktive Stoffe. Akademie-Verlag, Berlin, 545

    Google Scholar 

  73. Onsager L (1949) Ann N Y Acad Sci 51: 62Z

    Article  Google Scholar 

  74. Ringsdorf H Schlarb B Venzmer J (1988) Angew Chem 100: 118

    Article  Google Scholar 

  75. Ringsdorf H Schlarb B Venzmer J (1988) Angew Chem Int Ed 27: 113

    Article  Google Scholar 

  76. Watanabe J Ono H Uetmatsu I Abe A (1985) Macromolecules 18: 2141

    Article  CAS  Google Scholar 

  77. Samulski ET Tobolsky AV (1970) In: Johnson JF Porter RS (eds) Liquid crystals and ordered fluids. Plenum Publ. Co, New York, 167

    Google Scholar 

  78. Iizuka E (1978) Polymer J 10: 235

    Article  CAS  Google Scholar 

  79. Iizuka E (1988) Adv Biophys 24: 1

    Article  CAS  Google Scholar 

  80. Rill RL (1986) Proc Nat Acad Sci USA 83: 342; together with Strzelecka TE Davidson MW

    Google Scholar 

  81. Rill RL (1988) Nature 331: 457

    Article  Google Scholar 

  82. Livolant F Bouligand Y (1988) J Phys 47: 1813

    Article  Google Scholar 

  83. Livolant F Bouligand Y (1989) Mol Cryst Liq Cryst 166: 91

    CAS  Google Scholar 

  84. Livolant F (1986) J Phys 45: 1605

    Article  Google Scholar 

  85. Livolant F Bouligand Y (1984) Eur J Cell Biol 33: 400

    Google Scholar 

  86. Eigen M (1971) Naturwissenschaften 58: 465

    Article  CAS  Google Scholar 

  87. Eigen M (1987) Cold Spring Harbor Symp Quant Biol 52: 307

    Article  CAS  Google Scholar 

  88. Eigen M (1986) Chem Scripta 26B: 13

    Google Scholar 

  89. Eigen M (1985) Ber Bunsenges Phys Chem 89: 658

    Article  CAS  Google Scholar 

  90. Kuhn H (1983) In: Geissler E Scheler W (eds) Darwin today. Akademie-Verlag, Berlin, 171

    Google Scholar 

  91. Schuster P, ibid 166; (1986) Physica 22D: 100

    Google Scholar 

  92. Sarin PS Gallo RC (eds) (1980) Inhibitors of DNA and RNA polymerases. Pergamon Press, Oxford-New York

    Google Scholar 

  93. Stryer L (1990) Biochemie. Spektr Wiss Verlagsges, Heidelberg

    Google Scholar 

  94. Cech ThR (1987) Spektrum Wiss 42

    Google Scholar 

  95. Cech ThR (1988) J Am Med Assoc 260: 3030

    Article  CAS  Google Scholar 

  96. Sullivan FX Cech ThR (1986) J Mol Biol 189: 143

    Article  Google Scholar 

  97. Uhlenbeck OC Haseloff J Gerlach L (1988) Nature 334: 585

    Article  Google Scholar 

  98. Waring RB Towner P Minter SJ Davies RW (1986) Nature 321: 133

    Article  CAS  Google Scholar 

  99. Orgel LE (1986) J theor Biol 123: 127

    Article  CAS  Google Scholar 

  100. Hoffmann S (1988) In: Seliger H Secrist A (eds) 2nd Swedish-German Workshop Modern Aspects Chem Biochem Nucleic Acids and their Comp. Nucleosides and Nucleotides 7: 555

    Google Scholar 

  101. Hoffmann S (1990) Mitteilungsbl Chem Ges DDR 37: 45

    Google Scholar 

  102. Neumann E Katchalsky A (1970) Ber Bunsenges Phys Chem 74: 868

    CAS  Google Scholar 

  103. Neumann E Katchalsky A (1972) Proc Nat Acad Sci USA 69: 993

    Article  CAS  Google Scholar 

  104. Neumann E (1973) Angew Chem 85: 430; (1973) Angew Chem Int Ed 12: 356

    Google Scholar 

  105. Hoffmann S Witkowski W Rüttinger HH (1974) In: Sedlâcek B (ed) Heterogeneities in Polymers — 4th Disc Conf Macromolecules. Czechoslovak Acad Sci, Prague, 37

    Google Scholar 

  106. Hoffmann S Witkowski W Rüttinger HH (1976) In: Sackmann H (ed) 1st Liquid Crystal Conf Soc Countries Halle, 36

    Google Scholar 

  107. Hoffmann S Witkowski W Rüttinger HH (1975) Z Chem 15: 149

    Article  CAS  Google Scholar 

  108. Hoffmann S (1979) Z Chem 19: 241

    Article  CAS  Google Scholar 

  109. Ovchinnikov YuA Ivanov VT (1975) Tetrahedron 31: 2177

    Article  CAS  Google Scholar 

  110. Ovchinnikov YuA (1987) Bioorganicheskaya chimya Prosvyeschenye Moscow

    Google Scholar 

  111. Etchebest C Lavery R Pullman B (1982) Stud Biophys 90: 7

    Google Scholar 

  112. Urry DW (1984) J Protein Chem 3: 403

    Article  CAS  Google Scholar 

  113. Carter CW Kraut J (1974) Proc Nat Acad Sci USA 71: 283

    Article  CAS  Google Scholar 

  114. Church GM Sussman JL Kim S-H (1977) Proc Nat Acad Sci USA 74: 1458

    Article  CAS  Google Scholar 

  115. Hoffmann S (1981) In: Possin H (ed) Wirkstofforschung 1980. Wissensch Publ Martin-Luther-Univ, Halle 1981 2: 35

    Google Scholar 

  116. Hoffmann S (1989) Z Chem 29: 173, 449

    CAS  Google Scholar 

  117. Anderson WF Ohlendorf DH Takeda Y Matthews BW (1981) Nature 290: 754

    Article  CAS  Google Scholar 

  118. Ohlendorf DH Anderson WF Takeda Y Matthews BW (1983) J Biomol Struct Dyn 1: 553

    Article  CAS  Google Scholar 

  119. Gibson TJ Postma JPM Brown RS Argos P (1988) Protein Eng 2: 209

    Article  CAS  Google Scholar 

  120. Kim S-H (1983) In: Mizoguchi K Watanabe I Watson JD (eds) Nucleic acids research: future developments. Academic Press, New York, 165

    Google Scholar 

  121. Reinitzer F (1888) Mh Chem 9: 421

    Google Scholar 

  122. Knoll PM (1981) Fridericiana — Zeitschrift der Universität Karlsruhe, 43

    Google Scholar 

  123. Lehmann O (1907) Die scheinbar lebenden Kristalle. Schreiber-Verlag, Esslingen

    Google Scholar 

  124. Lehmann O (1921) Flüssige Kristalle und ihr scheinbares Leben — dargestellt in einem Kinofilm. Voss-Verlag, Leipzig

    Google Scholar 

  125. Lehmann O (1918) Die Lehre von den flüssigen Kristallen und ihre Beziehungen zu den Problemen der Biologie. Bergmann-Verlag, Wiesbaden

    Google Scholar 

  126. Lehmann O (1918) Ergebnisse der Physiologie 16: 255

    Article  Google Scholar 

  127. Vorländer D (1908) Kristallin-flüssige Substanzen. Enke-Verlag, Stuttgart

    Google Scholar 

  128. Vorländer D (1924) Chemische Kristallographie der Flüssigkeiten. Akademische Verlagsges, Leipzig

    Google Scholar 

  129. Hoffmann F, personal communications

    Google Scholar 

  130. Sackmann H (1986) In: Sackmann H (ed) Zehn Arbeiten über flüssige Kristalle. Wiss Beitr Martin-Luther-Univ 1986/52(N17), 193

    Google Scholar 

  131. Demus D (1988) Mol Cryst Liq Cryst 165: 45

    CAS  Google Scholar 

  132. Samulski ET (1985) Faraday Disc Chem Soc 79: 7

    Article  CAS  Google Scholar 

  133. Skarp K Handschy MA (1988) Mol Cryst Liq Cryst 165: 439

    CAS  Google Scholar 

  134. Leuchtag HR (1987) J theor Biol 127: 321, 341

    Article  CAS  Google Scholar 

  135. Collette JW Miller MS (eds) (1989) Advanced Materials. Angew Chem Adv Mater 101: 654

    Google Scholar 

  136. Kelker H Hatz R (1980) Handbook of liquid crystals. Verlag Chemie Weinheim

    Google Scholar 

  137. Gray GW (1962) Molecular structure and the properties of liquid crystals. Academic Press, New York

    Google Scholar 

  138. Chandrasekhar S (1977) Liquid crystals Cambridge University Press, New York

    Google Scholar 

  139. Litster JD Birgeneau J Physics Today 1982, 1

    Google Scholar 

  140. Schnering HG v. Nesper R (1987) Angew Chem Int Ed 26: 1059

    Article  Google Scholar 

  141. Schnering HG v. Nesper R (1987) Angew Chem 99: 1097

    Article  Google Scholar 

  142. Blum Z Lidin S (1988) Acta Chem Scand B42: 417

    Article  CAS  Google Scholar 

  143. Dörfler H-D Brezesinski G Hoffmann S (1980) Stud Biophys 80: 59

    Google Scholar 

  144. Hoffmann S Jaenecke G Brandt W Kumpf W Weißflog W Brezesinski G (1986) Z Chem 26: 284

    Article  CAS  Google Scholar 

  145. Thondorf I Lichtenberger O Hoffmann S (1990) Z Chem 30: 171

    Article  CAS  Google Scholar 

  146. Meister W-V Ladhoff A-M Kargov SI Burckhardt G Luck G Hoffmann S (1990) Z Chem 30: 213

    Article  CAS  Google Scholar 

  147. Bajer A (1983) In: Alberts B Bray D Lewis J Raff M Roberts K Watson JD, Molecular biology of the cell. Garland Publ, New York

    Google Scholar 

  148. McCammon JA Lee CY Northrup SH (1983) J Am Chem Soc 105: 2232

    Article  CAS  Google Scholar 

  149. Karplus M McCammon JA (1986) Scientific American 254: 42

    Article  CAS  Google Scholar 

  150. McCammon JA Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, New York

    Book  Google Scholar 

  151. Hoffmann S (1990) Z Chem 30: 94; (1989) Wiss Z Univ Halle 38/H5: 121

    Google Scholar 

  152. Blake CCF (1978) Endeavour 2: 137

    Article  CAS  Google Scholar 

  153. Bryan RFP Hartley P Miller W Shen M-S (1980) Mol Cryst Liq Cryst 62: 281

    Article  CAS  Google Scholar 

  154. Hess B Markus M (1987) Trends Biochem Sci 12: 45

    Article  CAS  Google Scholar 

  155. Petrosian V (1982) Nature 298: 805

    Article  Google Scholar 

  156. Micciancio S Vassallo G (1982) Il Nuovo Cimento 1: 121

    Google Scholar 

  157. Palma MU (1983) In: Clementi E Sarma RH (eds) Structure and dynamics of nucleic acids and proteins. Adenine Press, New York, 125

    Google Scholar 

  158. Frühbeis H Klein R Wallmeier H (1987) Angew Chem 99: 413

    Article  Google Scholar 

  159. Wolken JJ (1984) In: Matsuno K Dose K Harada K Rohlfing DL (eds) Molecular evolution and protobiology. Plenum Press, New York, 137

    Chapter  Google Scholar 

  160. Frauenfelder H (1986) In: Clementi E Chin S (eds) Structure and dynamics of nucleic acids, proteins and membranes. Plenum Publ Co, New York, 169

    Chapter  Google Scholar 

  161. Weizsäcker C-F v. (1986) Nova Acta Leopoldina (Neue Folge) 37/2: 5

    Google Scholar 

  162. Cramer F (1979) Interdisciplinary Science Reviews 4: 132

    Article  Google Scholar 

  163. see also: “Denn nur also beschränkt war je das Vollkommene möglich” — Eine wissenschaftliche Interpretation von Goethes “Metamorphose der Tiere” — Preprint 1989 (kind information by Hartmut Seliger)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, S. (1991). The Nucleoproteinic System. In: Janoschek, R. (eds) Chirality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76569-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76569-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76571-1

  • Online ISBN: 978-3-642-76569-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics