CHAPTER 11

Cell Hybridisation

J.M. BoYLE

A. Introduction

It has been suggested that cell fusion could be an early event in the neoplastic pro-
cess (MILLER 1974). In this chapter we examine the evidence for the occurrence
of cell fusion in vivo, and explore the possibility that drug resistance can derive
from mutations that accumulate in the enlarged gene pool of the hybrid cell. Since
there is little direct information concerning the expression of drug resistance in
hybrid cells in vivo, we shall discuss the implications for chemotherapy of the les-
sons learnt from the study of drug resistance in hybrid cells in vitro. The fusion
of two cells is but one means of increasing cell ploidy (review, BRoDskY and URy-
VAEVA 1977), so much of this discussion may be applicable to polyploid cells in
general. Emphasis is placed on resistance to antitumour agents which exclusively
involve nuclear genes. Mutants deficient in mitochondrial protein synthesis and
respiratory functions coded by both nuclear and mitochondrial DNA are provid-
ing interesting insights into nuclear/cytoplasmic relationships, but to date none
of these have involved antitumour drug resistance and will not be discussed. The
interested reader can find information on this topic reviewed by WRIGHT et al.
(1980) and background reading on somatic-cell genetics in HARRIS (1970),
EpHrusst (1972), DavipsoN and DE LA CRUZ (1974), RINGERTZ and SAVAGE
(1976) and SHOWS and SAKAGUCHI (1980).

The initial product of cell fusion (Fig. 1) is a bi- or multinucleate cell that is
either a heterokaryon if the parental cells were genetically different (Fig.2) or a
homokaryon if they were similar. In vivo, cells resulting from genetically pro-
grammed fusions often remain as multinucleate homokaryons. In vitro, the fused
cells will be in cycle and will attempt to divide. At mitosis chromosomes from dif-
ferent nuclei come to share a common spindle apparatus and are drawn to the
poles at anaphase to form two hybrid nuclei at telophase (Fig. 3). Clonogenic hy-
brids usually result from the fusion of two or three cells, since fusions of four or
more cells run into mechanical difficulties at mitosis or are liable to contain a mix-
ture of mitotic and interphase nuclei that are subject to premature chromosome
condensation (Sect. D.V). The genetic redundancy in a hybrid nucleus permits the
cell to accumulate recessive mutations and to undergo chromosomal rearrange-
ments and loss of chromosomes without loss of viability. If these changes are ben-
eficial, permitting the cell to divide faster or allowing it to occupy a new niche,
then they will be selected for and persist. We now examine the evidence that sup-
ports the idea that drug resistance in vivo could result from such processes.

B. W. Fox et al. (eds.), Antitumor Drug Resistance
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Fig. 1 a—d. In vitro fusion of Chinese hamster fibroblasts observed by scanning electron mi-
croscopy. a A Chinese hamster fibroblast observed prior to fusion showing a typical spheri-
cal morphology and microvillous topography of a cell in suspension. x 10,000. b Sendai
virus, inactivated by treatment with f-propiolactone, has been added at 0 °C to a suspen-
sion of cells, causing agglutination. This clump of cells may be indicative of an early step
in fusion with the microvilli of adjacent cells in intimate contact. x 7,000. ¢ After adsorp-
tion of the virus the fusion mixture was incubated for 15 min at 37 °C before diluting into
growth medium and incubating for a further 4 h. At this stage cells are resettling onto the
substratum: the upper member of this pair still retains its spherical morphology. x 5,000.
d 24 h postfusion, all cells are now attached to the substratum. The large cell, upper right,
is approximately twice the size of the adjacent cells indicative of a heterokaryon. x 1,200.
(P.J. Smith, T.D. Allen and J. M. Boyle, unpublished)
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Fig. 2. A binucleate heterokaryon. Radioautogram of a heterokaryon containing one unla-
belled and one labelled nucleus, resulting from fusion of two populations of Chinese ham-
ster fibroblasts, one of which had been grown in the presence of [*H]thymidine. (J. M. Boy-
le, unpublished)

B. Cell Fusion In Vivo

I. Occurrence of Multinucleate Cells

Bi- and multinucleate cells have been observed in a wide range of normal and
pathological tissues (Table 1, and review by CHAMBERS 1978). In principle the
presence of more than one nucleus could result from a mitotic division without
cytokinesis. In many cases, however, multinucleation results from cell fusions
that are a genetically programmed part of differentiation and can be observed to
occur in tissue cultures. This is particularly important in haemopoietic tissues
where macrophage-like cells fuse to form multinucleated giant cells and osteo-
clasts (TEsTA et al. 1981). In vivo fusion of mononuclear cells to form giant cells
may be in response to the presence of foreign bodies (SILVERMAN and SHORTER
1963) and occur in tuberculous lesions as Langhans cells (W.H. LEwis 1927) and
as frequent constituents of solid tumours (Evans 1956). Fusions of macrophages
to form multinucleated giant cells (M. R. LEwis and W. H. LEwis 1926; SUTTON
and WEIss 1966), myoblasts (HoLTZER et al. 1958; KONIGSBERG et al. 1960;
KONIGSBERG 1963; CaPERS 1960; YAFFE and FELDMAN 1965) and trophoblasts
(PrIesT et al. 1980) have all been observed in vitro. In most cases where fusion
is part of differentiation and the expression of specialised functions, there is little
evidence that such cells divide and multiply (StockDALE and HoLTZER 1961), al-
though synchronous DNA synthesis (Ryan and SpeEcTor 1970) and both syn-
chronous and asynchronous mitoses of multinucleated macrophages have been
observed in vivo (MARIANO and SPECTOR 1974).
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Fig. 3. Karyotype of a Chinese hamster V79 x mouse L1210 hybrid. Upper, metaphase fig-
ure stained with aceto-orcein. Lower, chromosomes of some metaphase chromosomes ar-
ranged in order of size, top line containing meta- and submetacentric chromosomes typical
of Chinese hamster, bottom line containing telocentric chromosomes typical of mouse. (L.
G. Durrant and J. M. Boyle, unpublished)

Two groups of viruses that frequently produce lesions containing fused cells
are herpesvirus, which causes syncytia in skin lesions of patients with varicella
(Tyzzer 1906) and the paramyxoviruses, which include mumps, measles, respi-
ratory syncytial virus and Sendai or haemagglutinating virus of Japan (HJV).
Sendai virus is of interest as the agent used to produce the first intespecies hybrid
cells between human and mouse (HARRIS and WATKINS 1965). Ro1zMAN (1962 a)
discussed evidence that polykaryocytosis occurred mainly following low-level in-
fection insufficient to allow virus multiplication and was enhanced by viral anti-
bodies that prevented the spread of free viral particles. Viruses from other taxo-
nomic groups (Table 1) have also been observed to cause fusion of cell cultures.
This does not necessarily mean that such viruses cause fusion in vivo, since
CascarDO and KARZON (1965) showed that, although many epithelial cell lines
were susceptible to fusion by measles virus, neither diploid human fibroblasts nor
primary human epithelial cultures were susceptible. The Togavirus causing
Western equine encephalomyelitis, apparently caused the production of hybrid
erythrocytes when injected into chimeric chickens (KARAKOZ et al. 1969), al-
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Table 1. Multinucleate cells in vivo
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Occurrence Reference
A. Normal tissues
Binucleate cells of liver LE Bouton (1976)
Multinucleate cells of bladder epithelium MARTIN (1972)
Myoblast fusion to give myotubules MinNTZ and BAKER (1967)
Megakaryocyte formation:

Foreign body giant cells CHAMBERS (1978)

Langhans giant cells MARIANO and SPECTOR (1974)
Formation of osteoclasts Ham (1974)

Syncytiotrophoblast fusion during implantation
Erythroid cell fusion in chimeric cattle
Leucocyte fusion foliowing transfusion in utero

B. Infected tissues
Giant cells in tuberculous lesions
Viral infections:

a) Paramyxoviruses
Mumps
Measles
Respiratory syncytial virus
Sendai virus (HVJ)
Newcastle disease virus

b) Herpesviruses
Varicella/zoster

Herpes simplex

¢) Leukoviruses
Rous sarcoma virus
Visna virus
d) Poxviruses
Vaccinia
e) Togaviruses
Dengue
Western equine encephalomyelitis
f) Bungaviruses
Germiston
Wesselsbron
g) Coronavirus
Avian infectious bronchitis virus

C. Malignant tissues
Giant cells in malignant tissues
Warren sarcoma

Reed-Sternberg binucleate cells in Hodgkins lymphoma

TesTa et al. (1981)
ENDERS and SCHLAFKE (1971)
STonE et al. (1964)
TURNER et al. (1973)

Lewis (1927)

HEeNLE et al. (1954)
WARTHIN (1931)
Mornis et al. (1956)
OxADA (1962)
Konn (1965)

Tyzzer (1906)

WELLER et al. (1958)

HoGGaAN and Ro1zMaN (1959)
SCHERER (1953)

Moskes and Konn (1963)
HARTER and CHOPPIN (1967)

McCLAIN (1965)

Surter and PAuL (1969)
KAraxoz et al. (1969)

Dimnawi and OLseN (1973)

AKERS and CUNNINGHAM
(1968)

LuprorD and SMILES (1952)
Lewis (1927)
JACKSON and PARKER (1944)

though other cases of hybrid blood cells did not involve (known) viruses (STONE

etal. 1964; TURNER et al. 1973).

Multinucleate cells are frequently observed in tumours (RoizMAN 1962 b), and
CHAMBERS (1978) distinguished between multinucleated tumour cells capable of
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division and “tumour-associated giant cells” that are rarely mitotic and have nu-
clei that are uniform in size and shape. These cells resemble foreign body giant
cells and are thought to have a similar stem-cell origin. Examples cited are giant-
cell tumour of soft parts (villonodular tenosynovitis), malignant giant-cell tu-
mour of soft parts, osteoclastoma and malignant fibrous histiocytoma. Multinu-
cleated tumour cells also occur. SHEEHY et al. (1974) found the frequency of bi-
and multinucleated cells among malignant cells of ovarian carcinoma to be 7%
and 65% respectively. Both DNA synthesis and mitosis were observed occurring
asynchronously among nuclei of a single cell. Since multinucleate tumour cells are
cycling, they will generate mononucleate hybrid cells that will contribute to the
polyploidy of tumours. Some examples from an abundant literature on the inci-
dence of polyploidy in tumours will illustrate the principles that the incidence and
degree of polyploidy vary widely with the type of cancer and the stage of malig-
nancy. MORARU and Fape1 (1974) distinguished giant and multinucleated cells in
eight cases of ovarian papillary adenocarcinomas. Frequencies varied from
0%-31% for giant cells to 0%-24% for multinucleated cells, the most invasive
tumours having the highest proportion of both cell types. Mean chromosome
numbers of the eight tumours showed variations from near diploid to hypotetra-
ploid. In one tumour approximately 6% of metaphases had over 100 chromo-
somes. Comparison of tumour morphology and karyotype distinguished three
stages of malignancy: stage I, mainly diploid, papilliform; stage II, mainly diploid
with some heteroploid, proliferating malignant epithelium, covering papilli;
stage 111, heteroploid with marker chromosomes, invasive malignant epithelium.
Ploidy can be more rapidly determined by microdensitometry of the DNA con-
tent of Feulgen-stained cells. A study of 23 ovarian carcinomas showed a good
correlation between the DNA content measured in this way and the ploidy deter-
mined by chromosome counting (ATKIN 1971). A large study of the DNA con-
tents of 1,465 malignant tumours of many different types was made by ATKIN and
KAy (1979). Ploidy values were analysed in terms of 2.5-year survival data, and
it was shown that most tumours except those of testis showed both low (near dip-
loid) and high (triploid-tetraploid) groups, with prognosis being better for
patients in the low group for all sites except carcinoma of the cervix uteri.

II. Experimental Production of Hybrids In Vivo

Support for the inference that cell fusion is involved in the production of polyploi-
dy among tumour cells comes from studies with animal tumour-cell lines. There
is strong evidence for fusion occurring in vivo between different tumour cell lines
(JaNzeN et al. 1971) and between tumour cells and normals cells of the host ani-
mal (Table 2). Definitive proof of hybridisation requires the demonstration that
a cell possesses chromosomes, antigenic determinants or isozymes characteristic
of both cell types involved in the fusion. To facilitate these measurements biopsy
material is cultured in vitro to obtain hybrid clones, a necessity which led to the
criticism that the hybrid clones isolated could have arisen from fusions occurring
during culture in vitro. To overcome the objection as far as possible, BER et al.
(1978) used tumour-cell lines of the universal fuser type (Sect. C), which allowed
biopsy material to be cultured in a selective medium that rapidly killed both the
tumour-cell line and normal host cells, but permitted the growth of hybrid cells.
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Table 2. Hybridisation involving tumour cells in vivo
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Tumour cells Host Reference
A. Tumour X tumour hybrids
Mouse L5178Y lymphoma C3H mice JanzeN et al. (1971)

x mouse sarcoma 180
B. Tumour x host hybrids

Human gastric stem-cell lymphoma Golden hamster

Mouse cell lines:
A9HT

B82HT

SEWA (polyoma-induced
sarcoma, ascitic form)

SEYF (polyoma-induced
fibrosarcoma)

MSWBS (methylcholanthrene-
induced ascites sarcoma)

TA3Ha (ascitic form,
spontaneous mammary
adenocarcinoma)

AYHT(HGPRT 0UA4")

501-1(HGPRT OUA'CAP")

Ehrlich ascites
Ehrlich ascites
C1.1D (L cell)

PAZG (non-pigmented
8 AzG' P/51 melanoma
derived from B16 melanoma
in C57B1/6 mice)

Cloudman (HGPRT™)
melanoma

(Mesocricetus auratus)

C3H x CBA mice

C3H x C57B1

C3H x ACA

CBAT6T6

C3H x CBA

C3H x C57B1

C3H x ACA
(AxASW)F,;(AxDBA/2)F,
CBA/HT,

(AxA.BY)F,; (A.BY x C3H)F,
(A.BY x A.SW)F,

(A.SW x C3H)F,
(C3H x C57B1)F,
(C3H x DBA/2)F,

C3H; C3H x C57B1
C3Hx A.SW:C3Hx ACA
C3H x A.CA: C3H x C57B1

CBA/H T4 mice
Swiss mice

C3H

C3H x DBA/2 mice

C57B1/6 mice

C57B1
DBA/2 mice

GOLDENBERG et al. (1971, 1974)

WIENER et al. (1972)
Fenvyoetal. (1973)

WIENER et al. (1974 a)

Ber et al. (1978)

LaLaetal. (1980)
AGNIsH and FEDEROFF (1968)

AviLEset al. (1977)
Hu and PaszTor (1975)

HavLaBAN et al. (1980)

The same group found that hybridisation in vivo occurs within 24 h of tu-
mour-cell injection, a conclusion shared by LALA et al. (1980) for Ehrlich ascites
cells grown subcutaneously in CBA/H T, mice. In the latter study the proportion
of cells carrying the host marker chromosome Ty increased to about 18% after
60 weekly passages of the tumour and subsequently stayed at this level. However,
after only 16 weekly passages, all cells that had the sum of Ehrlich ascites plus
host-cell chromosome numbers carried the T4 marker. Examination of tumour
smears showed that up to 5.6% of the cells of old tumours (13 days after injection)
were multinucleate of which the majority were tumour x tumour homokaryons.
The remainder were tumour x host heterokaryons in which the host nuclei had
the morphology of macrophages or lymphocytes but not granulocytes, and
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host x host homokaryons. WIENER et al. (1974b) also obtained evidence that
ascites tumour cells fuse in vivo with haemopoietic cells. Tumour cells were in-
jected into radiation chimeras that had been repopulated with donor cells carry-
ing T¢ chromosomal and H-2 antigenic markers. Ascites tumours formed hybrids
with the repopulating haemopoietic cells whereas solid tumours fused with cells
of the irradiated host. Subsequent experiments established that the host-cell com-
ponent of ascites tumour hybrids was non-thymus derived (WIENER et al. 1976).

III. Modified Phenotypes of Hybrids Induced In Vivo

Apart from the use of HGPRT ™ (hypoxanthine guanine phosphoribosyl transfer-
ase) and ouabain resistance in the selection of hybrids, there appear to have been
no studies of drug resistance in hybrids formed in vivo. However, some ob-
servations have been made on factors that may affect the fitness of hybrid cells
to grow in vivo, and thereby contribute indirectly to drug resistance.

There appear to be no clear rules about the expression of malignancy in hy-
brids made in vivo. Malignancy was increased in hybrids of human tumours
grown in golden hamsters (GOLDENBERG et al. 1971, 1974), was similar to that of
the tumour-cell line (WIENER et al. 1974¢; AVILES et al. 1977, HALABAN et al.
1980), or was suppressed (Hu and PAszToRr 1975). When Ehrlich ascites tumour
cells were injected subcutaneously into mice, their malignancy was related to the
haplotype expressed, which changed according to the strain of mouse in which
the tumour was passed (LaLA et al. 1980). The authors interpreted this observa-
tion as the result of tumour x host fusion followed by extensive chromosome loss
giving rise to “isoantigenic variants” (WIENER et al. 1974a) that were insensitive
to immune attack at the subcutaneous site of injection. The malignancy of Ehrlich
cells passed as ascites showed no such haplotype dependency.

Occasionally an unexpected phenotype has been observed in hybrids pro-
duced in vivo. Thus hybrids between host cells and B16 (Hu and PaszTor 1975)
or Cloudman (HALABAN et al. 1980) melanomas showed increased melanogenesis
in contrast to the usual observation that melanin synthesis is a differentiated func-
tion that is extinguished in hybrids produced in vitro (DAVIDSON et al. 1966;
S1LAGI 1967). It was suggested that this difference might result from gene dosage,
or from differences in the cell type with which the melanomas fused in vitro and
in vivo.

C. Use of Drug Resistance for the Selection
of Hybrid Clones In Vitro

Table 3 gives a selected list of cytotoxic drugs which have been used in cell hy-
bridisation studies. Not all are antitumour agents, but their cellular targets in-
clude those important for antitumour agents, and therefore information on the
expression of resistance to these agents in hybrid cells should provide insights into
the principle modes of expression of antitumour drug resistance in hybrids.

The selection of resistance in many instances is multistep through a series of
increasing drug concentrations, in line with clinical experience. Many of the
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markers involve the purine and pyrimidine salvage pathways. Mutants can be se-
lected that are resistant to toxic analogues because they are deficient in target en-
zymes required for the incorporation of exogeneously supplied purines and
pyrimidines into DNA and RNA. If such mutants are grown in the presence of
methotrexate (amethopterin) then de novo synthesis of purine and pyrimidines is
prevented and the mutants die. Complementation between different mutants can
be demonstrated by the rescue of hybrid clones from methotrexate toxicity by sal-
vage of normal nucleotide precursors. Thus LITTLEFIELD (1964) demonstrated in-
tergenic complementation between mutants resistant to 8-azaguanine
(HGPRT™TK™) and bromodeoxyuridine (HGPRT* TK™) by selection in medi-
um containing hypoxanthine, aminopterin and thymidine (HAT medium). A
number of other selective systems have been devised based on this principle
(Table 4). Cell lines called “universal fusers” have used in situations where it is
desirable to produce hybrids with wild-type cell lines or primary cultures. Such
cells carry two mutations, one recessive, the other dominant. On fusion with a
wild-type cell, the hybrid phenotype expresses the dominant wild-type allele that
complements the recessive mutation, as well as the dominant mutation of the uni-
versal fuser (Table 4).

The use of these selection systems has yielded information concerning gene ex-
pression in hybrids, which will now be discussed.

D. Expression of Drug Resistance in Hybrid Cells
I. Dominance and Complementation

The HAT system of Littlefield described above is an example of intergenic com-
plementation in which one parent contributes an active enzyme for which the
other parent is deficient. The active allele is thus dominant over the inactive, re-
cessive allele. Recessive mutations may be due to deletion of a gene (no product)
or alteration of the coding sequence resulting in an altered product that may be
inactive or partially active. If the gene product is a protein consisting of several
identical subunit polypeptides, then occasionally the subunits of two altered pro-
teins may interact to produce an active protein. Such intragenic complementation
has been observed in rare HGPRT mutants having altered electrophoretic mo-
bilities (CHASIN and URLAUB 1976). Since it requires the interaction of two differ-
ent mutants of the same gene, intragenic complementation is unlikely to occur in
vivo. Enzyme deficiency in mutants might also result from repression of mRNA
synthesis, and KADOURI et al. (1978) produced evidence for a transacting domi-
nant repressor of HGPRT. Such a mechanism is clearly important since it would
permit the spread of TG" in tumour-host hybrids formed in vivo. However, we
have been unable to confirm this observation (BoyLE and Fox 1980).

Dominant gene expression implies the production of an altered gene product
or an increase in the amount of gene product. In hybrids, wild-type and resistant
alleles may be expressed together and result in resistance intermediate between
that of the wild-type (sensitive) parent and the resistant mutant. This incomplete
dominance, or codominance, is observed for resistance to ouabain (BAKER et al.
1974; RoBBINS and BAKER 1977) due to modification of the membrane-bound
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Na* /K *-dependent ATPase; to colchicine (LING and BAKER 1978) due to in-
creased production of a high molecular weight membrane glycoprotein; and to
cycloleucine (CABOCHET and MULSANT 1978) due to increased levels of methio-
nine adenosyl transferase. Resistance to several polyene macrolide antibiotics
which affect sterol binding has also been shown to be dominant, but the mem-
brane target of this resistance has not been defined (FisHER et al. 1979). Other
chemotherapeutic agents to which resistance is codominant are a-amanitin (LoB-
BAN and SIMINOVITCH 1975), hydroxyurea (LEwis and WRIGHT 1979) and some
classes of methotrexate resistance (FLINTOFF et al. 1976).

The selection of mutants resistant to different concentrations of a drug can re-
sult in a series of mutants whose alleles show markedly different expression in hy-
brids. Thus Chinese hamster cells selected in 0.5 pg/ml araC (class I) were cross-
resistant to excess thymidine (TdR) and had an expanded pool of deoxycytidine-
5'-triphosphate (dCTP). When selected in 5 pg/ml araC only class II mutants
were obtained which exhibited resistance to high levels of araC (50 pg/ml) and
were deficient in deoxycytidine kinase. In hybrids with wild-type, araC-sensitive
cells, class I mutants were recessive and class II mutants were codominant (DE
SAINT VINCENT and BUTTIN 1979). A third class of araC” mutant has been de-
scribed (MEUTH et al. 1979) which is resistant to 0.2-2.4 pg/ml araC when
grown in the presence of 0.2 pg/ml TdR. These mutants require TdR for growth,
and in hybrids TdR auxotrophy is recessive whereas resistance to araC and TdR
is dominantly expressed. Reversion to TdR prototrophy is accompanied by rever-
sion to araC and TdR sensitivity, suggesting that a single mutation controls both
auxotrophy and resistance and the authors favour an altered ribonucleotide re-
ductase.

Low and high levels of resistance to emetine, which is a potent inhibitor of
protein synthesis through its action on 40S ribosome subunits, are expressed by
mutant classes I and rII that are both recessive to emetine sensitivity. High-level
rII mutants are also recessive to r/ in hybrids (GupTa and SIMINOVITCH 1978 a).
Although hybrid cells produce both em® and em” 40S subunits the dominance of
sensitivity in this case is due to the mode of action of emetine which blocks the
passage of ribosomes along the mRNA (GUPTA and SIMINOVITCH 1978 b).

II. Gene Dosage and Functional Hemizygosity

When resistance results from a recessive mutation of an autosome-linked gene,
mutation of only one homologue often results in partial resistance. Such is the
case with resistance to pyrimidine analogues (CLIVE et al. 1972), purine analogues
(RapPPAPORT and DEMARS 1973; JonEs and SERGENT 1974) and dexamethasone
(BourGeois and NEwBy 1977; PrFAHL et al. 1978; PFAHL and BOURGEOIS 1980).
The phenomenon arises because the cellular concentration of the target macro-
molecules is dependent on the number and proportion of recessive and dominant
alleles that a cell inherits.

Gene dosage can also affect the phenotype of cells when resistance results
from a dominant autosomal mutation, as with class IIb resistance to diphtheria
toxin. Subunit B of the toxin binds to specific membrane receptors that are altered
or deficient in class I mutants, whereas subunit A causes ADP ribosylation of
elongation factor 2, thus interfering with translation of mRNA. Class Ila mu-
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tants possess altered elongation factor 2 which is insensitive to ADP ribosylation.
In hybrids class I mutations are recessive whereas class Ila mutations of Chinese
hamster ovary (CHO)-K1 cells are codominant (MOEHRING and MOEHRING
1977), although apparently similar mutations in Chinese hamster V79 cells be-
have recessively (GuPTA and SIMINOVITCH 1980). A second class of mutant (IIb)
with altered protein synthesis was described by Gupta and SiMINovITCH (1978 ¢)
which showed 50% inhibition of protein synthesis in the presence of toxin, imply-
ing that only one of a pair of homologous chromosomes carried the mutant allele,
and that both wild-type and mutant alleles were being expressed equally. In these
mutants the resistant allele (R) was codominant with the wild-type allele (S).
However, when the mutant (R/S) was fused with a wild-type cell (S/S) the result-
ing hybrids were sensitive, indicating that three sensitive alleles were dominant
over one resistant allele. Class IIb mutants are apparently affected in an uniden-
tified protein synthesis factor since these mutants complement those of class Ila
(GupTA and SIMINOVITCH 1980).

The interpretation of gene dose relationships is clearly dependent on a knowl-
edge of the number of gene copies per cell, their distribution among chromosomes
and what proportion are functional. The question of functional ploidy was raised
by DEAVAN and PETERSON (1973) and reviewed by SimiNoviTCH (1976), who ar-
gued that the relatively high frequently with which recessive mutations arise in
CHO cells might be due to the production of functionally hemizygous portions
of chromosomes as a result of extensive chromosomal rearrangements. This idea
was substantiated by Gupta (1980), who showed that hemizygosity was not re-
stricted to one or a few chromosomal regions. SICILIANO et al. (1978), who exam-
ined the isoenzyme patterns of electrophoretic shift variants from 11 different loci
and found that the majority expressed both wild-type and mutant isozymes, con-
cluded that CHO cells are only as functionally hemizygous as would be expected
of a slightly hypodiploid cell line.

III. Multifunctional Enzymes

During the past 5 years evidence has been accumulating that, as in prokaryotes,
one mechanism of coordinate regulation in mammalian cells is the association of
related enzymic activities in a single multifunctional structure (reviewed KIrscH-
NER and BISSWANGER 1976). Such complex enzymes are known for tetrahydrofo-
late metabolism (PAUKERT et al. 1976; TAN et al. 1977) where formyltetrahydro-
folate synthetase, methenyltetrahydrofolate cyclohydrolase and methylene tetra-
hydrofolate dehydrogenase reside in a protein of one (pig liver) or two (sheep
liver) identical subunits. Pig liver also contains formiminoglutamate-tetrahydro-
folate formiminotransferase and formiminotetrahydrofolate cyclodeaminase ac-
tivities, in a protein of probably eight identical polypeptides (DRURY et al. 1975).
The elegant analyses of pyrimidine biosynthesis by groups led by PATTERSON
and STARK have revealed three complementation groups, urd A, B and C (Fig. 4).
urd A~ mutants selected as uridine auxotrophs simultaneously lose carbamyl
phosphatase, aspartate transcarbamylase and dihydroorotase activites, which are
regained simultaneously in revertants (PATTERSON and CARNRIGHT 1977). These
observations are consistent with an active enzyme of molecular weight 600,000
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catalysed by multifunctional enzymes (bracketed)

consisting of a trimer of identical polypeptides (COLEMAN et al. 1977; DAVIDSON et
al. 1979). All three activites are overproduced in mutants resistant to N-
(phosphonacetyl)-L-aspartate (PALA), which inhibits aspartate transcarbamylase

(KempE et al. 1976). urd B~

is represented by a mutant of the fourth en-
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zyme in the pathway, dihydro-orotate dehydrogenase (STAMATO and PATTERSON
1979). Unlike all the other enzymes of pyrimidine synthesis, which are found in the
cytosol, this one is located in mitochondria although coded by the nucleus (CHEN
and JONEs 1976). urd C~ mutants show a simultaneous deficiency in the last two
enzymes of pyrimidine synthesis, orotate phosphoribosyltransferase (OPRT) and
orotate monophosphate decarboxylase (ODCase). In CHO cells which lack uracil
phosphoribosyl transferase, the conversion of 5-fluorouracil (FU) to the nucleotide
is dependent on OPRT, and hence OPRT-deficient mutants can be isolated that are
resistant to the toxic effects of FU (PATTERSON 1980). Patients with orotic acid
uria are similarly deficient in both OPRT and ODCase (KroOTH 1964). In order
to grow most urd C~ mutants need to salvage uridine. However, some do not and
these are most probably partially defective in OPRT and ODCase since there is
no complementation between uridine-requiring and non-requiring mutants (PAT-
TERSON 1980). Mutants of all three complementation groups have mutations that
are recessive to wild-type alleles, and since urd A~ and urd C~ mutants comple-
ment each other, the multifunctional activites of these two classes exist on sepa-
rate polypeptides.

IV. Steroid Resistance and Enzymic Induction by Hormones

Many lymphoid cell lines are killed by high concentrations of glucocorticoid
sterols. This results from a chain of events starting with the binding of glucocor-
ticoid to a specific membrane-bound receptor that is activated and transports the
glucocorticoid to the nucleus (nuclear transfer). Here the hormone-receptor com-
plex binds to DNA and initiates an as yet poorly understood mechanism which
finally leads to cell death. Mutants resistant to high concentrations of dexameth-
asone have been classified into four classes distinguishable biochemically and ge-
netically as being affected at different stages of hormone interaction (GEHRING
1980). Mutants resistant to killing can either lack the receptor () or have normal
receptors but fail to perform nuclear transfer (nz ™) of the receptor-hormone com-
plex. In a study of dexamethasone resistance in mouse S49 lymphoma and
WEHI 7 thymoma PraHL and BoUurGEois (1980) found no complementation be-
tween r~ and n¢~ mutants, supporting the idea that both r~ and nt~ are alleles
of r*. Fusions between wild-type Dex® (r*) and Dex" (r~) cells resulted in Dex*
hybrid cells, indicating dominance of r*, accompanied by the synthesis of widely
differing numbers of receptor sites in different hybrid clones.

A third phenotype (nt') of S49 lymphoma cells, reported by YAMAMOTO et al.
(1976), was characterised by increased affinity of the receptor-steroid complex for
DNA that was due to abonormal nf' receptors of molecular weight 50,000 com-
pared with molecular weight 90,000 for wild-type receptors. In wild-type x nt' hy-
brids synthesis of both types of receptors occurred (codominance), and sensitivity
of dexamethasone was codominant when cloning ability was measured: nt' x r~
failed to complement. Thus in each case involving mutant receptors sensitivity to
dexamethasone was dominant.

A fourth class of Dex” mutant has been described in mouse L cells which ap-
parently has normal steroid receptors (VENETIANER et al. 1978). Most Dex" (r*)
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mutants were cross-resistant to the glucocorticoids dexamethasone (9-a-fluoro-
16-a-methyl prednisolone), prednisolone, cortisolone, corticosterone, aldoste-
rone and also non-glucocorticoids 17-a-methyl testosterone, progesterone and
17-B-esteradiol when inhibition of [*H]-thymidine uptake was the end point mea-
sured. Fusions of Dex"(r*) x Dex*(r*) fibroblasts showed sensitivity to be domi-
nant, as was also observed in hybrids between Dex"(r*) mouse lymphoma and
Dex*(r*) mouse myeloma (GEHRING et al. 1972). Other reports of Dex"(r*) mu-
tants have been made in other murine and human cell lines (YAMAMOTO et al.
1976; LIPPMANN et al. 1974) although HUET (1979) reported that only Dex"(r™)
or Dex"(nt™) mutants could be isolated from WEHI 7 thymoma after a variety
of treatments inducing point mutations, deletions, chromosome rearrangements
and chromosome loss. YAMAMOTO et al. (1976) coined the term “deathless” (d7)
for their mutants, implying that resistance was due to some defect in cell killing
after nuclear transfer had occurred. There has been no study of complementation
between d~ mutants and the other three classes (GEHRING 1980).

In contrast to the dominant lethal effects of glucocorticoids in lymphoid cells
the ability of glucocorticoids to induce enzymes in hepatoma cells is a recessive
phenotype. Thus in rat hepatoma cells tyrosine aminotransferase (TAT) and
alanine amino transferase can be modulated from low constitutive levels to high
induced levels by exposure of cells to dexamethasone (SCHNEIDER and WEIss 1971;
WEIss and CHAPLAIN 1971; SPARKES and WEIss 1973), a property that is lost
(extinguished) upon hybridisation with mouse fibroblasts or rat epithelial cells.
Subclones isolated some time after hybridisation show loss of some chromosomes
(Sect. D.V) and the reappearance of inducibility. In some subclones inducibility
of alanine aminotransferase was re-expressed in the absence of inducibility of
tyrosine aminotransferase, indicating that steroid induction of these enzymes may
have some steps that are independent. Rat hepatoma hybrids also show extinction
of enzymes that are not inducible (BERTOLOTTI and WEIss 1972 a, b). On the other
hand, inducible enzymes are not always extinguished. Thus BENEDICT et al. (1972)
made hybrids between mouse 3T3 fibroblasts, which have arylhydrocarbon hy-
droxylase inducible by benz(a)anthracene, and rat hepatoma cells with TAT in-
ducible by dexamethasone. The hybrids produced inducible hydroxlasec at levels
the same as, to 20-fold greater than, the 3T3 parent, while TAT was not inducible,
even though most hybrids contained nearly complete sets of chromosomes from
both parents. Hydroxlase induction is therefore a dominant trait in hybrids and
involves a mechanism that is different to induction of TAT.

V. Segregation of Resistance

The conversion of polykaryons into hybrid cells occurs at mitosis when two or
more genomes become aligned on a common spindle apparatus, and is followed
by the subsequent formation of hybrid nuclei at telophase. The probability that
a fusion event will give rise to a viable hybrid cell capable of producing a clone
is very low. Even under optimal experimental conditions where more than 50%
of nuclei are in heterokaryons, the frequency of hybrid clones is rarely more than
one per hundred cells fused (BoyLE and Fox 1980; BoYLE et al. 1977; RECHSTEINER
and PArsoNs 1976; DAvIDsON 1969). By the use of interspecies fusions involving
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cells with morphologically distinct nuclei, or by labelling the nuclei of one parent
with [*H]-thymidine prior to fusion, it is possible to follow the fate of parental
chromosomes during the first four divisions after fusion. In human x mouse
fusions (RECHSTEINER and PARSONS 1976) and human x rat kangaroo (Potorous
tridactylis) (PETERSON and BERNS 1979) the chromosomes from different nuclei
tended to remain separate during the initial mitosis after fusion, mingling in sub-
sequent mitoses, although separation of human and mouse chromosomes was still
seen in some hybrid colonies containing eight cells. In half the human x rat kanga-
roo metaphases, chromosomes were left at the metaphase plate at anaphase and
became trapped by the constricting mid-body during cytokinesis. In polykaryons
containing nuclei of different ages, interphase nuclei that were in close proximity
to mitotic nuclei were observed to go into mitosis before completion of the cell
cycle (PETERSON and BERNs 1979). The interphase chromosomes went through a
process of premature chromosome condensation (PCC, JOHNSON and Rao 1970;
JonnsoN et al. 1970) and presented different morphologies depending on the
phase of the cycle they were in before condensation. Prematurely condensed G1
and G2 chromosomes were entire and had one or two chromatids respectively,
whilst condensed S-phase chromosomes appeared pulverised. RA0 and JOHNSON
(1972) demonstrated a correlation between PCC involving S-phase nuclei and a
reduced chromosome complement in derived hybrid clones. PCC appears largely
confined to the first mitosis after fusion (RECHSTEINER and PARSONS 1976), since
the chromosomes in homokaryons rapidly become synchronised at mitosis and
at the initiation of DNA synthesis (GRAVES 1972). Trapping of chromosomes and
PCC provide two mechanisms that contribute to the phenomenon of chromo-
some loss in hybrid cells.

Loss of human chromosomes from human x rodent hybrids can be extensive,
and the concordant loss of a biochemical phenotype with a specific chromosome
has been a fruitful method for assigning genes to chromosomes (MIGEON and
MILLER 1968; MATSUYA and GREEN 1969; Kao and Puck 1970). (For recent re-
views of human gene mapping the reader is directed to McKusick and RUDDLE
1977 and HUMAN GENE MAPPING 1978, 1979). The method for assigning genes
to chromosomes assumes that chromosome segregation occurs randomly in a
population. However, it is worth pointing out that within a cell chromosome loss
may not be entirely random, the loss of one chromsome influencing the loss of
others, an observation that may result from the compartmentalisation of chromo-
somes at mitosis described above (MARIN and PUGLIATTI-CRIPPA 1972; RUSHTON
1976).

In general, intraspecies hybrids tend to be more stable than interspecies hy-
brids (SINISCALCO et al. 1969; NADLER et al. 1970; SoBEL et al. 1971; HANDMAKER
1973; SPURNA and NEBOLA 1973; WORTON et al. 1977) although some exceptions
have been described (ENGEL et al. 1969 a, b, 1971). It is possible that this observa-
tion is more apparent than real, being governed by the rodent and human cell
types available for fusion. If, instead of fusing primary human cells with hetero-
ploid rodent cells, one fuses heteroploid human cells with primary rodent cells
then rodent chromosomes are preferentially lost instead of human (MiNNA and
CooN 1974; Crocke 1976). Although the factors controlling chromosome loss are
obscure, there may be some relationship between these observations and those of



Cell Hybridisation 317

RusskeLL et al. (1979), who demonstrated an initially rapid segregation of chromo-
somes in mouse hybrids between heteroploid and euploid cells as compared with
heteroploid x heteroploid hybrids or euploid x euploid human cells (MIGEON et
al. 1974; HoenN et al. 1975). Some progress towards understanding the genetic
control of segregation, at least in rodent x human hybrids, has come from the in-
triguing observation that transcription of rRNA genes is suppressed from the
chromosomes of the species that will show preferential chromosome loss in hu-
man x rodent hybrids (PERRY et al. 1979; Dev et al. 1979), whereas the rRNA
genes of both parents are transcribed in rodent x rodent hybrids (MILLER et al.
1978; WEIDE et al. 1979). Mouse-human hybrids also appear to lose the mitochon-
drial DNA of the parent whose chromosomes are preferentially lost (ATTARDI
and CROCE 1980). Because of the implications for gene mapping, attempts to in-
fluence the direction and extent of chromosome loss have also been made by the
selective production of damage in the chromsomes whose loss was desired (PoN-
TECORVO 1971, 1974; Goss and HARRIs 1977; LAw and Kao 1978; GrRAVES 1980)
(see also Sect. E.I1).

Chromosome segregation appears to be the main cause of re-expression of re-
cessive alleles in hybrid cells, although recombination (WORTON et al. 1980) and
epigenetic events (HARRIS 1975) have also been suggested as possible mechanisms.
RusseLL et al. (1977) inferred that segregation chiefly accounts for chromosome
loss, while recombination, i.e. translocations, accounted for chromosome hetero-
geneity. Loss of the X chromosomes was correlated with segregation of X-linked
markers from intraspecies hybrids of human (BENGTSSON et al. 1975), mouse
(Hasamr and MILLER 1976) and Chinese hamster (FARRELL and WORTON 1977).
The application of selective pressure can cause preferential loss of chromosomes
from the parent complement carrying the allele selected against. Thus growth of
Chinese hamster (HGPRT™)xmouse (TK™) hybrids with 6-thioguanine or
bromodeoxyuridine resulted in loss of many mouse or hamster chromosomes re-
spectively (MARIN and PUGLIATTI-CRIPPA 1972). Similarly chromosomal segre-
gants can be selected by immune mechanisms (KNowLEs and Swirt 1975; CoL-
LINS et al. 1975) which may be significant in producing hemizygosity in vivo.
Chromosome loss may also be important in the expression of recessive drug re-
sistance mutations occuring in autosomes (see Sect. D.II), causing the “unmask-
ing” of a recessive mutation by removal of the wild-type allele upon loss of the
homologous chromosome (CHASIN and URLAUB 1975).

The frequency with which recessive alleles are re-expressed in hybrid popula-
tions can vary widely. In hamster x mouse hybrids the frequencies of resistance
to 6-thioguanine and bromodeoxyuridine (BUdR) varied from <1073 to
3x107%and from <1075 to 7 x 10~ 3 respectively (MARIN and MANDUCA 1972).
The greater stability of intraspecies hybrids may be reflected by lower segregation
frequencies, as in mouse hybrids where segregation of 8-azaguanine (8-AZG) was
5x107°-5.2x107* (SpurNA and NEBoLA 1973). In quasi-tetraploid Chinese
hamster hybrids the rate of segregation for membrane-defective 8-4ZG"ts and
phytohaemaglutinin resistance was 5x 107> and 10~ ° events/cell per generation,
and these values increased 40- and 200-fold respectively in quasi-hexaploid hy-
brids in which the resistance alleles were present at twice the gene dosage (2r: 1s)
but decreased to 0.04 x 1073 when the sensitive alleles were present at twice the



318 J.M. BOYLE

dosage (1r:2s) (HarrIS and WHITMORE 1977). Similarly PFAHL and BOURGEOIS
(1980) found the frequency of Dex" segregants from mouse hybrids (3r: 1s) was
about 103-10* times more frequent than from heterozygous diploid cells (17: 15).

VI. Gene Activation

Occasionally hybrid clones are isolated that unexpectedly show a phenotype ex-
pressed by neither parent, as with fusion of rat hepatoma cells and mouse fibro-
blasts or lymphocytes which resulted in the production of mouse serum albumin
(PETERSON and WEIss 1972; MALAWISTA and WEIss 1974). Fusion of rat x mouse
cells also resulted in hybrids that were unexpectedly resistant to ionising radiations
(LITTLE et al. 1972, see Sect. E.I). Such examples presumably reflect changes in
regulatory control. Two further examples indicate that activation can be locus
specific and can apparently operate against very strong repression mechanisms.
Female cells are functionally hemizygous for the X chromosomes, one X chromo-
some becoming inactive early in embryogenesis (LYON 1971). In hybrid cells, ac-
tive X chromosomes usually remain active and inactive chromosomes remain in-
active (SINISCALCO et al. 1969; SILAGI et al. 1969; MIGEON et al. 1974). However,
exceptional human x mouse hybrid clones have been isolated carrying an active
gene on an otherwise inactive X chromosome (KAHAN and DEMARs 1975; HELL-
KUHL and GRZESCHIK 1978). Localised derepression occurred at a rate of 1076 per
inactive X chromosome per cell generation and was maintained in the absence of
any other human chromosome (KAHAN and DEMARS 1980). There have also been
a number of reports of HGPRT' human x HGPRT™ rodent hybrids which ex-
pressed rodent HGPRT, despite the fact that the rodent parent cells were previ-
ously thought to contain HGPRT deletions due to the extremely low frequency
or absence of reversion at this locus (WATSON et al. 1972; CROCE et al. 1973;
BAkAY et al. 1973, 1978). In the light of KAHAN and DEMARS’ observations it is
possible that some HGPRT “deletions” may represent locally inactive regions on
the X chromosome that can be occasionally reactivated by the conditions used
for cell hybridisation (SHIN et al. 1973), through a mechanism involving DNA
methylation.

The pattern of methylation of DNA at the 5-position carbon atom of cytosine
appears to be an important epigenetic mechanism controlling tissue differenti-
ation (review, RaziN and R1GGs 1980), lack of methylation of critical cytosine res-
idues being correlated with transcriptional activity. Hypomethylation can be in-
duced experimentally by growing cells with 5-azacytidine, which replaces cytosine
in DNA, but cannot be methylated because of a nitrogen atom at position 5. The
pattern of methylation is inherited in daughter cells in the absence of more 5-aza-
cytidine, supposedly because the critical sites are in palindromic sequences which
are monitored by a maintenance methylase that methylates daughter strands in
half-methylated palindromes. Using 5-azacytidine to induce hypomethylation in
a human x mouse hybrid MOHANDAS et al. (1981) were able to reactivate the hu-
man HGPRT gene on an inactive X chromosome. BoEHM and DRAHOVSKY (1981)
reported that MNU (1-methyl-1-nitrosourea) caused hypomethylation of the
DNA of human Raji cells, thus suggesting the possibility of an epigenetic origin
for some dominant “mutations” induced by alkylating agents. The converse, i.e.
hypermethylation, might explain some forms of recessive “mutation’.
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E. Radiation Responses of Hybrid Cells
I. Sensitivity to Ionising Radiation and Ultraviolet Light

Studies of the radiation sensitivity of hybrid cells were stimulated by reports that
mouse and rat hybrids were unexpectedly twofold more resistant to X-rays (ratio
of Do values) than their parent cell lines (LITTLE et al. 1972) and were cross-re-
sistant to a-particles (ROBERTSON and Raju 1980) and also to actinomycin D and
cordycepin, suggesting that X-ray resistance might involve some aspect of RNA
metabolism (ROBERTSON et al. 1977). Resistance was not associated with enhance-
ment of the repair of either sublethal or potentially lethal damage.

Later reports on a range of inter- and intraspecies hybrids showed that the re-
sistance of rat x mouse hybrids was exceptional. The sensitivities of hybrids
showed the same range as that previously observed with tetraploid cell lines (LM-
BOSCH et al. 1974; ZAMPETTI-BOSSELER et al. 1976; BoYLE et al. 1979). From the
fusion of a pair of cell lines, hybrid clones can be selected with sensitivities ranging
from similar or intermediate to the parent cells, to marginally more resistant. Re-
sistance appears to be a dominant phenotype and is unstable, its loss being associ-
ated with loss of chromosomes in some but not all cases (BOYLE et al. 1979;
RoBERTSON and Raru 1980).

Similar results have been obtained for hybrids exposed to ultraviolet light.
Hybrid sensitivity was similar to (ROMMELAERE and ERRERA 1972; ROBERTSON et
al. 1977) or less than (BOYLE et al. 1979; ZAMPETTI-BOSSELER et al. 1980) the par-
ental cell lines, and the resistant phenotype was unstable (PETROvVA 1977; BOYLE
etal. 1979).

The variable sensitivity of hybrid cells probably reflects the polygenic control
of DNA repair and cellular recovery mechanisms. These observations may be sig-
nificant for adjuvent therapy and perhaps give a clue to the likely responses of
hybrids to chemotherapeutic agents that damage DNA.

Mouse L5178Y lymphoma cells (LS) are relatively radiation sensitive with re-
ported Do values of 40-60 rads (ZAMPETTI-BOSSELER et al. 1976; DALE 1979) com-
pared with 100-200 rads for the majority of mammalian cells. Complementation
of the sensitive phenotype was achieved after hybridisation with a radiation-resis-
tant L5178Y variant (LR) or with Chinese hamster fibroblasts and mouse L cells
(DALE 1979; ZAMPETTI-BOSSELER et al. 1976). Fox (1979) showed that resistance
to UV and ethyl methane sulphate (EMS) was also dominant in LS x LR hybrids.
The sensitivity of LS cells reflects their lymphocyte origin; hence these results sug-
gest that hybridisation in vivo of lymphoid tumours with cells of other tissues
could markedly affect the response of the tumour to DNA-damaging agents.

II. Rescue of Genes from Lethally Irradiated Cells

As described earlier, hybrid clones resulting from the fusion of TG" and BUdR"
cell lines can be selected in HAT medium because the respective genotypes
HGPRT™TK"* and HGPRT* TK™ are complementary for the enzymes that sal-
vage exogenous hypoxanthine and thymidine. HARRIS (1972) demonstrated that
even if one of the fusion partners was lethally irradiated it was still capable of con-
tributing the complementary allele for hybrid selection. These experiments paral-
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Fig. 5. Cell survival, and rescue of TK™* by cell fusion following y-irradiation. Chinese ham-
ster wg3h cells (TK*, HGPRT ") were irradiated in oxic suspensions with the indicated
doses of y-radiation from a '37Cs source and cell survival measured by colony formation
in growth medium. Cell samples from each radiation treatment were also fused with unir-
radiated Chinese hamster a23 cells (TK~ HGPRT™") and the frequency of hybrid clones ex-
pressing TK* derived from irradiated wg3h cells was measured by colony formation in
HAT-selective medium. Circles and squares represent two separate experiments. Left curve,
survival of wg3h,; right curve, survival of TK* hybrids. [BOYLE (1979), reproduced by kind
permission of Taylor and Francis Ltd}

leled those of PONTECORVO (1971, 1974), who demonstrated that irradiation of ei-
ther mouse or Chinese hamster cells prior to fusion led to the preferential loss of
the irradiated chromosomes from the resulting hybrids (Sect. D.V). However, ir-
radiation of mouse cells prior to fusion with human cells did not reverse the ge-
netically controlled preference for loss of human chromosomes.

Another way of expressing HARRIS’ observations is that the unirradiated fu-
sion partner is able to rescue a functional salvage enzyme gene from the irradiated
genome. Since hybrid clones are produced in inverse proportion to the radiation
dose, the Do value (!/slope) is an index of the sensitivity of those processes leading
to the rescue of the marker gene. When compared with the radiation sensitivity
of the colony-forming ability of cells irradiated, marker rescue was approximately
two to eight times more resistant for fusions involving different markers and dif-
ferent cell lines (KINSELLA et al. 1976; BoyLE et al. 1977; JULLIEN et al. 1978). For
hybridisation between a given pair of cell lines the ratio Do marker rescue: Do
cell survival was fairly constant between 3 and 4 for cells irradiated with X-rays,
137Cs and 14-MeV neutrons, and in air or under hypoxic conditions (BOYLE 1979)
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(Fig.5). Marker rescue data from high-LET (linear energy transfer) radiations
(14 MeV neutrons) have been analysed by target theory and resulted in a target
volume that was equivalent to 0.54%—-0.91% of the DNA of a Chinese hamster
cell (BoYLE 1979). Since this is orders of magnitude larger than a gene, the impli-
cation is that genes are inactivated largely by events occurring outside their cod-
ing sequences.

At X-ray doses above 2-3 krad there is an abrupt change in slope of the
marker rescue curve at about 1% survival, the curve now becoming infinitely
more resistant to further radiation (JULLIEN et al. 1978; BoyLE 1979). Indeed, hy-
brids have been isolated even after doses to one partner of 20 krad (MEGUMI
1976). It has been suggested (BoyLE 1979) that for doses up to the inflexion point
marker gene inactivation may result from loss of markers in acentric fragments
produced by chromosome breaks occurring between the centromere and the
marker. With increasing dose further breaks will reduce the acentric fragments
to a size that can readily undergo recombination with intact chromosomes. At
doses above the inflexion point further marker inactivation may be the result of
damage sustained within the marker gene. One implication of this interpretation
is that the frequency with which genes syntenic with the marker allele will be re-
tained in hybrids will be largely dependent on their linkage to the selected marker.
This has been born out in practice and developed into a radiological method of
gene mapping by Goss and HARRIS (1977).

Marker rescue has also been demonstrated after exposure of one parent to
other agents that damage DNA, e.g. ultraviolet light (BoyLE et al. 1977) and
methyl nitrosourea (J. M. Boyle, unpublished results), but not after exposure to
acute thermal shock (HARRIS 1972).

When both partners were irradiated prior to fusion the dose response for hy-
brid colony formation was either intermediate between the two parents (JULLIEN
et al. 1978) or marginally more resistant by virtue of an increased shoulder on the
survival curve (BoyLg et al. 1977).

F. Conclusions: Possible Therapeutic Implications
of Cell Hybridisation

In considering the possible implications of these genetic studies we are concerned
primarily with drug resistance in tumour cells. We have seen that in animals tu-
mour cells can fuse with each other and with host cells to produce clonogenic
mononucleate hybrid cells. The frequency with which this occurs is apparently
high, since hybrids can be detected as early as 24 h after tumour inoculation (BEr
et al. 1978; LALA et al. 1980). An approximate estimate of the proportion of hy-
brids in tumours was 10~°-107° (see discussion following WIENER et al. 1974 b).
If fusion occurs at similar frequencies in humans then hybrid clones may be well
established by the time clinical diagnosis is made and therapy started. Because
malignancy is a recessive character (HARRIS et al. 1969) tumour x tumour hybrids
will be at an advantage over tumour x host hybrids until the latter have segre-
gated the wild-type alleles that suppress malignancy. However, the animal studies
clearly demonstrate that tumour x host hybrids do proliferate.
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Within the hybrid populations drug-resistance mutations can accumulate
prior to therapy, although presumably they will not usually confer any advantage
on the cells possessing them until challenged by therapy. Recessive mutations will
be masked by wild-type alleles and dominant mutations may be subject to gene
dose effects which only allow partial expression. The enlarged gene pool may also
favour the generation of dominant resistance by gene amplification (BIEDLER et
al. 1974) and recessive resistance by gene inactivation which has been postulated
to result from translocation of euchromatin adjacent to heterochromatin (Mor-
ROW 1977) or by changes to the pattern of DNA methylation (Sect. D.VI).

The full expression of resistance in hybrid cells may require the unmasking of
the mutation by removal of the wild-type allele in cases where resistance is auto-
somally linked. Segregation by loss of the homologous chromosome carrying the
wild-type allele is probably the most important means whereby unmasking occurs
and has been demonstrated in vitro for X-linked 6-thioguanine resistance in intra-
species Chinese hamster hybrids (CHASIN and UrLAUB 1975). The frequency of
segregation of intraspecies hybrids in vitro is about 10~ 3 and is affected by a num-
ber of variables including the ratio of sensitive to resistant alleles and the cell types
involved (Sect. D.V). The segregation rate in vivo is unknown. Presumably it may
be at least as high as in vitro and could be higher due to immune selection of se-
gregants and the clastogenic effects of some drugs once therapy has started.

The frequent observation of tumours with karyotypes in the triploid-hypote-
traploid range is consistent with segregation from a tetraploid origin. If the gen-
eral concept that polyploidy, whether derived by hybridisation or not, is a means
of harbouring mutations has any validity, then tumours from patients resistant
to therapy might be expected to show higher ploidy than tumours from a similar
group of patients before therapy. LEISTENSCHNEIDER and NAGEL (1979) reported
such a situation in a group of 26 patients with prostatic carcinoma. Ten patients
had received no treatment and had tumours with ploidies ranging from diploid
to tetraploid. Sixteen patients had received treatment and their tumours were re-
sistant to either cyproterone acetate (an antiandrogen) or estracyte (estramustine
phosphate). Of these the karyotypes of three were mainly tetraploid, seven were
2n-6n and six were 2n-8n. The bases of resistance were not explored, nor is it
known whether resistance to these agents is dominant or recessive; hence it is not
possible to assess the importance of gene dosage in this context. Clearly it would
be useful to have more data relating karyotype and drug resistance in tumours
where polyploidy is a feature. The current use of combination therapy in humans
makes experimental tumours in animals attractive, particularly where such stud-
ies can be augmented by the in vitro manipulation of cell lines with suitable geno-

type.
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