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1 Introduction 

Baculovirus-infected insect cell cultures are established as an easily manipulated 
eukaryotic system for highly efficient expression of gene products. The system 
takes advantage of several unique attributes of this virus group, including highly 
active late gene promoters, the capacity for insertion oflarge fragments offoreign 
DNA, replication competence of the resulting recombinants, and the relative 
ease of handling both the insect cell cultures and the viruses. 
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This review will attempt to give an overview of the use of baculoviruses as 
expression vectors, focusing on the Autographa californica nuclear polyhedrosis 
virus as the prototype virus system. The available evidence for proper and 
improper post-translational processing, cellular localization, and antigenicity of 
various protein products will be discussed. Several of the currently employed 
expression vectors are described, and several of the key techniques used in 
generating baculovirus recombinants will be reviewed. For additional information 
on baculovirus expression vector constructs, handling the viruses and cell 
cultures, and analyzing recombinants the reader is referred to previous reviews 
by MILLER et al. (1986), SUMMERS and SMITH (1987), LUKOW and SUMMERS (1988), 
KANG (1988), MILLER (1988), CAMERON et al. (1989), VLAK and KEUS (1990) and 
LUCKOW (1991). 

2 The Biology of Baculoviruses 

The insect-pathogenic nuclear polyhedrosis viruses (NPVs) are members of 
subgroup A of the family Baculoviridae. These DNA viruses replicate within 
the nuclei of susceptible insect cells and have a complex, essentially biphasic 
replication cycle that generates two infectious forms, extracellular budded virus 
(ECV), and occlusion bodies (OBs). The two infectious forms of the virus are 
genotypically identical but phenotypically distinct, each serving a vital function 
in the survival of the virus in host insect populations. The OBs are an environ
mentally stabilized form ofthe virus that function to initiate the primary infection 
within the gut of host insects, while the ECVs serve to disseminate the virus 
between cells in the insect host and are employed during all manipulations of 
the virus in vitro. 

The NPVs may be further subdivided based upon the arrangement of 
nucleocapsids in the occluded virions within OBs. The M-type viruses occlude 
enveloped single and multiple nucleocapsids, while the S-type viruses occlude 
only enveloped single nucleocapsids. The prototype virus for the M-subtype is 
AcMNPV (MATTHEWS 1982), while the S-subtype is represented by the Heliothis 
zea NPV (HzSNPV; CORSARO and FRASER 1987a). 

The following discussions are meant to serve as a general introduction for 
those unfamiliar with baculovirus replication. For more detailed discussion 
of baculovirus biology and genetics the reader may consult recent reviews 
(DOERFLER and BOHM 1986; GRANADOS and FEDERICI 1986; BUSSARD and 
ROHRMANN 1990). 

2.1 Viral Life Cycle 

During the first phase of the lytic infection (0-20 h) the rod-shaped nucleocapsids 
are assembled within the nucleus of infected cells in pockets of the virogenic 
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matrix (FRASER 1986a). Electron-microscopic observations suggest that the bulk 
of the rod-shaped capsid sheath assembles prior to incorporation of the circular 
128-kb virus genome, and that extension ofthe capsid may occur during genome 
packaging, permitting larger than unit length genomes to be incorporated 
(FRASER 1986a). Infectious ECV s are released by budding from the virus-modified 
cell surface. The cell membrane-derived envelope of these budded virions has 
peplomeric extensions of a viral encoded glycoprotein, gp64, that is a major 
neutralizing antigen and is apparently involved in adsorption of the virions to 
host cell surfaces (VOLKMAN et al. 1984). 

Since the functions of nucleocapsid assembly and budding of infectious ECV 
are necessary for survival of the virus both in vivo as well as in vitro, they are 
sometimes referred to as essential functions (FRASER 1986b). In contrast, func
tions carried out in the second phase are necessary for survival of the virus in 
vivo, but not in vitro, and are considered to be nonessential or conditionally 
essential. 

The second phase becomes apparent at about 20 h post infection (pj.) and 
continues until the cells expire. Nucleocapsids remaining within the nucleus at 
the beginning of the second phase are sequestered in de-novo-synthesized 
envelopes and then encapsulated within OBs (HUGHES 1972; STOLTZ et al. 1973; 
FRASER 1986a). The OBs are formed by the assembly of a paracrystalline matrix 
composed of a single protein called polyhedrin (SUMMERS and SMITH 1976). The 
encapsulation of virions in OBs protects the virus during desiccation, and helps 
stabilize the virus against extremes of heat and cold. Upon ingestion by a suitable 
host insect, the OB matrix is dissolved in the basic pH of the insect gut juices, 
and the embedded virions are released to initiate infection of the midgut epithelial 
cells (see FAULKNER 1981 for a review). 

In a broad sense, the second phase ofNPV replication accomplishes functions 
that are common among many insect viruses that infect the larval stages of 
insects that undergo complete metamorphosis. This phase can be likened to 
encapsulation in prokaryotes or sporulation in lower eukaryotes, and serves to 
insure survival of the viruses for prolonged periods within soil or on leaf surfaces. 
Similar strategies for environmental survival are employed by the closely related 
granulosis viruses (GV; Baculoviridae Subgroup B; MATTHEWS 1982), the insect
pathogenic pox viruses (entomopoxviruses; ARIF 1984) and the insect-pathogenic 
cytoplasmic polyhedrosis viruses (CPV; PAYNE and MERTENS 1983). 

2.2 Expression of Baculovirus Genes 

As with most viruses, the temporal regulation of baculovirus gene expression 
is a tightly controlled cascade initiating with the immediate early genes (alpha 
class), followed by the delayed early genes (beta class), both of which precede 
DNA replication (KELLY and LESCOTT 1981; CARSTENS et al. 1979; MILLER et al. 
1983b). Alpha genes are first expressed following penetration and uncoating of 
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the virus in the cell nucleus (GUARINO and SUMMERS 1986). These genes do not 
require any previously coded viral proteins for expression (KELLY and LESCOTT 
1981), since purified viral DNA is capable of initiating and completing the entire 
replication cycle (see below). The beta class of genes are dependent upon the 
alpha class products for expression (KELLY and LESCOTT 1981; MILLER et al. 
1983b; GUARINO and SUMMERS 1986, 1987). 

Following the initiation of genome replication (5-7 hpj; CARSTENS et al. 
1979), the late genes (gamma class) are expressed (CARSTENS et al. 1979; KELLY 
and LESCOTT 1981). These genes presumably encode functions related to virus 
structure and assembly. The expression oflate genes corresponds with the release 
of ECV from the infected cells (CARSTENS et al. 1979; WOOD 1980; KELLY and 
LESCOTT 1981). 

Most of the alpha, beta, and gamma gene products produced during the first 
phase of the replication cycle are essential to baculovirus viability. Such essential 
processes as viral specific gene activation, degradation of the host cell genome, 
replication of the viral genome, assembly of nucleocapsids, and transport and 
budding of virions from the cell surface are all mediated by these first-phase 
genes. Up to this point the baculovirus replication process superficially resembles 
that of many DNA animal viruses. 

Baculovirus replication differs from other DNA animal virus groups in 
having a fourth temporal class of expressed genes. At about 20 hpj. the release 
of ECV dramatically declines, expression of many alpha, beta, and gamma 
proteins is relatively reduced but not necessarily entirely eliminated (CARSTENS 
et al. 1979; WOOD 1980; GUARINO and SUMMERS 1986), and the delta class 
proteins predominate (CARSTENS et al. 1979; WOOD 1980; KELLY and LESCOTT 
1981). The delta genes comprise the second phase of the baculovirus replication 
cycle. Among the products generated in AcMNPV infected cells during this 
second phase are those proteins involved in the construction of nuclear localized 
de novo envelopes, the 29-kDa polyhedrin protein that forms the paracrystalline 
matrix of the OBs, the 10 K protein whose function is unclear (SMITH et al. 
1983a; VLAK et al. 1988), and the 34 K protein which is a component of the OB 
envelope (WHITT and MANNING 1988). The temporally regulated cascade of 
gene activation insures that maximal expression of foreign genes under control 
of the very late polyhedrin gene promoter, or other delta gene promoters, will 
not begin until well after virus replication is completed. 

As mentioned before, these very late genes are considered nonessential 
or conditionally essential, and are superfluous to effective replication of the 
virus in cell cultures. However, mutations that abolish OB formation severely 
limit the replication potential of the virus under natural conditions and the 
virus cannot be maintained in the natural host unless infectious OBs are 
formed. In this respect the use of the polyhedrin substitution vector effectively 
introduces a form of biological containment for the baculovirus expression 
vectors. 
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2.3 Polyhedrin and Other Late Genes 

Because of its relative abundance during NPV infections and its importance in 
the natural survival of the virus, polyhedrin was the first baculovirus protein 
to be identified and studied in detail. The conditionally essential nature of the 
polyhedrin gene made it an ideal first candidate for genetic engineering in the 
NPV system. 

Polyhedrins of different baculoviruses are biochemically similar. The proteins 
isolated from both MNPVs and SNPVs are similar in size, isoelectric points, 
solubility properties, and immunoreactivity (see VLAK and ROHRMANN 1985 for 
a comprehensive review). Polyhedrins are readily solubilized at a pH of 9.5-10.5 
or greater. All polyhedrins sequenced to date have a calculated molecular weight 
between 28 and 29 kDa, pI between 5.3 and 6.5, and are immunologically cross
reactive. 

The polyhedrin proteins of NPVs are abundantly expressed at late times 
during infection. Polyhedrin is estimated to be as much as 25% of total infected 
cell protein (PENNOCK et al. 1984) and up to 50% of the stainable protein expressed 
during the second phase of replication (LUCKOW and SUMMERS 1988; MILLER 
1988). The protein accumulates to estimated levels of 1 mg per 1-2 x 106 cells 
(LUCKOW and SUMMERS 1988), principally in the form of 50 to 100 OB particles 
per infected cell. These OBs are the predominant structure of wild-type infected 
cells (2-5 11m in diameter) and can be observed easily with a light microscope. 
Moreover, polyhedrins are one of the very few viral proteins that are produced 
throughout the entire second phase ofNPV infections, permitting accumulation 
of the protein over an extended period (usually 48 h or more). 

Many early studies of baculovirus replication suggested the nonessential 
nature of polyhedrin. Electron-microscopic observations ofbaculovirus matura
tiQn had always demonstrated that OBs and related second-phase structures 
form well after nucleocapsid assembly and ECV release (KNUDSON and HARRAP 
1976; ADAMS et al. 1977). Polyhedrin synthesis in AcMNPV-infected cell cultures 
always became obvious from 20 hpj. and reached a maximum between 36 and 
48 hpj. In contrast, infectious ECV release was detected by 8 hpj. and became 
maximal around 18 h p.i. Ultimately, the nonessential nature of polyhedrin was 
proven by experimental elimination of the polyhedrin gene through in vitro 
mutagenesis and gene transfer (SMITH et al. 1983b). 

The polyhedrin genes from a number of viruses have been sequenced in 
entirety (HOOFT VAN IDDEKINGE et al. 1983; IATROU et al. 1985; LEISY et al. 
1986a). The size and structure of polyhedrin genes is quite similar, and there is 
a 5' untranslated A + T rich leader sequence that is strikingly similar among 
all polyhedrin genes and begins with a 12-bp consensus sequence surrounding 
the mRNA start site (ROHRMANN 1986; HOWARD et al. 1986). 

Another major late protein in AcMNPV-infected cells is the plO protein. 
The exact function of this protein is still in doubt, but it appears to be involved 
in a nonessential way in the assembly or structuring of the occlusion body 
envelope (QUANT-RusSELL et al. 1987; VAN DER WILK et al. 1987). Recent studies 
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have demonstrated that plO is present as a component of the fibrous material 
(FM), a nuclear inclusion present at late times in infection and involved in 
formation of the OB envelope (VLAK et al. 1988). Deletion of the plO coding 
region does not abolish FM formation (WILLIAMS et al. 1989), nor does it inhibit 
OB envelope formation (VLAK et al. 1988). Fusion of pl0 with lacZ abolishes 
OB envelope formation, rendering the OBs more labile to solubilization (VLAK 
et al. 1988). In addition, the plO/lacZ fusion protein can be localized to the FM 
inclusion, but the exact function of plO in development of FM or OB envelopes 
is unknown (VLAK et al. 1988). 

3 Engineering Recombinant Baculoviruses 

The potential utility of the polyhedrin gene to effect high-level expression of 
foreign genes in baculovirus-infected insect cells was recognized independently 
by several investigators (SMITH et al. 1983b; MILLER et al. 1983a; MAEDA et al. 
1985). 

In the first report of successful application ofthe baculovirus as an expression 
vector (SMITH et al. 1983c), the recombinant viruses incapable of producing OBs 
were distinguished from wild-type virus by a simple plaque assay in a manner 
analogous to the previously established detection methods for FP mutants 
(FRASER and HINK 1982). Baculovirus plaques are microscopic, and best viewed 
with a dissecting microscope at between 20 x and 70 x magnification. Illumination 
of the infected cell monolayers with obliquely directed light causes an opalescent 
appearance in wild-type virus plaques due to the presence of numerous refractive 
OBs in each infected cell. Those plaques lacking OBs (OB negative), or with 
significant reductions in the number of OBs per infected cell (i.e., FP mutants) 
are discernably less opalescent. 

An alternative strategy was to construct lacZ-gene fusions at the natural 
BamHI (+ 171 bp) within the polyhedrin coding region (PENNOCK et al. 1984). 
Co-transfections of recombinant plasmid and wild-type viral DNAs resulted in 
recombinant viruses that were selected based upon their ability to form blue 
plaques in the presence of the colorimetric indicator, X-gal, and their inability 
to form OBs. 

The capacity for production of foreign genes in infected insect larvae was 
demonstrated by MAEDA et al. (1985). In this study, the polyhedrin coding region 
of Bombyx mori MNPV (BmMNPV) was localized using cDNAs prepared from 
mRNAs isolated from the fat bodies of infected silkworm larvae. The availability 
of the BM-N established cell line allowed propagation and manipulation of the 
virus to generate recombinants. In this case, however, the expression of the 
polyhedrin-controlled gene product was demonstrably more efficient in the larval 
system than in cell cultures. 

Another major late protein gene of AcMNPV, plO, has been manipulated 
in a manner similar to the polyhedrin gene (VLAK et al. 1988). The gene was 
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localized to the EcoRI-P fragment by hybridization of abundantly expressed 
late mRNAs to viral gene fragments (SMITH et al. 1983a). Subsequent sequencing 
of the EcoRI-P fragment positioned the gene and it's promoter (KUZIO et al. 
1984). A sequence similar to the consensus 5' mRNA start site of polyhedrins 
is located upstream of the pIO gene as well (KUZIO et al. 1984; ROHRMANN 1986), 
suggesting this is a common recognition sequence for hyperexpression of late 
genes. Since this gene does not provide a selective phenotype, lacZ fusions were 
performed at the unique BglII site at + 153 bp, and recombinants were selected 
for blue-plaque morphology (VLAK et al. 1988). The lacZ recombinants were 
replication competent, as expected for a nonessential late gene, and were capable 
of forming OBs as well. 

Engineering the p 10 region for expression of genes necessarily requires either 
selection of clear plaques following cotransfection of a p1O/1acZ recombinant 
with the pl0 expression vector construct, or construction of transfer plasmids 
having both lacZ and the gene of choice under control of a hyperexpressed 
promoter. Such double-promoter expression vectors have been constructed and 
have proved effective (see below). 

Promoters for other late genes that are either essential or nonessential may 
be utilized for expression vector construction. One example of the use of an 
essential gene promoter is the study of HILL-PERKINS and POSSEE (1990). In this 
instance they utilized the promoter for the major core protein gene (WILSON 
et al. 1987), a delta class gene product that seems to be associated with the 
packaging of viral DNA (TWEETEN et al. 1980; BUD and KELLEY 1980). The 
strategy involved duplication of the promoter for the core protein gene next to 
the lacZ gene inside the polyhedrin gene region. Substitution of the constructed 
gene for the nonessential polyhedrin gene generated virus expressing lacZ 
maximally between 8 hand 18 hpj., as would be expected for a delta class 
promoter (HILL-PERKINS and POSSEE 1990). These authors point out that the 
use of promoters from earlier temporal classes may have some advantages for 
production of proteins requiring extensive post-translational modifications, or 
to express insect-specific toxins and hormones at earlier times in the infected 
insect than with the pIO or polyhedrin promoters. 

3.1 The Polyhedrin Promoter 

Examination of the 5' regions from a number of polyhedrins has led to some 
interesting observations relative to baculovirus late gene promoter structure and 
sequences necessary for hyperexpression of polyhedrins and pIO proteins. The 
first reports of the polyhedrin gene sequences had indicated the presence of 
apparent TAT A- and CAT-like promoter signals (HooFT VAN IDDEKINGE et al. 
1983; MAEDA et al. 1985; IATROU et al. 1985). However, the comparative analysis 
of upstream flanking sequences for a number ofpolyhedrin genes by ROHRMANN 
(1986) demonstrated little conservation of sequence and position of the TATA
and CAT -like regions. Instead, there was remarkable similarity in the length 
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and AT content of the 5'-nontranslated leader region. In addition, the comparison 
identified a consensus sequence surrounding the mRNA start site at nucleo
tide - 49 in a number of polyhedrin genes (LEISY et al. 1986b). This consensus 
sequence, between nucleotide -43 and -54 (5'AATAAGTATTTT3') is 
apparently essential for high level expression of the polyhedrin gene. 

Several sequences within the nontranslated leader are clearly involved in 
optimal expression of the gene. MATSUURA et al. (1987) demonstrated that 
deletions in the leader region past - 14 from the ATG start codon adversely 
affect the expression of genes fused to the polyhedrin promoter, while deletion 
of the entire coding region and 3' flanking sequences does not appreciably alter 
their expression. POSSEE and HOWARD (1987) demonstrated that deletions in the 
5' flanking region from - 69 to - 92 did not affect levels of lacZ production by 
polyhedrin/lacZ recombinant viruses. However, deletion of the region from 
- 47 to - 56 (encompassing the transcriptional start site and the Rohrmann 
consensus sequence) resulted in significantly reduced levels of lacZ-specific 
transcript. They described the functional limits of the polyhedrin promoter 
as between - 49 and - 69. Similarly, RANKIN et al. (1988) demonstrated that 
removal of the region from - 1 through to the EcoRV site at - 92 bp reduces 
the expression of the chloramphenicol acetyl transferase (CA T) gene lOoo-fold 
in a transient expression assay. Interestingly, positioning of this leader-contain
ing region fused to the CA T gene in reverse orientation with respect to the 
flanking viral sequences increased the levels of CA T activity twofold. Successive 
substitution of a lO-bp HindUI linker for sequences within the 5' flanking region 
from - 83 to - 1 was used to assess the relative importance of leader sequences 
on promoter function. The most dramatic reductions in CA T expression (nearly 
lOoo-fold) were obtained with substitutions in the region from - 42 to - 60, 
once again demonstrating the importance of the consensus 5' mRNA initiation 
signal in polyhedrin gene expression. 001 et al. (1989) suggested the importance 
of the non translated leader in optimal transcriptional initiation. 

A sequence similar to the consensus 5' start site of polyhedrins is located 
upstream of the pl0 gene as well (KUZIO et al. 1984; ROHRMANN 1986), suggesting 
this is a common recognition sequence for hyperexpression of very late 
genes. 

3.2 Available Polyhedrin-Based Baculovirus Transplacement Vectors 

The baculovirus expression vector systems now available include those derived 
from AcMNPV, BmMNPV, and HzSNPV. No expression vectors are yet 
available for the other major subgroup of baculoviruses, the granulosis viruses, 
owing to a lack of suitable in vitro systems for their propagation and 
manipulation. The AcMNPV-infected Spodoptera frugiperda cell line system 
(SMITH et al. 1983c; PENNOCK et al. 1984; SUMMERS and SMITH 1987) has received 
the most attention due to the relative ease of handling, and the ready availability 
of the cell line, media, and virus. Several vector constructs are currently available 
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for the manipulation of the AcMNPV virus polyhedrin gene. The reader is 
referred to other recent reviews for a more complete description of available 
vectors and their activities (LUCKOW and SUMMERS 1988; LUCKOW 1991). 

To date, the pAc373 construct has been the vector used most often. This 
vector is superior to pAc380 for expression of human interleukin-2 (IL-2; SMITH 
et al. 1985), probably because it retains the consensus transcription initiation 
signal and much of the 5' leader sequence of the polyhedrin gene. The pAc373 
vector contains a deletion from the BamHI site (+ 171) of the wild-type 
AcMNPV polyhedrin sequence, through the A TG start codon, and 5' untranslated 
leader sequence, to - 8 from the polyhedrin messenger RNA cap site. Similar 
vectors have also been constructed by MATSUURA et al. (1986). The insertion of 
a BamHI linker (pAcRP6) or a multiple cloning site (pAc373) allows insertion 
of genes in the un translated leader region. In both cases, the natural BamHI 
site at + 171 is fused to the BamHI site of the linker region to complete the 
constructions. 

Similar manipulations resulted in the construction of the pAc610 vector, 
also used by several investigators. This vector differs from pAc373 in having a 
more extensive inserted polylinker sequence after nucleotide - 7, and a more 
extensive deletion of the polyhedrin coding domain to nucleotide + 670 near 
the terminus of the polyhedrin gene (LCUKOW and SUMMERS 1988). The pAcRP18 
and pAcYMI (MATSUURA et al. 1987) vectors contain a BamHI linker fused at 
positions - 1 and + 1, respectively, pEV55 (MILLER et al. 1986) is constructed 
with a polylinker at position + 1. pEVmod eliminates redundant sites in pEV55 
at the pUC8/AcMNPV sequence junctions (WANG et al. 1991), and pEVmXIV 
substitutes a modified polyhedrin promoter, P X1V (RANKIN et al. 1988; 001 et al. 
1989) for the wild-type polyhedrin promoter (WANG et al. 1991). All of these 
vectors leave all, or nearly all, of the nontranslated leader sequence intact. Both 
fused and nonfused expression vectors are available for BmMNPV as well 
(S. Maeda, personal communication). 

The pAcCL29-1 and pAcCL29-8 vectors are derivatives of pAcYMI that 
contain an M 13 origin of replication which permits production of single
stranded DNA in the presence of a helper phage (LIVINGSTON and JONES 1989). 
These vectors facilitate site-directed mutagenesis for analysis of expressed genes. 
A similar strategy was used by HASEMANN and CAPRA (1990) by incorporating 
the Fl origin of replication into pAc360-derived transfer vectors containing 
murine immunoglobulin heavy and light chain regions. 

From the first descriptions of expression vectors it was noted that in many 
cases the expression of genes fused in-frame with the polyhedrin coding sequences 
is much greater than those placed near the start of transcription, or even near 
the start of translation. Levels of both human beta-interferon and bacterial beta
galactosidase in AcMNPV were quite high if expressed as in-frame fusions with 
the polyhedrin coding sequences rather than as nonfused proteins (SMITH et al. 
1983c; PENNOCK et al. 1984). LUCKOW and SUMMERS (1988) indicated that 
in-frame fusions of 30 amino acids or more of polyhedrin to several protein 
genes increased the levels of expressed protein and RNA. Apparently sequences 
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in the 5' amino-terminal region of the polyhedrin coding domain are also 
involved in optimal expression of the polyhedrin gene. 

More recently constructed vectors, such as the pVL941 vector (LANFORD 
1988) or its derivatives pVL1392 and pVLl393 (mentioned in LUCKOW 1991), 
contain an alteration of the polyhedrin A TG start codon to A TT, allowing 
genes to be inserted with their own A TG start codons at a BamHI site 
downstream of the normal polyhedrin translation initiation sites. The pVL941 
vector provided twofold higher levels of SV40 large T antigen expression than 
the pAc373 vector (LANFORD 1988). 

A similar vector, p36C, was constructed by mutagenesis of the A TG start 
codon to A TC in the polyhedrin fusion vector pAc360 (PAGE 1989). Genes are 
inserted at the retained BamHI site at + 33, and levels of expressed protein 
product are reportedly 5 times greater than with pAc373. 

There is ample evidence that the 3' terminal regions of the polyhedrin gene 
have little, if any, effect on expression of the gene. Deletions of this region failed 
to introduce any appreciable alterations in levels of expressed RNA or protein 
(MATSUURA et al. 1987; POSSEE and HOWARD 1987). 

The relative levels of expression obtained with each of these vectors depends 
to a great extent on the gene being expressed. While optimal expression of 
similar genes is effected when all of the 5' leader and some polyhedrin coding 
domain are intact (e.g. LANFORD 1988), the actual amount of a given protein 
product generated is most dependent on the gene being expressed (LUCKOW 
and SUMMERS 1988). 

Recently, a vector based upon a synthetic promoter, Psyn (WANG et al. 1991), 
has been constructed from comparisons of polyhedrin and pIO (see below) pro
moter regions. Analyses of CAT gene expression have demonstrated that this 
promoter is less efficient than the wild-type polyhedrin promoter, but can be 
used at numerous alternative regions in the virus genome without duplicating 
existing baculovirus sequences, thus avoiding potential instability (WANG et al. 
1991). 

3.3 Available plO-Based Baculovirus Transplacement Vectors 

Expression vectors utilizing the promoter for pIO have been constructed and 
demonstrated to be effective for foreign gene expression. The overall selection 
strategy relies upon the prior construction of a pIO-lacZ recombinant virus to 
serve as recipient. pIO expression vector recombinants generate white plaques 
from these p 10-1acZ recipient viruses. 

The vector pAcUW1 provides a unique BglII site at position + 1 in the p10 
gene (WEYER et al. 1990) and essentially mimics the promoter structure of 
pAcYMl. The effectiveness of this vector was demonstrated using both the lacZ 
gene and the polyhedrin gene. The pIO-lacZ fusion gene was also used as a 
selectable marker for polyhedrin-based expression vectors. The pAcUW2 
constructs (WEYER et al. 1990) allow insertion of genes under control of the pIO 
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promoter and just upstream of a functional polyhedrin gene. Recombinant virus 
generated from this sort of vector would be capable of forming OBs while 
expressing the gene of choice. Such constructs could have advantages for scale-up 
in insect larvae or for genetically improved biological insecticides. 

The pAcAS2 vector (VLAK et al. 1990) was constructed with a pUC19 multiple 
cloning site at position + 1 in the plO gene. Subsequent addition of a Drosophila 
hsp70 promoter-driven lacZ gene to produce the vector pAcAS3 provides a 
selectable marker for detecting recombinant expression viruses. The utility of 
the pAcAS3 vector was demonstrated by expression of cauliflower mosaic virus 
gene 1 (VLAK et al. 1990). 

3.4 Practical Considerations 

Among the advantages of the baculovirus system are the relative ease of handling 
of both the virus and cell cultures and the speed with which one can engineer 
and isolate recombinants for analysis. It is not unreasonable to have plaque 
purified recombinant viruses for analysis within 6 weeks from successful cloning 
of the gene to be expressed (either an intronless genomic or eDNA copy of the 
gene is advised; see below). 

The basic technology of gene replacement or allelic replacement is employed 
for genetic engineering of the baculovirus genome. Essentially, this involves the 
transfection of viral and recombinant plasmid DNAs into susceptible insect cell 
cultures and the identification of recombinants based on the absence of the large 
intranuclear OB inclusions. Most of the procedures commonly employed in 
working with baculoviruses have been assembled as a manual by SUMMERS and 
SMITH (1987). 

The transfection of lepidopteran insect cells with viral or plasmid DNAs is 
most conveniently accomplished using the CaP04 coprecipitation procedure 
originally developed for mammalian cells (GRAHAM and VAN DER EB 1973; 
BURAND et al. 1980; POTTER and MILLER 1980a; CARSTENS et al. 1980). 
Modifications of this precipitation procedure have been employed on occasion, 
but are generally not as reliable. The modification typically employed for 
transfection of Drosophila cell lines (DINoCERA and DAWID 1983) is much less 
effective for lepidopteran cells. Alternative transfection procedures such as the 
polybrene method (KAWAI and NISHIZAWA 1984) are less effective than the 
CaP04 method for lepidopteran cells and baculorius DNAs. Lipofection (BRL) 
has also been used (SHIV et al. 1991), and in our hands this procedure is effective 
but has not represented a significant improvement over CaP04 technique 
(M. J. Fraser, unpublished). Electroporation is very effective for a S. Jrugiperda 
cells in particular (MANN and KING 1989) and other lepidopteran cell lines in 
general (M. J. Fraser, unpublished), but may be inconvenient for general use. 

In general, the relative efficiency of the CaP04 transfection procedure is 
related to a number of factors influencing the precipitation reaction (GRAHAM 
et al. 1980). In addition to proper formation ofthe precipitate, the most important 
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factors include the quality of the viral and plasmid DNAs and the cell line 
employed. For the generation ofbaculovirus recombinants, the greatest efficien
cies and most consistent results are obtained with CsCI gradient purified viral 
and plasmid DNAs. Dialysis of the DNAs against 0.1 x SSC is recommended 
over ethanol precipitation as a final step in the isolation (CORSARO and FRASER 
1989). 

The IPLB-SF21AE cell line (VAUGHN et al. 1977) and derivatives (i.e., Sf-9; 
SUMMERS and SMITH 1987) is an ideal recipient cell line for genetic manipulations 
of AcMNPV by transfection. In contrast, the TN-368 (HINK 1970) cell line is 
not as receptive to transfection with the same preparations of AcMNPV. The 
UND-K derivative of the IPLB-HZ 1075 cell line (CORSARO and FRASER 1987b) 
is suitable for manipulation of HzSNPV while the parent cell line, IPLB-HZ 
1075 and several other cloned derivatives are less receptive (CORSARO et al. 
1989). The BM -N cell line (MAEDA et al. 1985) is suitable for genetic manipulations 
with BmMNPV. 

Once the viral and plasmid DNAs are transfected into the recipient cell line, 
recombination between viral sequences on the replacement vector and the same 
regions of the viral genome takes place (SMITH et al. 1983b, c; PENNOCK et al. 
1984; MAEDA et al. 1985). This recombination event is presumably mediated by 
cellular factors, but is also influenced by the extent of unmodified flanking viral 
sequences in the transplacement vector (for a review see LUCKOW and SUMMERS 
1988) Most polyhedrin-based vectors currently employed retain a minimum of 
7 kb flanking viral DNA. With such vectors, the recombination efficiency is of 
the order of 0.1%-5%. 

The quality of the viral DNA is also critical in deriving recombinant viruses. 
We have noted for some time that supercoiled viral DNA is 5 times more 
infectious in transfections of S. Jrugiperda cell cultures (CORSARO and FRASER 
1989a), but gives a reduced yield of recombinant virus compared to the nicked 
circular or linear forms (unpublished observations). KITTS et al. (1990) took 
advantage of this fact in engineering a virus, AcRP6-SC, that contains a unique 
Bsu36I site within the polyhedrin gene. Linearization of the viral DNA prior 
to cotransfection with the polyhedrin transfer vector containing the gene to be 
expressed decreased the overall infectivity of the transfected viral DNA, but 
increased the relative yield of recombinant virus to between 6% and 32% of the 
progeny virus. Similar results were obtained for linearization of viral DNA at 
the pl0 locus using p10 gene transfer vectors. These results suggest that only 
circularized viral DNA molecules may replicate, and that addition of the 
appropriate transfer vector provides a means for selective repair within a given 
locus by recombination with the digested viral DNA. This effectively increases 
the relative proportion of progeny virus that are recombinant. 

GOSWAMI and GLAZER (1991) report success using plasmid DNA purified 
by passage through Quiagen columns (Quiagen, Studio City, CA) to transfect 
Sf-9 cells that had been previously infected with wild-type AcMNPV. The advan
tage of this approach is the elimination of lengthy procedures for preparation 
of viral and plasmid DNAs. However, direct comparisons with alternative 
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preparations and estimates of relative efficiency of recombinant virus recovery 
were not made. 

3.5 Detecting OB-Negative Recombinant Plaques 

Selection of recombinant virus can be accomplished in a number of ways. The 
most commonly employed technique for distinguishing recombinants takes 
advantage of the reduced refractivity of plaques that produce fewer OBs than 
the wild-type virus. This detection method had been previously perfected through 
analysis of the spontaneous FP mutants of baculoviruses (FRASER and RINK 

1982). The ability to visually detect the recombinant plaques depends upon 
optimization of the plaque assay methodology. The fact that some researchers 
experience difficulty detecting recombinants in this way indicates these factors 
are not trivial. 

The initial seeding cell density, overlay formulation, and incubation condi
tions can all influence the detection of OB-negative plaques (FRASER and RINK 

1982). Because the virus spreads relatively slowly in the monolayer, the cells 
must be seeded at a density allowing growth of the monolayer for several days. 
Early death of the monolayer will preclude plaque formation or hamper 
detection of recombinants. A low initial cell density will not yield a dense enough 
monolayer for sufficient localized cell death to permit detection of recombinant 
plaques. The optimal cell seeding density differs for a given cell line, and is 
largely dependent upon the cell doubling time. If detection of OB-negative 
plaques is difficult, plaque assays of an OB-negative mutant control virus should 
be performed with varying cell seeding densities to optimize conditions for 
detection. We have found optimal plaque formation with S. frugiperda cells 
occurs with seeding densities of between 1.1 and 1.25 x 103 cells per mm2 of 
available plate surface. 

Staining viable cells for 15-20 min with a small volume of sterile 0.01 %-0.05% 
neutral red in PBS added over the agarose overlay and viewing the infected 
monolayer 4-8 h later enhances the detection of OB negative plaques significantly. 
The alternative strategy of adding neutral red directly to the overlay mixture 
(KNUDSON 1979) has not been as successful in our hands. 

Checking the putative recombinant plaques at 200 X magnification with an 
inverted microscope is highly recommended prior to picking. Potential false 
positives, such as the spontaneous FP mutants that also generate plaques of 
reduced refractivity, can occasionally be found in preparations of wild-type 
virus. These FP mutants can be distinguished from recombinants by the presence 
of at least some OBs in infected cells ofthe plaque (see FRASER 1986b, for review). 
Since these mutants can be amplified upon continued propagation of the virus 
in cell cultures, baculovirus DNAs used for transfections to generate recombinants 
should be prepared from plaque-purified stocks of wild-type virus that has 
undergone fewer than five passages in cell culture, or from OBs purified from 
peroral-infected insect larvae. 



144 M. J. Fraser 

Several cycles of plaque purification are recommended to insure purity of 
the recombinant virus. Multiple potential recombinants should be isolated for 
analysis at this stage. As a final check, the putative recombinants should be 
analyzed with restriction enzymes, and possibly Southern hybridization, to 
insure the desired DNA fragment is present. As with any virus, the baculovirus 
genome is a dynamic entity (KUMAR and MILLER 1987) subject to rearrangements 
(BURAND and SUMMERS 1982), insertional mutagenesis by host cell sequences 
(POTTER and MILLER 1980b; FRASER et al. 1983; MILLER and MILLER 1982) and 
other less apparent types of mutations. Checking recombinants by restriction 
enzyme analysis and other means prior to amplification insures at least that 
major alterations of the viral genome have not taken place. 

3.6 Alternative Selection Schemes 

Alternative detection methods have occasionally been employed with varying 
success. The ability to adsorb red blood cells can help identify recombinant 
virus-infected cells that are producing viral hemagglutinins such as the influenza 
or parainfluenza envelope glycoproteins (KURODA et al. 1986, 1987; VAN WYKE 
COELINGH et al. 1987). 

Limiting dilution and DNA dot-blot hybridization has been employed with 
success to detect and purify recombinant virus (FUNG et al. 1988; PEN et al. 
1989; Gosw AMI and GLAZER 1990). This method allows selective amplification 
of recombinant virus, avoids potential selection of false-positive plaques, and 
works well with even low recombination frequencies. Hybridization plaque lift 
assays may also be employed (VILLAREAL and BERG 1977; MILLER et al. 1986; 
SUMMERS and SMITH 1987; JEANG et al. 1987b), but these assays meet with varying 
success, and additional manipulations will be necessary to optimize conditions. 

Newer vectors are available that take advantage of the selective lacZ marker 
gene in plaque assays. These vectors rely on alternative promoters to express 
the lacZ gene, while the polyhedrin promoter is reserved for expression of the 
gene of choice. Blue viruses are easily detected after addition of the colorimetric 
substrate X-gal to the agarose overlay (PENNOCK et al. 1984). One example of 
this approach is the pJV (NheI) vector (VIA LARD et al. 1990), a derivative of 
pAc373 that contains a pl0 promoter expressing beta-galactosidase in opposite 
orientation next to a polyhedrin promoter region reconstituted to include 
sequences from the polyhedrin gene up to + 33, with the normal ATG start 
codon altered to ATT. VIALARD et al. (1990) report that at least 70% of lacZ
positive viruses also express the gene of choice. 

Another such vector, pAcDZl, constructed by ZUIDEMA et al. (1990) utilizes 
a chimeric gene formed from the Drosophila melanogaster 70 K heat shock gene 
promoter (hsp70), the beta-galactosidase protein coding domain, and the SV40 
early region termination signals. In this case, the polyhedrin gene and the 
chimeric lacZ gene are opposed, with the SV40 termination signals separating 
them. The levels of expressed protein product obtained with pAcDZl were 
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similar to those obtained with the conventional polyhedrin-based expression 
vectors (ZUIDEMA et al. 1990). A similar strategy was employed for expression 
vectors based on the plO promoter (VLAK et al. 1990). 

LacZ-selectable vectors are also commercially available from Invitrogen 
Corporation (San Diego, CAl as part of the MaxBacR Baculovirus Expression 
System kit. The only potential problem with the lacZ co-expression approach 
may be that the increased size of these transfer vectors can make cloning certain 
genes for expression difficult. 

4 Expression of Foreign Genes 
in Baculovirus-Infected Insect Cells 

The attractiveness of the baculovirus-infected insect cell expression system rests 
on the fact that it allows for extremely efficient expression of protein products 
(averaging 1-10 Ilg per lO6 cells) in a higher eukaryote cell system. Maximal 
expression of the protein occurs after the essential phase of virus replication, 
potentially allowing expression of gene products that may be cytotoxic (MILLER 
1988). The expression system itself provides a level of biological containment 
(MAEDA 1987; MILLER 1988) because introduction offoreign genes into the poly
hedrin promoter abolishes a function necessary for survival of the virus under 
natural conditions. 

The baculovirus is capable of accommodating a large excess of sequences 
without appreciable effect on replication efficiency. The largest inserted fragment 
to date is approximately lO kb (CARBONELL et al. 1985). Larger insertions up to 
15 kb have been observed, based upon analyses of spontaneous mutations 
(FRASER 1986a). However, the stability oflarger inserts still needs to be explored. 
It is possible that tandemly duplicated sequences or sequences flanked by 
inverted repeats will be unstable in this recombination competent system. 

Another attractive feature of the system is the possibility of altering the viral 
genome at several locations due to the presence of multiple nonessential genes 
and intergenic mutable regions. As the location of mutable regions and additional 
late genes becomes known, more areas will be available for manipulation. This 
should permit incorporation of several highly expressed genes at multiple 
locations throughout the genome. In this regard, the manipulations of EMERY 
and BISHOP (1987) demonstrated the feasibility of incorporating more than one 
polyhedrin promoter in a single virus. Both proteins, the native polyhedrin 
protein and the recombinant lymphocytic choriomeningitis virus N protein, 
accumulated to -substantial levels in the infected cells. However, the relative 
amount of polyhedrin produced by the recombinant virus was somewhat reduced 
compared to the control AcMNPV. Whether these reduced levels were significant 
was not determined. 
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Co infection of insect cells with a number of different recombinant viruses 
is an alternative strategy that has proven effective for simultaneous expression 
of multiple gene products. ST ANGELO et al. (1987) demonstrated the effective 
coexpression of three influenza polymerase subunit genes (PA, PB1, and PB2) 
in Sf-9 cells co infected with three recombinant viruses each expressing an indivi
dual gene. Expression of these genes occurs within the same cell, since protein 
complexes are formed between two of the subunits (PB1 and PB2). Immuno
globulin heterodimers could be formed by co infecting Sf-9 cells with two 
recombinant viruses carrying either heavy- or light-chain murine immunoglobulin 
genes (HASEMANN and CAPRA 1990). 

The expression of multiple genes by coinfection offers opportunities for 
studying the interaction of overexpressed proteins in a eukaryotic cell environ
ment devoid of significant background cellular protein synthesis. Expression of 
multiple mammalian genes in insect cells provides an environment potentially 
free of interfering proteins. Coexpression of the mouse p53 protein and the SV40 
large T antigen in recombinant-infected insect cells resulted in typical complex 
formation between the two recombinant proteins, similar to that which would 
occur in SV40-infected mouse cells (O'REILLY and MILLER 1988). Co-infection 
with recombinants expressing pp90rsk and pp60v - sre resulted in activation of the 
serine-specific protein kinase activity of rsk through tyrosine phosphorylation 
by src (VIK et al. 1990). 

The overexpression of eukaryotic gene products in insect cell lines provides 
several advantages over conventional prokaryotic expression systems. Post
translational modifications such as signal peptide cleavage, N-linked and 
O-linked glycosylation, additional proteolytic cleavages (although perhaps not 
identical to those of mammalian cells), and proper cellular compartmentalization 
of protein products (i.e., membrane localization, extracellular secretion, cytosolic 
localization, nuclear localization) all occur in baculovirus-infected insect cells. 
Both intrachain and interchain disulfide bridge formation have been observed 
(GEISE et al. 1989). These is now ample evidence for RNA splicing as well 
(CHISHOLM and HENNER 1988; JEANG et al. 1987a; IATROU et al. 1989), although 
the preferential splicing of sites other than those preferred in mammalian cells 
has been observed (JEANG et at. 1987a). 

Some advantages have been noted for baculovirus-expressed proteins 
compared to expression of the same proteins in bacteria. Insoluble protein 
aggregates that frequently form upon overexpression of genes in prokaryotes 
may not occur during expression with baculoviruses. JEANG et al. (1987b) point 
out that the p40x protein of HTL V -I forms aggregates when expressed in 
Escherichia coli. In contrast, insoluble aggregates are not formed by the same 
protein expressed in the baculovirus expression vector system, even though each 
infected cell produced 50-100 times more protein than the bacterial system. 
Baculovirus-produced Rap1A protein was both soluble and biochemically active 
as opposed to the same protein produced in E. coli (QUILLIAM et at. 1990). HSEIH 
et at. (1989) report 5 times greater levels of expression for rat liver Yb 1 glutathione 
S-transferase than in E. coli. 
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4.1 Proteolytic Cleavages in Baculovirus-Infected Insect Cells 

There is ample evidence that signal peptides are correctly cleaved from a number 
of diverse membrane-bound or secreted proteins expressed in baculovirus 
infected insect cells. Amino-terminal analysis has confirmed correct signal 
peptide cleavage for the human alpha-interferon (MAEDA et al. 1985), human 
gastrin-releasing peptide (LEBACQ-VERHEYDEN et al. 1988), human IL-2 (SMITH 
et al. 1985), mouse IL-3 (MIYAJIMA et al. 1987), human glucocerebrosidase 
(MARTIN 1988), human T-cell immune activation gene Act-2 (LIPES et al. 1988), 
Phaseolus vulgaris beta-phaseolin (BUSTOS et al. 1988), Sindbis virus E1 envelope 
protein (OKER-BLOM and SUMMERS 1989), and immunoglobulin heavy- and 
light-chain proteins (HASEMANN and CAPRA 1990). Correct cleavage of signal 
pep tides is inferred from activity assays, transport and secretion, and size 
analysis on SDS-polyacrylamide gels for a number of other proteins. Examples 
include human beta-interferon (SMITH et al. 1983c), human erythropoietin 
(WOJCHOWSKI et al. 1987), the influenza hemagglutinins (POSSEE 1986; KURODA 
et al. 1986), parainfluenza type 3 hemagglutinin-neuraminidase (VAN WYKE 
COELINGH et al. 1987), the HIV envelope glycoprotein gp160 (Hu et al. 1987; 
RUSCHE et al. 1987; COCHRAN et al. 1987), hst-l transforming protein (MIY AGA W A 
et al. 1988), leech antistasin (HAN et al. 1989), G 1 and G2 glycoproteins of Rift 
Valley fever virus (SCHMALJOHN et al. 1989), the S glycoprotein of bovine corona
virus (Yoo et al. 1990), human granulocyte-macrophage colony stimulating factor 
(CHIOU and Wu 1990), and the alpha subunit of human chorionic gonadotropin 
(NAKHAI et al. 1991). The insect cells did not recognize and cleave a signal 
peptide for a bacterial protein, the Bacillus anthracis protective antigen 
(IACONO-CONNORS et al. 1990). 

Some types of post-translational proteolytic and protein modifying processes 
are apparently lacking or different in insect cells. Detailed comparisons of the 
processing of human gastrin releasing peptide precursor in baculovirus-infected 
insect cells and a mammalian lung cancer cell line revealed significant differences 
in several proteolytic cleavages (LEBACQ-VERHEYDEN et al. 1988). No carboxy
peptidase B-like activity, trypsin-like endopeptidase activity, or peptidyl glycine 
alpha-amidating monooxygenase activity was detected following processing in 
Sf-9 cells. Instead, peptides that were similar in size to several of those present 
in the mammalian cell line were produced by proteases with previously un
defined specificities. 

WATHEN et al. (1989a) report that there are significant differences in the 
cleavage of the F 0 precursor glycoprotein of human respiratory syncytial virus 
(RSV) produced in insect cells. The extent of cleavage F 0 to F 1 and F 2 was 
markedly reduced compared to the vaccinia-expressed protein in Vero cells, 
and a secondary cleavage of the F 1 molecule was seen in the baculovirus
expressed protein. However, the proteins produced in insect cells were capable 
of inducing a neutralizing antibody response in cotton rats, although at lower 
levels than with protein from RSV -infected cells. Similarly, the F 0 glycoprotein 
of measles virus was only partially cleaved when expressed in insect cells, 
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suggesting these cells are deficient in this endoproteolytic activity, while monkey 
kidney cells cleave this protein efficiently (VIA LARD et al. 1990). However, 
VIALARD et al. (1990) indicate that an insect cell line from Trichoplusia ni was 
able to cleave the F 0 more efficiently, confirming that there may be considerable 
variation in proteolytic activities among established lepidopteran cell lines. The 
baculovirus-expressed F 0 glycoprotein of humam parainfluenza type 3 was 
not cleaved at all into the Fl and F z subunits in insect cells (RAY et al. 1989), 
but the recombinant protein was effective in inducing a protective immune 
response in hamsters. 

Although the study of LEBACQ-VERHEYDEN et al. (1988) detected no trypsin
like endoprotease activity operating at the lysine residues in the sequence 
Gly-Lys-Lys-Ser, a trypsin-like endoprotease activity and a carboxypeptidase 
N activity were inferred from correct maturation of the influenza (fowl plague) 
virus hemagglutinin (KURODA et al. 1986, 1987). In this sutdy the majority of 
recombinant hemagglutinin produced in S. Jrugiperda cells was un cleaved 
precursor HA, but the cleaved products HAl and HA2 were also apparent. The 
correct cleavage at the carboxy-terminal Arg and Gly residues the sequence 
Lys-Lys-Arg-Lys-Lys-Arg-Gly is essential for activation of the hemolytic fusion 
activity of the influenza hemagglutinin. Since such an activity could be isolated 
from homogenates derived from recombinant infected S.frugiperda cells, correct 
cleavage was inferred (KURODA et al. 1986, 1987). 

This observation was believed significant because many other vertebrate 
glycoproteins have similar cleavage sites, and might be expected to be efficiently 
processed as well. However, no endoproteolytic cleavage of precursor HA to 
HAl and HA2 was observed with the hemagglutinin of a human influenza virus 
(POSSEE 1986). Similarly, cleavage of the gp160 envelope glycoprotein of the 
HTLV-IIIB isolate of HIV to gp120 and gp41 was not detected by immuno
blotting of total infected cell proteins separated on SDS-polyacrylamide gels 
(RUSCHE et al. 1987), or by immunoprecipitation of baculovirus-produced LA V 
gp160 (Hu et al. 1987). Apparently certain trypsin-like recognition sites will be 
effectively cleaved while others will not. The exact reason for this discrepancy 
is not clear. 

Finally, a 5' terminal fragment encoding the C, M, and E structural proteins 
and the NS1 and NS2a nonstructural proteins of dengue virus 4 was expressed 
using the pAc373 vector (ZHANG et al. 1988). In this case, cotranslational 
processing of the polyprotein sequences resulted in apparently authentic NS1 
and E glycoproteins, and such processing is believed to require the specific 
acitivity of cellular proteolytic enzymes. However, the levels of E and NS1 
produced were only 25% of that generated in dengue virus-infected primate 
cells. Even so, the baculovirus-infected cell lysates were capable of inducing 
immunity to dengue virus in mice, apparently as a result of antibodies generated 
to the recombinant NS1 glycoprotein (ZHANG et al. 1988). 
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4.2 N-Linked Glycosylation and Fucosylation 

Most glycoproteins that have been expressed in baculovirus-infected cells are 
immunologically active and, in some cases, have been effective in inducing 
protective immunity. However, the published reports on expressed glycoproteins 
reflect considerable variability concerning the exact nature and extent of glyco
sylation that can occur on various proteins. Simple size comparisons of glyco
proteins produced in both baculovirus-infected insect cells and mammalian cells 
often seem to reveal differences in the extent of glyosylation (KURODA et al. 1986, 
1987, 1990; POSSEE 1986; Hu et al. 1987; RUSCHE et al. 1987; COCHRAN et al. 
1987; STEINER et al. 1988; GREENFIELD et al. 1988; FURLONG et al. 1988; DOMINGO 
and TROWBRIDGE 1988; KRISHNA et al. 1989; BAILEY et al. 1989; GRABOWSKI et al. 
1989; GEORGE et al. 1989; QUELLE et al. 1989; JOHNSON et al. 1989; OKER-BLOM 
et al. 1989; GERMANN et al. 1990; Y 00 et al. 1990; SANCHEZ-MARTINEZ and 
PELLETT 1991; VAN DRUNEN LITTLE-VAN DEN HURK et al. 1991). In most cases 
these discrepancies have been demonstrated, through further analyses, to result 
from differences in type and extent of glycosylation of the protein between insect 
cells and mammalian cells. 

There are at least two reports in which baculovirus-produced glycoproteins 
are not glycosylated at all. Neither the human multidrug transporter P-glyco
protein (GERMANN et al. 1990) nor the recombinant extracellular domain of the 
human nerve growth factor (VISSA VAJJHALA and Ross 1990) were glycosylated. 

Tunicamycin treatment (SMITH et al. 1983c, 1985; BUSTOS et al. 1988; 
HASEMANN and CAPRA 1990; SANCHEZ-MARTINEZ and PELLETT 1991; JANSEN 
et al. 1991; NUKURA et al. 1991a) and labeling with radiolabeled mannose (SMITH 
et al. 1983c, 1985; Hu et al. 1987; COCHRAN et al. 1987; BAILEY et al. 1989) have 
both effectively demonstrated N-linked glycosylation. Enzymatic digestions have 
also been employed to characterize the glycosylation processes. N-linked glyco
sylation has been demonstrated in baculovirus-infected insect cells through the 
use of N-glycanase (RUSCHE et al. 1987; WOJCHOWSKI et al. 1987; MARTIN et al. 
1988; GRABOWSKI et al. 1989; QUELLE et al. 1989; CHIOU and Wu 1990), endo
glycosidase-F (COCHRAN et al. 1987; DOMINGO and TROWBRIDGE 1988; WATHEN 
et al. 1989a, b; GERMANN et al. 1990; DESPRES et al. 1991) and Glycopeptidase-F 
(STEINER et al. 1988; JOHNSON et al. 1989; V AlLARD et al. 1990). The presence of 
high mannose oligosaccharides is also indicated through the use of endoglycosi
dase-H (TARENTINO and MALEY 1974; MARTIN et al. 1988; WEBB et al. 1989; 
GRABOWSKI et al. 1989; DOMINGO and TROWBRIDGE 1988; GREENFIELD et al. 
1988; JOHNSON et al. 1989; OKER-BLOM and SUMMERS 1989; FELLEISEN et al. 
1990; DESPRES et al. 1991), and by adsorption of expressed glycoproteins to 
concanavalin A-Sepharose columns (STEINER et al. 1988; BUSTOS et al. 1988; 
QUELLE et al. 1989), and the trimming of high mannose residues in indicated 
by conversion of some glycoproteins to endoglycosidase-H resistance upon 
secretion (COCHRAN et al. 1987; JARVIS and SUMMERS 1989; JOHNSON 1989; SISSOM 
and ELLIS 1989; DESPRES et al. 1991). However, the extent of this processing is 
apparently reduced from that in mammalian cells (JARVIS and SUMMERS 1989). 
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JARVIS and SUMMERS (1989) also employed inhibitors of the mannose 
oligosaccharide processing pathway to identify the enzyme activities present in 
baculovirus infected Sf-9 insect cells. Both castano spermine and N-methyl
deoxynojirimycin apparently inhibited processing of high mannose residues, 
suggesting the presence of glucosidases I and/or II in Sf-9 cells. Analyses with 
inhibitors of mannosidase I and II activity were less convincing, but the presence 
of some mannosidase activity is strongly implied by conversion of glycoproteins 
to endoglycosidase-H resistance. 

The complex class of N-linked oligosaccharides have not been generally 
observed for proteins produced in insect cells. Levels of galactosyl and sialyl 
transferases had been reported to be negligible in insect cells (BUTTERS et al. 
1981) and terminal sialic acid residues are not generally observed in insect glyco
proteins (KURODA et al. 1986, 1987, 1990). 

There are, however, an increasing number of reports indicating that some 
proteins may undergo complex glycosylations. Several studies have produced 
baculovirus-expressed glycoproteins similar in size to their authentic counterparts 
(JARVIS and SUMMERS 1989; WHITEFLEET-SMITH et al. 1989; WEBB et al. 1989; 
RAY et al. 1989; KLAIBER et al. 1990; SCHMALJOHN et al. 1989, 1990; RODEWALD 
et al. 1990; KOENER and LEONG 1990; NAGY et al. 1990; SHIV et al. 1991; NUKURA 
et al. 1991a; JANSEN et al. 1991). Since many of these authentic proteins are 
known to have complex oligo saccharides, the similarity in size on gel electro
phoresis suggests similar patterns of glycosylation in the baculovirus-expressed 
proteins. 

Fucosylation of N-linked oligo saccharides has also been recently confirmed. 
WATHEN et al. (1991) analyzed N-linked oligo saccharides with bovine epididymis 
alpha-fucosidase and detected the presence of a fucosylated trimannosyl 
structure. This confirms the primary observation by KURODA et al. (1990) 
implying the presence of fucosyltransferases in insect cells. 

DAVIDSON et al. (1990) provided the first evidence of complex glycosylation 
of a protein expressed in insect cells. Anion-exchange liquid chromatography 
mapping of glycopeptidase F -released oligosaccharides demonstrated that 
approximately 40% of baculovirus-expressed human plasminogen released 
bisialo-biantennary complex-type carbohydrate. Subsequent analysis (DAVIDSON 
and CASTELLINO 1991) showed that the appearance of complex carbohydrates 
on recombinant human plasminogen was dependent on the time post infection. 
Early in the infection (0-20 hpj.) approximately 96% of all oligo saccharides are 
of the high mannose type, while 92% of the those released from recombinant 
plasminogen between 60 and 90 hpj. were of the comlex type. These results 
suggest that the normal glycosylation patterns of the insect cells may be altered 
in response to the presence of recombinant human plasminogen. Similar analyses 
of baculovirus-expressed plasminogen in the M amestra brassicae insect cell line 
IZD-MB0503 revealed that while normal insect cell proteins may not contain 
N-linked complex oligo saccharides the glucosyltransferase activities required 
for assembly of complex oligo saccharides can be effected upon infection with 
the human plasminogen-expressing baculovirus recombinant (DAVIDSON and 
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CASTELLINO 1991). A possible explanation for the apparent inducibility of 
complex glycosylation in insect cells during baculovirus infection is that (alpha 
I, 2)-D-mannosidase-like enzyme activity is relatively low in IPLB-SF2IAE cells 
but is somehow stimulated upon infection with either wild-type AcMNPV or 
a plasminogen-expressing recombinant (DAVIDSON et al. 1991). 

The apparent variability between reports of oligosaccharides processing in 
insect cells should not be unexpected. Patterns of N-linked glycosylation can 
vary with the cell line employed, culture media and supplements used, length 
of time post infection, and most importantly, the protein itself (PAREKH et al. 
1989). Many of these variables differ between individual reports of glycoprotein 
expression in baculovirus-infected lepidopteran cells. 

Not all cell types will perform glycosylation in the same way (PAREKH et al. 
1989). The lepidopteran cell lines used for baculovirus-mediated expression vary 
among different laboratories. For example, many reports use the Sf-9 subclone 
of the IPLB-SF2IAE cell line, while others use the parental SF21AE cells. At 
least one paper reports the use of a Sfl58 subcloned cell line derived from an 
unspecified S. frugiperda cell line. KURODA et al. (1986,1990) and SHIU et al. (1991) 
report a S. Jrugiperda cell line, but do not specify the source. 

Given the fact that changes in the physiological condition can alter patterns of 
glycosylation (PAREKH et al. 1989) the media and culture conditions used for 
analysis of glycosylated patterns may influence the extent and timing of 
glycosylation in a given cell line. Media formulations employed for baculovirus
mediated expression range from TNM-FH with or without serum supplement, 
Grace's with or without serum, TC-I00 with or without serum, EX-CELL 400 
serum-free medium (JRH Biosciences, Lexana, KS), or other serum-free formula
tions (see below). 

For any given combination of cell type, medium, culture conditions, time 
of harvesting, and protein expressed, the results are quite consistent. However, 
glycosylation patterns seen for a specified protein under a given set of conditions 
may not be generally seen for all glycoproteins under the same conditions. The 
patterns and timing of glycosylation are highly dependent upon the protein 
being expressed (PAREKH et al. 1989). 

While most glycosylation events in insect cells may not be identical to those 
of mammalian cells, they are evidently sufficient to allow extracellular transport 
of secretory proteins and cells surface presentation of membrane glycoproteins. 
They also do not preclude formation of tertiary and quaternary structures 
essential for biological activity or antigenic potential (e.g., fowl plague virus HA 
protein, KURODA et al. 1986; parainfluenza virus type 3 HN protein, VAN WYKE 
COELINGH et al. 1987; hepatitis B virus S antigen 22 nm particle formation, KANG 
et al. 1987; SCULLY and KANG 1988; vesicular stomatitis virus G protein, BAILEY 
et al. 1989; Rift Valley fever virus Gland G 2 proteins, SCHMALJOHN et al. 1989; 
Newcastle disease virus HN protein, NUKURA et al. 1991a). 

The accumulated evidence suggests that baculovirus recombinant glyco
proteins can be expected to be immunologically and functionally similar to 
the native proteins. In some cases they may even be superior to mammalian 
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cell devied protein in inducing an immune response (e.g., HSV-l glycoprotein 
D, KRISHNA et al. 1989), while in other cases they may be less effective (e.g., 
bovine herpesvirus 1 glycoprotein glV, VAN DRUNEN LITTEL-VAN DEN HURK 
et al. 1991). The effectiveness of insect cell-produced proteins as therapeutic 
agents remains a topic of debate, and can only be resolved through further 
experimentation. 

4.3 O-Linked Glycosylation 

There is less evidence in the published literature for O-linked glycosylation in 
this expression system. However, analysis ofbaculovirus-expressed pseudorabies 
glycoprotein gp50 in infected Sf-9 cells demonstrated the presence of O-linked 
polysaccharides by digestions with endo-alpha-N -acetylgalactosaminidase 
(THOMSEN et al. 1990). Subsequent analysis of the released disaccharide with 
bovine testis beta-galactosidase and jack bean beta-galactosidase suggested a 
beta 1-3 linkage between the monosaccharides. Enzyme assays confirmed the 
presence of N-acetylgalactosaminyl transferase and beta-l,3-galactosyl trans
ferase activities in Sf9 cells (THOMSEN et al. 1990). Similar analyses were per
formed by WATHEN et al. (1991) in examining the oligosaccharide structures on a 
respiratory syncytial virus chimeric FG protein. 

4.4 Fatty Acid Acylation 

Both palmitoylation and myristoylation have been detected in recombinant
infected insect cells. Palmitoylation has been verified through labeling of a 
baculovirus-expressed SV40 large T antigen (LANFORD 1988), Ha-ras p21 (PAGE 
et al. 1989), and human transferrin receptor (DOMINGO and TROWBRIDGE 1988) 
with 3[H]-palmitic acid. Similarly, myristoylation of the baculovirus-expressed 
preS-S polypeptide of the hepatitis B surface antigen (HBsAg; PERSING et al. 
1987; LANFORD et al. 1988), the p17 gag-related protein of HIV (OVERTON et 
al. 1989), and the FIV gag precursor protein (MORIKAWA et al. 1991) was verified 
through labeling with 3[H]-myristic acid. These reports confirm that the 
necessary enzymes for fatty acid acylation are present in baculovirus infected 
insect cells. 

4.5 Nuclear Transport 

A number of nuclear localized proteins have been expressed in the baculovirus 
system. One example is the human c-myc protein (MIYAMOTO et al. 1985). 
Baculovirus-expressed c-myc was phosphorylated, efficiently transported to the 
nucleus, and was found tightly associated with the nuclear matrix. These 
properties are identical to those of the native protein. Other phosphorylated 
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nuclear proteins that have been expressed are the Kruppel gene product of 
Drosophila (OLLO and MANIATIS 1987), the presumptive transposase of the Maize 
Ac trans po son (HAUSER et al. 1988), and the mouse c-ets-1 proto oncogene (CHEN 
1990). Additional nuclear proteins successfully expressed include the human Ku 
autoantigen (ALLA WAY et al. 1990), human fos protein (TRA TNER et al. 1990), 
and the Egr-1 transcription factor (RAGONA et al. 1991). 

The expression of the qa-1 F activator protein of Neurospora crassa demons
trated the effectiveness of employing a baculovirus late gene promoter for 
producing potentially cytotoxic gene products. The qa-1 activator protein was 
apparently toxic when expressed in either E. coli or Saccharomyces cerevisiae, 
but could be expressed when introduced into a baculovirus vector (BAUM et al. 
1987). The recombinant protein had the same DNA-binding specificity as the 
native form, and was useful in determining the location of binding sites within 
the qa gene cluster. 

4.6 Expression of Viral Nonstructural Gene Products 

A number of viral nuclear proteins have also been successfully expressed. 
Recombinant polyomavirus large T antigen was antigenically similar to the 
mammalian form and displayed polyomavirus origin-specific DNA binding 
(RICE et al. 1987). The SV40 large T antigen was effectively phosphorylated and 
displayed origin-specific DNA binding as well (MURPHY et al. 1988). In addition, 
the SV40 large T antigen displayed an ATPase activity comparable to that of 
the mammalian cell-derived counterpart, indicating retention of significant 
elements of the native protein conformational structure (MURPHY et al. 1988). 
A similar analysis of SV40 T-antigen expression by LANFORD (1988) detected 
palmitylation, glycosylation, and oligomerization of T-antigen produced in 
baculovirus-infected insect cells. All of these modifications of recombinant large 
T antigen are found in the native protein isolated from mammalian cells 
(KLOCKMANN and DEPPERT 1983). 

Transactivating gene products from a number of mammalian viruses have 
been expressed and characterized using the baculovirus system. These include 
the herpes simplex virus (HSV) alpha-TIF regulatory protein (KRISTIE et al. 
1989) and trans-activator Vmw65 (CAPONE and WERSTUCK 1990), the human 
T-cell leukemia virus type I (HTLV-I) p40x trans-activator (NYUNOYA et al. 1988; 
JEANG et al. 1987b), the bovine leukemia virus (BLV) p34taX, and the hepatitis 
B virus X protein (SPANDAU et al. 1991). 

The transactivating p40X protein of HTLV-I is phosphorylated (NYUNOYA 
et al. 1988; JEANG et al. 1987b) and can transactivate an HTL V -I L TR indicator 
target plasmid in recombinant-infected insect cells (JEANG et al. 1987b). In 
contrast, the recombinant transactivating protein, tat, of the human immuno
deficiency virus (HIV) type 1 was not phosphorylated and its biological activity 
could not be assessed directly in infected Sf-9 cells (JEANG et al. 1988a). Instead, 
Sf-9 cells infected with the tat recombinant virus were fused with a mammalian 
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cell line containing an integrated HIV L TR -CAT reporter plasmid. The detection 
of CAT activity following fusion of the baculovirus-infected insect cells and the 
transformed mammalian cells confirmed the biological activity of the recom
binant tat protein (JEANG et al. 1988a). Activity of recombinant HTLV-I and 
HIV -1 tat proteins was evident in the absence of de novo cellular protein 
synthesis (JEANG et al. 1988b). These studies established cell fusion as an effective 
strategy for assessing the biological acitivity of recombinant proteins synthesized 
in insect cells in a mammalian cell environment. 

The baculovirus-infected insect cell can provide large quantities of easily 
purified mammalian virus proteins for research purposes. Recombinant dengue 
virus 4 structural and nonstructural proteins may be useful in defining epitopes 
that are protective from those that are immunopathogenic (ROTHMAN et al. 
1989). Recombinant baculoviruses have been utilized extensively to facilitate 
genetic and biochemical analyses of the function and activities of animal virus 
gene products. These include the adenovirus type 2 DNA polymerase (WATSON 
and HAY 1990), polyoma virus middle T antigen (FORSTOVA et al. 1989), poliovirus 
3BVPg, 3cpro, and 3Dpol (NEUFELD et al. 1991), the human papillomavirus type 
18 E6 protein (GROSSMAN et al. 1989), the herpes simplex virus UL5, UL8, UL9, 
and UL52 gene products (OLIVO et al. 1988,1989) and DNA polymerase (MOARCY 
et al. 1990), and several different HIV-l pol gene products (Hu and KANG 1991). 
While the baculovirus-produced Epstein-Barr virus alkaline deoxyribonuclease 
will be useful for biochemical analyses, it may also be an effective reagent for 
diagnosis of nasopharyngeal carcinoma (BAYLIS et al. 1991). 

4.7 Expression of Virus Structural Proteins 

Numerous mammalian virus capsid protein genes have been expressed for 
potential use as diagnostic or vaccine reagents. A cDNA encoding the major 
rota virus capsid protein VP6 was efficiently expressed and formed trimeric 
capsid subunits and oligomeric assemblies (ESTES et al. 1987). All of the native 
immunoreactive determinants were conserved as assessed by reactivity with a 
battery of monoclonal antibodies. In addition, antiserum prepared against 
baculovirus-produced VP6 was highly specific for the viral protein, and lacked 
reactivity with mammalian proteins (ESTES et al. 1987). These results suggested 
potential advantages for use ofbaculovirus-produced proteins in diagnostic test 
kits. 

The expression of other rota virus gene products has facilitated characteriza
tion of some of their properties or functions. Examples include the outer capsid 
protein VP4 of the rhesus rotavirus which was characterized as the virus
neutralizing antigen and hemagglutinin (MACKOW et al. 1989), the bovine 
rotavirus VPl (COHEN et al. 1989), and the Simian rotavirus nonstructural phos
phoprotein product of gene 11 (WELCH et al. 1989). Passive immunization of 
suckling mice could be effected by inoculating female mice with baculovirus
expressed VP4 (MACKOW et al. 1990). 
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Several bluetongue virus (BTV) gene products have been analyzed follow
ing expression (INUMARU and Roy 1987; INUMARU et al. 1987; URAKAWA and 
Roy 1988; FRENCH et al. 1989; OLDFIELD et al. 1990; THOMAS et al. 1990). The 
recombinant VP2 protein of BTV serotype 10 was capable of inducing 
neutralizing antibody titers in both mice and rabbits, and might be useful as a 
subunit vaccine (INuMARu and Roy 1987), while recombinant VP5 was incapable 
of eliciting a neutralizing antibody response (MARSHALL and Roy 1990). The 
recombinant BTV VP3 and VP7 group-specific antigens are effective in detecting 
several BTV serotypes by indirect ELISA and may be useful as diagnostic 
reagents (INUMARU et al. 1987; OLDFIELD et al. 1990). Baculovirus expression of 
NSl, another group-specific antigen, demonstrated that this protein forms the 
virus-specific tubules seen during BTV-10 infections (URAKAWA and Roy 1988; 
MARSHALL et al. 1990), while the NS2 gene product is the structural component 
of the virus inclusion bodies characteristic of BTV-I0 infections (THOMAS et al. 
1990). Both of these structures are formed in the recombinant baculovirus
infected insect cells as well. 

Several other recombinant baculovirus-produced viral proteins show promise 
of being effective diagnostic antigens. Examples include Hantaan virus structural 
proteins (SCHMALJOHN et al. 1988), hepatitis virus core and surface antigens 
(TAKEHARA et al. 1988), the hepatitis A VPl capsid protein (HARMON et al. 
1988), a dengue 4 virus core/PreM fusion protein (MAKINO et al. 1989), the 
Lassa fever virus nucleocapsid protein (BARBER et al. 1990), the hepatitis C virus 
core protein (CHIBA et al. 1991), human papillomavirus (HPV) 6b E2 gene 
product (SEKINE et al. 1989), the L2 open reading frames of both HVP 6b and 
11 (ROSE et al. 1990), the human parvovirus B19 VPl and VP2 structural proteins 
(BROWN et al. 1990), rabies virus nucleoprotein (PREHAUD et al. 1990), and the 
gp57-65 of Marek's disease virus (NUKURA et al. 1991b), which may also be 
useful as a vaccine reagent. 

With respect to producing antigens for diagnostic assays, ROTA et al. (1990) 
point out that one advantage of producing influenza A and B nucleoprotein 
antigens in recombinant baculovirus-infected insect cells is that the proteins 
need not be purified prior to use in ELISA assays. They were unable to detect 
antibodies in human, mouse, ferret, rabbit, or chimpanzee sera that reacted with 
control baculovirus-infected insect cells. MILLS and JONES (1990) produced the 
p24 core protein of HIV and were able to enrich the recombinant protein to 
greater than 90% purity from soluble fractions of infected insect cells in a simple 
two-step procedure of ammonium sulfate precipitation and gel filtration. The 
resulting preparation was capable of detecting p24 antibodies in all AIDS 
patients' sera tested and exhibited no background reactivity with serum from 
a noninfected individual. Similar low levels of background reactivity were 
reported by DEVASH et al. (1990) in Western blots to detect antibodies towards 
baculovirus-produced HIV rev and vif gene products in ARC and AIDS patients' 
sera. 

The HIV gag region and a gag/pol segment including the entire gag region 
and 65% of the pol gene were each expressed in this system (MADISEN et al. 
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1987). The results indicate that initial proteolytic processing of gag from the 
55-kDa precursor polypeptide to the 40-kDa precursor is apparently mediated 
by cellular proteases common to both insect and mammalian cells. Subsequent 
proteolysis of the p40 polypeptide to mature viral proteins p24, p18, and p14 
is mediated by a gag-specific protease activity encoded by the pol region. The 
recombinant gag polypeptides were specifically recognized by AIDS patient 
serum suggesting they could serve as useful diagnostic reagents (MADISEN et al. 
1987). 

The Pr55gag precursor protein of HIV -1 assembles into virus-like particles 
(VLPs) in recombinant baculovirus-infected insect cells (GHEYSEN et al. 1989). 
The particles are targeted to the cell membrane and mutagenic analyses 
established that myristoylation of the amino-terminal glycine residue is essential 
for budding of spherical particles from the cell. Similar analyses were performed 
on simian immunodeficiency virus Pr57gag (DELCHAMBRE et al. 1989). 

VLPs that were myristoylated and secreted were also obtained upon 
expression of the feline immunodeficiency virus (FlV) gag precursor protein. 
Inclusion of the FlV protease gene with the gag precursor gene allowed 
processing of the gag precursor and no VLPs were released (MORIKAWA et al. 
1991). VLPs formed during expression of the bovine immunodeficiency virus 
precursor, Pr53gag, could be processed in vitro utilizing the protease activity 
from NP-40-lysed preparations of purified BIV virions (RASMUSSEN et al. 1990). 
These studies point to the utility of these baculovirus-produced precursor gag 
VLPs for structural studies and for analysis of inhibitors of viral-specific protease 
activity, a necessary function in the maturation of infectious virions. 

The ability to produce noninfectious VLPs using baculovirus expression 
vectors offers the potential for generating safe vaccine preparations. Noninfectious 
empty capsids are produced during coexpression of human parvovirus B19 
structural proteins VPl and VP2, or upon expression of VP2 alone (BROWN 
et al. 1991; KAJIGA Y A et al. 1991). However, only particles containing VP 1 were 
capable of inducing a neutralizing antibody response immunized rabbits 
(KAJIGAYA et al. 1991). Correct processing of capsid precursor polyprotein PI 
into VPO, VPl, and VP3 occurred during expression of the complete coding 
region of poliovirus type 3. The capsid proteins assembled into noninfectious 
VLPs that were able to induce neutralizing antibodies in immunized mice 
(URAKAWA et al. 1989). Expression of the foot-and-mouth disease virus P1-2A 
region in the presence of the 3C protease yielded correct cleavage of the P1-2A 
polyprotein into capsid proteins 1 AB, 1 C and 1 D but the efficiency of aggregation 
into particles was low (ROOSIEN et al. 1990). 

Cowpea mosaic virus genes were also successfully expressed in baculovirus
infected cells, and at higher levels than that obtained for the same genes in 
bacteria. Correct proteolytic processing of precursor polypeptides by the 
expressed recombinant 24 K viral protease also occurred (VAN BOKHOVEN et al. 
1990). 
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4.8 Other Proteins of Interest 

The uniqueness of the baculovirus-infected insect cell environment, coupled with 
the characteristics of high-level expression, have induced many investigators to 
use the system for biochemical investigations of protein structure and function. 
Tyrosine hydroxylase, implicated in the pathogenesis of neuropsychiatric 
disorders, has been expressed for analyses of its biochemical and pharma
cological properties (GINNS et al. 1988; FITZPATRICK et al. 1990). Human 
5-lipoxygenase (FUNK et al. 1989) and human terminal transferase (CHANG 
et al. 1988) were expressed at relatively high levels and retained their enzymatic 
activities in insect cells. The function and structure of various domains of the 
insulin receptor have also been examined (ELLIS et al. 1988; HERRERA et al. 1988; 
VILLALBA et al. 1989; PAUL et al. 1990). 

A variety of protein kinase genes or kinase domains of membrane receptors 
have been shown to retain their respective activity and specificity (WEDEGAERTNER 
and GILL 1989; PATEL and STABEL 1989; BRICKEY et al. 1990). Several G 
protein-coupled receptors were localized in the insect cell membrane and 
retained their activity and selectivity (PARKER et al. 1991; REILANDER et al. 1991). 

A few insect-related proteins have been expressed, including the firefly 
luciferase gene (HASNAIN and NAKHAI 1990) and attacin (GUNNE et al. 1990), 
and two plant proteins, patatin and beta-phaseolin, have also been efficiently 
expressed (ANDREWS et al. 1988; BUSTOS et al. 1988). 

The general application of gene transfer and expression in baculoviruses has 
renewed interest in their potential as microbial insecticides. Several different 
approaches involving expression of insect-specific toxins have been examined 
by various investigators. CARBONELL et al. (1988) describe an unsuccessful 
attempt to use the insect-specific scorpion toxin. A similar approach using the 
insect-specific scorpion neurotoxin gene of a different species proved more 
successful (STEWART et al. 1991) and reduced the time required for the virus to 
kill the insect host. 

MAEDA (1989b) describes the use of a diuretic hormone from M anduca sexta 
to engineer recombinant BmMNPV which kill infected larvae 20% faster than 
the wild-type virus in injection experiments. Introduction of a recombinant 
baculovirus expressing the juvenile hormone esterase (JHE) gene from Heliothis 
virescens proved somewhat effective in reducing feeding behavior offirst-instar 
T. ni larvae, but due to the instability of the JHE in vivo, was less effective on 
later stages (HAMMOCK et al. 1990). 

MARTENS et al. (1990) engineered AcNPV to express the Bacillus thuringiensis 
crystal endotoxin gene cryIA(b) in place of the polyhedrin gene. The CryIA(b) 
protein produced in baculovirus-infected S. frugiperda cells formed crystals that 
were toxic to a susceptible insect species. 

A newly isolated gene encoding a mite neurotoxin shows promise of being 
useful for enhancing efficacy of recombinant baculoviruses for control of insect 
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pests. Recombinant baculoviruses producing the toxin were etTective in paralyzing 
fifth-instar larvae within 2 days of injection, while larvae infected with the same 
dose of wild-type virus continued feeding (TOMALSKI and MILLER 1991). As other 
insect-specific toxins are identified, the prospects for utilizing recombinant 
baculoviruses as pest control agents will continue to improve. 

5 Scale-Up Considerations 

The lepidopteran cell lines commonly employed for growth and expression of 
baculovirus vectors are relatively hardy. Cultures can be maintained at room 
temperature if desired, although the optimal growth temperature is 27° to 29° C. 
Insect cell culture media are not butTered with carbonate/C02 so there is no 
requirement for a CO2 environment for growth. A variety of media have been 
formulated for insect cell growth. The most commonly employed are Grace's 
antherea medium (GRACE 1962), Hink's TNM-FH modification of Grace's 
medium (HINK 1979), TCl00 (GARDINER and STOCKDALE 1975), and IPL41 
(WEISS et al. 1981), all of which require some serum supplementation. Several 
companies have developed etTective serum-free media for insect cells (e.g., EX
CELL 400, JRH Biosciences, Lexana, Kan.; SF900, GIBCO/BRL, Grand Island, 
N.Y.) that are rapidly replacing the serum-supplemented formulations. However, 
these serum-free formulations may not support the growth of all lepidopteran 
cell lines. 

HINK et al. (1991) examined the relative levels of expression of three proteins, 
beta-galactosidase, human plasminogen, and respiratory syncytial virus gp50T, 
in 23 lepidopteran cell lines each cultured according to original descriptions. 
The analysis demonstrated that no individual cell line could be expected to 
produce optimal levels of all three proteins, and optimal expression of individual 
proteins for production purposes may require examination of several lepidopteran 
cell lines. 

The expression of recombinant proteins by baculovirus-infected insect cells 
is efficient enough that 1- to 5-1 batch cultures usually suffice for most laboratory 
scale-up purposes. Roller bottles, air-sparged suspension cultures, and air-lift 
bioreactors all have proven successful for these purposes (HINK 1982; WEISS 
et al. 1988). The most convenient method for preparing 1- to 5-1 batch cultures 
is to utilize spinner or stirrer culture setups (HINK 1982; WEISS et al. 1988). These 
types of cultures are capable of providing cell densities of up to 4 or 5 x 106 

cells/ml. Optimal expression of foreign gene products is attained by inoculating 
during the log phase of the spinner culture growth at densities of around 1 x 106 

cells/ml. 
The important parameters for suspension cultures of insect cells are shear 

stress, dissolved oxygen content, and pH (HINK 1982). In a 1-1 (or less) batch 
culture, the pH need not be monitored, assuming that cells are added to fresh 
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medium upon initiating the culture. However, the addition of oxygen to the 
culture medium by gentle aeration is required to insure optimal cell growth and 
virus replication (HINK 1982). 

The virus inoculum may be added at multiplicities of 0.1 or 1 plaque-forming 
units (pfu) per cell to log phase cultures of 1 x 106 cells/ml. At these multiplicities 
the culture may go through one more doubling before all cells become infected. 
As a conservative estimate, a 1-1 culture can be expected to generate 1-10 mg 
expressed protein product, although levels as high as 200mgfl are reported 
(JEANG et al. 1987b). 

The product may be harvested between 48 and 72 h pi, with some attention 
given to the rate of degradation of product during the course of the infection. 
LICARI and BAILEY (1991) suggest that as the infection of cells in a bioreactor 
progresses less cellular proteolytic activity may be evident and the amount of 
degraded protein product may actually decrease. 

Larger scale cultures for the production of baculovirus-expressed proteins 
are feasible. Air-lift fermenters of up to 30 or 401 can be employed with either 
serum-containing or serum-free media to effect large-scale propagation of cells 
and production of the baculovirus-expressed gene products (MAIORELLA et al. 
1988). The first demonstrated serum-free medium, ISFM (INLOW et al. 1989), 
was based upon the IPL-41 formulation and was effective for both small-scale 
(less than 10 1) and large-scale (greater than 20 1) production of human macrophage 
colony stimulating factor (M -CSF) in baculovirus-infected Sf-9 cells (MAIORELLA 
et al. 1988). The medium substituted a lipid emulsion containing cod liver oil, 
cholesterol, alpha-tocopherol acetate, and Tween 80 (Sigma) for the serum 
component, and incorporated pluronic polyol F -68 (BASF Wyandotte) to reduce 
shear stress on the cells. A 10000-MW filtrate of TC yeastolate reduces addi
tional high-molecular-weight proteins in the medium. Pluronic F-68 has been 
demonstrated effective in reducing shear dammage to cultured insect cells in 
agitated, sparged, and air-lift bioreactors (MURHAMMER and GOOCHEE 1988) and 
is now considered a routine additive for large-scale cultures. 

The ISFM formulation provided similar levels of cell growth and recombinant 
protein production to the serum supplemented IPL-41 medium. Up to 40mg/l 
of recombinant M-CSF was produced following infection at cell densities of 
3 x 106 cells/ml with a multiplicity of 1 pfu/cell (MAIORELLA et al. 1988). Addi
tional recombinant proteins produced in this manner included plasminogen 
activator and ricin toxin (see MAIORELLA et al. 1988). These results established 
that large-scale serum-free cultivation of insect cells for the production of 
baculovirus-expressed proteins is entirely feasible and can be cost effective. Tissue 
culture-tested components for the ISFM media formulation are also commercially 
available (Sigma Chern. Co., St. Louis, Mo.). 

Because the virus infection ultimately causes cell death, production cultures 
are necessarily batch-type rather than continuous. Sequential batch situations 
for semicontinuous cycling of cells can be envisioned (HINK 1982), but cycling 
of virus inoculum is not advised due to the problems associated with continued 
serial propagation of the virus and the generation and amplification of mutations 
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(BURAND and SUMMERS 1982; KUMAR and MILLER 1987). Each batch culture 
should be inoculated with virus preparations derived from a stock inoculum 
that originated from a well-characterized plaque-purified virus. The virus may 
be stored as infected cell culture supernatants at 4° C for prolonged periods 
(several months to a year or more) without significant loss of activity. Cell 
cultures should be started from frozen stocks and used within a defined number 
of passages. These strategies maximize consistency, and ultimately productivity, 
for the batch scale-up process. 

Finally, several investigators have suggested the possible use of insect larvae 
as bioreactors for large-scale production ofbaculovirus-expressed gene products. 
The silkworm, B. mori, has proven an effective alternative to the BM-N cell line 
(MAEDA et al. 1985; HORIUCHI et al. 1987; MARUMOTO et al. 1987; MIYAJlMA 
et al. 1987; MAEDA 1989a; TADA et al. 1988; MORISHITA et al. 1991) for production 
of baculovirus-expressed proteins. The silkworm host is an example of a 
completely domesticated animal, incapable of survival outside of the laboratory, 
and thus provides a biological level of containment. The larvae grow to be quite 
large, and rearing on semisynthetic diets can be automated (MAEDA 1987). As 
much as 0.3 ml of hemolymph (blood) can be harvested from a single larva, with 
levels of 30-190 \J.g protein product/ml (MAEDA et al. 1885; HORIUCHI et al. 
1987). The stability of crude preparations of hemolymph appears to be quite 
good at 4° C, as IL-3 exhibited no loss in activity after storage for several days 
(MIY AJIMA et al. 1987). Whether all proteins will be as stable remains to be 
determined. 

Strategies have also been developed for production of proteins in T. ni larvae 
(KURODA et al. 1989; PRICE et al. 1989; MEDIN et al. 1990). PRICE et al. (1989) 
demonstrated the effectiveness of coinfection with wild-type and recombinant 
baculoviruses to generate infectious OBs containing virions of both viruses, thus 
increasing the effectiveness of inoculating insect larvae by feeding. 

Purification of product from larval hemolymph apparently presents no 
unusual problems. Both alpha-interferon and IL-3 could be effectively purified 
by affinity chromatography. In fact, the only difficulty appears to be associated 
with harvesting by bleeding individual larvae. Presumably an alternative method 
would be employed in production level scale-up. 

6 Concluding Remarks 

The use of baculoviruses for expression of eurkaryotic gene products has gained 
wide acceptance as an attractive alternative to other eurkaryotic expression 
systems. This is largely due to the ease of handling of the virus and its host cell 
cultures, and the relatively high levels of expression that can be effected in 
laboratory-scale production. In addition, the overwhelming majority of re
combinant proteins produced by the baculovirus expression system retain the 
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antigenic and biological properties of the native proteins. At the very least, the 
baculovirus system will continue to be a useful addition to the expression vector 
repertoire. 
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