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Introduction 

The production of pro-inflammatory cytokines is a prerequisite for initiating the 
anti-infectious process, whereas their exacerbated production during severe in­
flammation may contribute to deleterious consequences. The capacity of inter­
leukin (IL)-1 and tumor necrosis factor-alpha (TNF-u) to induce inflammatory 
mediators contributes to their pro-inflammatory properties. Phospholipase, cy­
clooxygenase and lipoxygenase are activated by IL-1 and TNF-u leading to the re­
lease of prostaglandins, thromboxane, leukotrienes, and platelet activating factor 
(PAF). Free radicals (superoxide [0;-], nitric oxide [NO]), and proteolytic en­
zymes are other mediators produced by target cells in response to IL-l and TNF­
u. Other cytokines, including chemokines such as IL-8 or some T-cell derived cy­
tokines, such as lymphotoxin -u are also involved in the cytokine cascade (Fig. 1). 
Different experimental approaches have demonstrated the contribution of the 
pro-inflammatory cytokines to the harmful effects observed in sepsis, trauma, 
burns, hemorrhage, severe surgery and other pathophysiological situations lead­
ing to systemic inflammatory response syndrome (SIRS). The injection of recom­
binant pro-inflammatory cytokines mimics some of the clinical parameters ob­
served in SIRS patients and the use of anti-cytokine antibodies prevents most of 
the deleterious effects observed in animal models of SIRS. 

Nature of the Stimuli Which Initiate the Cascade 

When inflammation is initiated by an infectious process, the presence of micro­
organisms and their derived products (membrane compounds, released toxins, 
intra-cellular constituents following lysis) are potent activators of cytokine pro­
duction. Macrophages are probably one of the major sources of cytokines. 
Among Gram-negative bacterial derived compounds, endotoxin or lipopolysac­
charide (LPS) is a potent inducer of cytokines. During Gram-positive bacterial 
infection, membrane compounds such as peptidoglycan or lipoteichoic acid are 
strong inducers of macrophage-derived cytokines. In addition, exotoxins behave 
as superantigens and trigger the release of T-cell-derived cytokines. Other cells 
can contribute to the release of cytokines. For example, the beneficial TNF-u ob­
served in experimental peritonitis has been demonstrated to be released by mast 
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Fig. 1. Schematic representation of the pro-inflammatory cytokine cascade 

cells [1]. So, in addition to the well known contribution of mast cells to inflamma­
tion observed in acquired immunity via the specific IgE antibodies, these cells 
playa central role during natural immunity by their capacity to release pro-in­
flammatory mediators in response to bacteria. Obviously, when the host is facing 
a stressful condition, many defense systems are activated, leading to the genera­
tion of newly synthesized or neo-generated compounds, as well as the release of 
pre-formed mediators. These factors have the capacity to modulate the genera­
tion of cytokines. Activation of the complement system and activation of the co­
agulation cascade lead to the appearance of factors (anaphylatoxins, thrombin, 
factor Xa) which can further enhance release of pro-inflammatory cytokines by 
activated macrophages. Once generated, cytokines possess the capacity of per­
petuating their own production. In addition certain cytokines such as those gen­
erated by T lymphocytes (e.g., IL-3, granulocyte/macrophage colony-stimulating 
factor [GM-CSF]) and particularly Th1 cells (i.e., IL-2, IFN-y) can amplify the re­
lease of the pro-inflammatory cytokines. 
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Bacterial derived products can also be triggering signals in pathophysiological 
situations that involve bacterial or endotoxin translocation. Hemorrhagic shock, 
burns or trauma can induce such translocation [2-4]. We have shown that in pa­
tients undergoing abdominal aortic surgery, which might be associated with mild 
gut ischemia, aortic clamping resulted in measurable amounts of circulating LPS 
and high levels of portal TNF-(X suggesting local production by gut associated 
macrophages [5]. In an animal model, hemorrhage was also associated with local 
intestinal IL-6 production [6]. Other sites of production have been demonstrated 
during experimental models of hemorrhage, such as the lungs [7] and the perito­
neum [8] where mononuclear phagocytes are a source of IL-l and TNF-(X. Very 
interestingly, it has been shown that resident mast cells within the tissue exposed 
to ischemia/reperfusion can degranulate and release pre-formed TNF-(X [9]. In 
experimental liver ischemia and reperfusion experiments, reducing the produc­
tion of IL-l and TNF-(X resulted in the reduction of polymorphonuclear leuko­
cyte (PMN) infiltration and hepatic injury [10]. Ischemia is also associated with 
the local production of chemokines that contribute to the recruitment of inflam­
matory leukocytes [11]. In vitro experiments have demonstrated that hypoxia per 
se was capable of inducing the production of IL-l and TNF-(X by mononuclear 
cells [12]. Similarly, hypoxia induces the release of inflammatory cytokines by en­
dothelial cells [l3, 14]. Cardiopulmonary bypass (CPB) represents another in­
flammatory situation where the production of inflammatory cytokines occurs in 
various sites including peripheral blood as demonstrated by the presence of in­
creased levels of cell-associated IL-l in circulating monocytes [15]. The presence 
of cytokine transcripts in the skeletal muscle or the myocardium, and higher lev­
els of TNF-(X and IL-6 in coronary sinus blood than in arterial blood illustrates 
the various sites of production during CPB [16,17]. Local production has been 
demonstrated within the site directly exposed to inflammation during acute pan­
creatitis [18], brain injury [19,20], chest trauma [21] or laparotomy [22]. The 
compartmentalization of cytokine production was elegantly demonstrated in hu­
man unilateral pneumonia [23]. Bronchoalveolar lavage (BAL) levels of TNF, IL-l 
and IL-6 and spontaneous production by alveolar macrophages were higher in 
the involved lung as compared to the non-involved lung. 

Involvement of Pro-Inflammatory Cytokines in Inflammation 

Activation of Endothelial Cells and Leukocyte Adherence to Endothelium 

Endothelial cells are important target cells and actors during the inflammatory 
response. They constitute the interface between the injured tissues and the circu­
lating leukocytes that need to be recruited. Endothelial cells are active producers 
of inflammatory mediators. In response to IL-l and TNF-(X, endothelial cells syn­
thesize phospholipase and cyclooxygenase leading to the production of prosta­
glandins, express tissue factor enhancing the coagulation process, and release 
PAF, free radicals and a large panel of cytokines including IL-6 and IL-8. In addi­
tion, these cells express on their surface enhanced levels of adhesion molecules. 
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L- and P-selectins favor the capture of circulating leukocytes. The rolling of the 
cells onto the endothelium is mainly mediated by the E-selectins which together 
with the integrins lead to the firm adhesion of the leukocytes. Finally, integrins 
are involved in margination towards the tissues. Upon activation of endothelial 
cells by IL-I or TNF-a, the expression of the E-selectin ELAM -1 (endothelial leu­
kocyte adhesion molecule-I) is observed within one hour. Monocytes and neu­
trophils, harboring the counter-ligand Lewis X antigen, bind to the endothelium. 
The expression of vascular cell adhesion molecule-I (VCAM -1) and intercellular 
adhesion molecule-I (ICAM-I) occurs 4 h following IL-I or TNF-a activation. In 
vivo, enhanced expression of these adhesion molecules has been demonstrated in 
various inflammatory processes. For example, augmented expression of ELAM-I 
and ICAM-I has been reported in the skin biopsies from atopic patients chal­
lenged locally with the corresponding allergen [24]. The counter-ligand for 
VCAM -1 is the VLA -4 molecule expressed on the surface of monocytes and lym­
phocytes. The counter-ligands forICAM-I are the LFA-I (CDlla/CDI8) and CR3 
(CDllb/CDl8) molecules found on the surface of monocytes and neutrophils. 
The activation of circulating cells leads to conformational changes of the LFA-I 
and CR3 molecules that are necessary to favor a strong interaction with their li­
gands. Once leukocytes have adhered to endothelium, they migrate in response to 
chemoattractant signals locally delivered by chemokines. Blocking the chemo­
kines by specific antibodies is associated with a lower recruitment of circulating 
cells and reduced inflammation [25]. Consequently, in infectious models, block­
ing chemokines is associated with impaired control of infection [26]. 

Cytokines and Coagulation 

IL-I and TNF are able to induce pro-coagulant activity on endothelial cells. Sim­
ilar observations are reported with monocytes. This activity is a result of the in­
duction of the membrane expression of tissue factor. Tissue factor combines with 
factor VII and initiates the coagulation cascade, activating factors X and IX. Injec­
tion of TNF in humans is associated with enhanced detection of factor X activat­
ed peptide and fragments 1 + 2 of thrombin [27]. In fact, TNF-a and IL-I first ac­
tivate fibrinolysis as assessed by enhanced levels of tissue plasminogen activator. 
An enhanced level of the inhibitor of tissue plasminogen activator occurs later 
and only then does thrombin become apparent. TNF-a and IL-I activate coagu­
lation via the induction of tissue factor, whereas IL-6 can also induce coagulation, 
independent of the induction of tissue factor. In contrast to IL-l and TNF-a, IL-6 
cannot induce fibrinolysis. 

Induction of Lipid Mediators and Free Radicals 

Many cells, in response to activation by 1L-I or TNF-a, release mediators derived 
from the metabolism of arachidonic acid either via the cyc100xygenase pathway, 
leading to the release of prostaglandins and thromboxanes, or via the lipoxygen-
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ase pathway leading to the release of leukotrienes. Arachidonic acid itself is gen­
erated from membrane phospholipids following the action of phospholipase A2. 
Neosynthesis of phospholipase A2 and inducible cyclooxygenase (COX2) occurs 
following the action of IL-l or TNF-a. Prostaglandins are involved in smooth 
muscle contraction, mucosal edema, increased vascular permeability, cellular in­
filtration and mucus secretion. In addition, eicosanoids can modulate the pro­
duction of pro-inflammatory cytokines: For example, prostaglandin E2 (PGE2) 
inhibits TNF-a production, but has no significant effect on IL-l, and enhances 
IL-6 production, while thromboxane A2 favors TNF-a and IL-lp production. 
Many activities generated by IL-l and TNF can be suppressed by the use of cyclo­
oxygenase inhibitors such as aspirin or ibuprofen, illustrating the contribution of 
PGE2 to the activities initiated by IL-l and/or TNF-a. The action of phospholi­
pase A2 on phosphatidylcholine generates arachidonic acid and lyso-PAF. The 
latter will be transformed by acetyltransferase to PAF. This factor, known to acti­
vate and aggregate platelets, is also responsible for the release of vaso-active me­
diators, resulting in increased permeability, vasoconstriction and bronchocon­
striction. 

Among the mediators induced by IL-l and/or TNF, endothelin also acts on en­
dothelial cells leading to vasoconstriction and increased blood pressure. Four 
different endothelins have been described. They are short 21 amino acid peptides 
derived from a 39 amino acid precursor. Endothelin acts via a 7 transmembrane 
domain receptor coupled to G protein. 

Free radicals are also induced upon activation of the oxidative burst by IL-l 
and TNF-a. Superoxide anion (0;-) generated upon the action of a membrane 
enzyme NADPH oxidase, has an anti-microbial activity but can also be toxic to 
local cells. It induces the peroxidation of unsaturated fatty acids leading to an 
alteration of membrane fluidity and permeability, as well as to the oxidation of 
amino acids resulting in an alteration of the proteins. Activation of the manga­
nese superoxide dismutase by IL-l and TNF-a generates hydrogen peroxide 
(H20 2). NO is generated from L-arginine through the action of NO synthase 
(NOS). Three NOS have been described - two are constitutive (NOS-l involved in 
neuronal transmission and NOS-3 which contributes to the vasodilatation at ho­
meostasis) and one is inducible (NOS-2) and produced by many cell types upon 
activation by IL-l and TNF-a as well as by interferon-y (IFN-y) and migration in­
hibitory factor (MIF). The toxicity of NO is a result of its ability to inhibit glycol­
ysis, the Krebs cycle, mitochondrial respiration, and DNA synthesis. Very un­
stable, NO is rapidly transformed to nitrite (NOz) in the presence of H20 and to 
nitrate (NO:3) by the effect of oxyhemoglobin. 

Cytokines and Catabolism 

IL-l was previously known as catabolin and as osteoclast activating factor, a re­
flection of its ability to generate degradation of cartilage and to induce bone 
resorption. IL-6 is another cytokine which has been shown to be involved in os­
teolysis, particularly during the post-menopausal period. Muscle proteolysis is 
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also observed during inflammation. The release of amino acids from muscle fur­
ther enhances the pool of free amino acids available for the neosynthesis of in­
flammatory proteins. TNF and to a lesser extent IL-I, have this capacity when act­
ing on muscles. Furthermore, the activation of neutrophils leads to the degranu­
lation of these cells and thus to the release of proteases such as cathepsin and col­
lagenase which can degrade the extracellular matrix, as well as other cellular con­
stituents. 

The Main Pro-Inflammatory Cytokines 

Interleukin-l 

Injection of IL-I into animals results in hypotension, increased cardiac output 
and heart rate, leukopenia, thrombocytopenia, hemorrhage, pulmonary edema 
[28] associated with pulmonary vascular endothelial injury [29], lacticacidemia, 
hypo amino acidemia and histopathological lesions in the adrenal cortex [30]. Cy­
clooxygenase inhibition greatly prevents these effects. IL-I receptor antagonist 
(IL-Ira) is a natural IL-I inhibitor. Early treatment with IL-Ira reduced mortality 
from endotoxic shock [31, 32], prevented Staphylococcus epidermidis-induced 
hypotension [33], improved survival and hemodynamic performance in Escheri­
chia coli septic shock [34] and, depending on the dosage, either reduced or en­
hanced lethality in a model of Klebsiella pneumoniae infection of new born rats 
[35]. In agreement with these observations, IL-Ira-deficient mice are more sus­
ceptible than controls to lethal endotoxemia [36]. IL-1 converting enzyme (ICE), 
or caspase-1, is an enzyme required for the maturation of the 30 kDa biological­
ly inactive IL-1 p precursor to the mature 17 kDa active form of IL-1 p. Survival to 
a lethal dose of endotoxin reached 70% among ICE-deficient animals [37] and 
these ICE-deficient animals showed a 50% decrease in cellular infiltrate during 
zymosan-induced peritonitis [38]. On the other hand IL-1P deficient mice were 
normally sensitive to the lethal effect of LPS [39]. The latter result suggests that, 
in mice, IL-1a can fulfill the role of IL-1 p. 

Tumor Necrosis Factor-a 

TNF-a toxicity includes hemodynamic instability, fever, diarrhea, metabolic aci­
dosis, capillary leak syndrome, activation of disseminated intravascular coagula­
tion (DIC), late hypoglycemia, induction of a catabolic state, neurotoxicity, ca­
chexia, organ edema, renal and hematological disorders, and acute pulmonary 
dysfunction, all phenomena associated with sepsis syndrome, systemic inflam­
matory response syndrome and the genesis of multiple organ failure (MOF) 
[40-44]. In a cancer patient receiving a high dose of recombinant TNF-a, a 
systemic inflammatory response syndrome was reported with marked hypoten­
sion, extreme generalized capillary leak syndrome and pulmonary function dete­
rioration [45] while hepatic toxicity had been previously reported [46]. In addi-
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tion, together with IL-l, TNF-a efficiently induced on endothelial cells the ex­
pression of adhesion molecules, an event which favors organ infiltration by leu­
kocytes. Its lethal effect was synergistically enhanced by IL-l [28], IFN -y [47] and 
LPS itself [48]. Furthermore, its toxicity was influenced by circadian rhythms [49] 
and the route of infusion: Portal infusion of TNF-a led to high mortality, renal 
necrosis, and gut mucosal destruction, an effect not observed after systemic in­
jection [50]. Anti-TNF treatments have been shown for more than a decade to be 
highly effective in protecting animals against endotoxic shock [51] and lethal 
bacteremia [52]. Such treatments also protect against pulmonary microvascular 
injury after intestinal ischemia injury that is associated with endotoxin translo­
cation [53]. The soluble forms of the TNF-a receptors are natural inhibitors ca­
pable of limiting TNF-a bioactivity. Their injection into ammal models of sepsis 
has also been shown to be essentially protective [54-56]. Mice rendered deficient 
for the p55 TNF-a receptor were resistant to endotoxin in the galactosamine 
model, whereas high doses of LPS in the absence of galactosamine led to a lethal­
ity similar to that observed in wild-type animals; similar findings were obtained 
with p75 TNF receptor deficient mice [57,58] and TNF-allymphotoxin-a defi­
cient mice [59]. In contrast, over-expression of TNF in transgenic animals is asso­
ciated with a severe inflammatory process localized in the over-expressing tis­
sues, ending in cardiac failure [60], degeneration of the central nervous system 
[61] or erosive arthritis [62]. 

Interleukin-12 

Among the adverse effects of IL-12, hepato- and splenomegaly, leukopenia, ane­
mia and myelodepression have been reported [63]. These phenomena are largely 
IFN-y-dependent since they have not been reported to occur in IFN-y receptor 
deficient mice. Hepatomegaly is associated with infiltration of activated macro­
phages and natural killer (NK) cells, and single-cell necrosis. In contrast, pulmo­
nary edema and interstitial macrophage infiltration generated by IL-12 injection 
has been shown to be IFN-y-independent. In a bacillus Calmette-Guerin (BCG)­
primed model of LPS-induced shock and lethality, anti-IL-12 antibodies were 
shown to protect mice if injected before endotoxin [64]. The protection was asso­
ciated with decreased IFN-y production. 

Interferon-y 

Side-effects of IFN-y include tachychardia, myalgia, malaise, leukopenia, and 
weakness. Furthermore, its synergy with the detrimental activities of LPS have 
been clearly established: IFN-y enhanced LPS-induced mortality and increased 
levels of LPS-induced circulating TNF-a [65]. Consequently, anti-IFN-y anti­
bodies protected against LPS- and E. coli-induced mortality [65,66]. In addition, 
IFN-y was shown to be a mediator ofTNF-a-induced lethality. Sublethal doses of 
TNF-a and IFN-y, when injected together, led to 100% lethality in mice, and anti-
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IFN-y antibodies protected against one to four LDI00 of TNF-a [47]. Mice lack­
ing IFN-y receptors have been shown to be resistant to LPS challenge after prim­
ing with BCG [67] or treatment with galactosamine [68]. 

Leukemia Inhibitory Factor (LlF) and Oncostatin M (OSM) 

LIF and OSM belong to the IL-6 superfamily, sharing the gp 130 chain of the re­
ceptor. However, while IL-6 and IL-ll possess certain anti-inflammatory proper­
ties (see below), LIF and OSM can be considered as pro-inflammatory cytokines. 
Indeed, LIF is involved in the pathogenesis of inflammation and sepsis syndrome 
[69]. Produced upon activation by LPS and TNF, LIF can itself induce the release 
of other cytokines, including IL-l, IL-6 and IL-8, by various cell types. Passive im­
munization against LIF in mice challenged with intraperitoneal administration 
of endotoxin protects them from the lethal effects and blocked increases in ser­
um levels of IL-l and IL-6 [70]. Levels of plasma LIF, ciliary neurotrophic factor 
(CNTF, another member of the IL-6 family), and OSM are elevated in septic pa­
tients [71]. Subcutaneous injection of OSM in mice causes an acute inflammato­
ry reaction [72]. OSM favors PMN adhesion to endothelial cells and transmigra­
tion via its capacity to enhance the expression of P- and E-selectin, ICAM-l and 
VCAM-l. Furthermore, OSM induces the release ofIL-6 and ENA78 (an a-chem­
okine), but not that of IL-8. 

Macrophage Migration Inhibitory Factor 

Recent investigations on pituitary-derived factors resulted in the rediscovery of 
an old cytokine named MIF. Bernhagen et al. [73] reported that injection of MIF 
together with one LD40 of LPS greatly potentiated lethality, and anti-MIF anti­
bodies fully protected against one LDSO of LPS. As previously mentioned, MIF 
acts to counter-regulate the inhibitory effects of glucocorticoids on inflammato­
ry cytokine production (Fig. 2). Interestingly, it was recently shown that MIF is 
expressed constitutively in many tissues including lung, liver, kidney, spleen, ad­
renal gland, and skin. MIF exists as a preformed cytokine which is rapidly re­
leased following LPS injection [74]. 

Interleukin-8 and the Chemokines 

Sepsis and SIRS are often associated with organ dysfunction, a reflection of the 
inflammatory process occurring in the tissues. One of the major features of this 
phenomenon is the recruitment of inflammatory leukocytes, the adherence of 
circulating cells to the endothelium and their response to the locally produced 
chemokines. Endothelial cells are highly responsive to IL-l and TNF, in terms of 
adhesion molecule and tissue factor expression, as well as cytokine production. 
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Fig. 2. Schematic representation of the regulatory loop involving down-regulation of pro-inflam­
matory cytokine production by glucocorticoids and its regulation by macrophage migration in­
hibitory factor (MIF) which behaves as a pro-inflammatory cytokine 

Endothelial cell wall integrity is also perturbed by these cytokines as illustrated 
by the absence of endothelial damage in IL-l receptor type 1 deficient mice [75]. 
Mice have been developed lacking molecules normally expressed on circulating 
leukocytes (e.g., L-selectin, CD62L) or on endothelial cells (e.g., ICAM-I). These 
adherence molecules are involved in the attachment of neutrophils, lymphocytes 
or monocytes to the endothelium [76,77]. These deficient mice are significantly 
resistant to LPS-induced toxic shock lethality. Once immobilized on endothe­
lium, leukocytes will migrate towards the tissues in response to IL-8 and the oth­
er chemokines. Thus, these chemokines favor the inflammatory cell infiltrate 
which contributes to the loss of tissue integrity. For example, it has been report­
ed that neutralization of IL-8 profoundly inhibits neutrophil recruitment in an 
endotoxin-induced rabbit model of pleurisy, indicating that IL-8 is a major chem­
otactic factor in this model of acute inflammation [78]. During sepsis a large 
amount of IL-8 is detectable within the blood compartment, not only as a free cy­
tokine [79] but also as a cell-associated form [80]. This first encounter of neu­
trophils with IL-8 led to their desensitization to further signals delivered locally 
by IL-8. Thus, the presence of IL-8 in the vascular space may well be a mechanism 
for limiting neutrophil accumulation at extracellular sites as illustrated by the de­
fect in neutrophil migration during sepsis or endotoxemia [81-83]. Similarly, 
while monocyte-chemoattractant protein-l (MCP-l) contributes to the recruit­
ment of inflammatory macrophages within the tissues, neutralization of MCP-l 
by specific antibodies before LPS administration resulted in a striking increase in 
mortality and injection of MCP-l was protective [84]. 
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The Beneficial Effects of IL-6 and IL-ll 

Many investigators have demonstrated that levels of circulating IL-6 correlate 
with severity of sepsis and may predict outcome [85-88]. Although IL-6 is often 
considered to be an inflammatory cytokine, most of its activities are associated 
with a negative control of inflammation. For example, IL-6 induces the release of 
IL-Ira and soluble TNF receptors [89]. Its most potent anti-inflammatory activity 
is linked to its capacity to induce the release of acute-phase proteins. In this con­
text, it is interesting to note that IL-I ra has recently been identified as a product 
of hepatocytes, and regulated by pro-inflammatory cytokines like acute-phase 
proteins [90]. Furthermore, some acute-phase proteins such as the C-reactive 
protein (CRP), al-anti-trypsin, and aI-acid glycoprotein, induce IL-Ira [91]. Re­
ports have demonstrated that these acute-phase proteins can limit the inflamma­
tory process [92], protect against meningococcal endotoxin [93], or even inhibit 
a lethal response to TNF [94,95]. These results may explain why IL-6 has been 
shown to be protective in infectious and in septic shock models [96-98]. Never­
theless, IL-6 does possess some deleterious and pro-inflammatory effects which 
will be detailed below [99-102]. 

IL-II belongs to the IL-6 superfamily, sharing the gp 130 chain of the receptors. 
Although IL-II stimulated the production of several major acute phase proteins 
by hepatoma cells, circulating IL-II did not significantly participate in the pro­
duction of acute-phase proteins by the liver [103]. One of the major beneficial ef­
fects of IL-II is related to its healing activity on the intestinal tract. For example, 
chemotherapy and radiation both damage the small intestine mucosal barrier 
and lead to the entry of gastrointestinal organisms into the blood. In this lethal 
model, IL-II was able to protect 80% of the animals [104]. Beneficial properties 
of IL-II have also been demonstrated in a rat neonatal infectious model with 
group B streptococci. Prophylactic use of IL-II enhanced the survival in this 
model in association with an increased number of platelets [105]. 

Are IL-l and TNF the Main Directors of the Cascade? 

In many pathophysiological situations, it has been reported that the production 
and the presence of pro-inflammatory cytokines correlates with the severity of 
the disease. For example, during cardiac surgery and in patients undergoing CPB, 
it was shown that TNF-a levels correlated with the duration of bypass and were 
associated with clinical complications which led to the development of SIRS/ 
multiple organ dysfunction syndrome (MODS) [106]. More convincing is the di­
rect demonstration that blockade of pro-inflammatory cytokines ameliorates the 
pathophysiological aftermath and improves survival in acute inflammatory dis­
eases. Antibodies against TNF-a illustrate its role as a main mediator involved in 
the progression from local inflammation to a host-wide syndrome of organ inju­
ry. Thus anti-TNF-a antibodies were beneficial in various animal models of acute 
pancreatitis [107, 108], splanchnic artery occlusion [109], allograft rejection 
[110] or IL-2 toxicity [Ill]. Anti-TNF treatments reduced pulmonary injury fol-
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lowing lower torso [ll2], hepatic [113], or intestinal [53] ischemia/reperfusion as 
assessed by reduced hemorrhage, edema, PMN sequestration, capillary leak and 
rise of leukotriene levels in BAL. Similarly, in hemorrhagic shock models, the use 
of anti-TNF-a demonstrated the contribution of this cytokine to the hemody­
namic alterations, organ injury and mortality [114, 115]. In a model of zymosan­
induced MODS Goris' group showed that treatment with a monoclonal antibody 
against TNF-a improved survival [116]. However, in humans, the therapeutic use 
of various anti-TNF-a approaches in sepsis has so far proven ineffective. In con­
trast, the use of anti-TNF-a antibodies has been shown to be particularly effec­
tive in the treatment of two chronic inflammatory diseases - rheumatoid ar­
thritis [117] and Crohn's disease [118]. 

While these data indicate that TNF-a plays a major role in various acute in­
flammatory diseases, none fully demonstrate whether TNF is necessary for the 
deleterious effects associated with severe diseases. The use of TNF-deficient ani­
mals can help to answer this question. Interestingly, we demonstrated that in 
TNF-a/lymphotoxin-a deficient animals, LPS-induced lethality was similar to 
that of control animals [59], suggesting that death following endotoxin-induced 
shock could occur in the absence of TNF. Furthermore, we showed that 90 min­
utes after LPS injection the levels of circulating IL-6 in control and knock-out an­
imals were similar, while after 3 hours, higher levels were observed in normal 
mice. These results indicate that TNF is not necessary for IL-6 production al­
though its presence further enhances it. These results contrast with experiments 
performed with anti-TNF-a treatments which led to a significant decrease of IL-
1, IL-6 and IL-8 at any time after bacterial injection [119]. On the other hand, sur­
vival can occur even with the presence of abundant circulating levels of TNF-a. 
In a rabbit model of endotoxin shock we have shown that hemofiltration coupled 
with resin adsorption significantly protected the animals from death while the 
levels of circulating bioactive TNF-a remained unchanged (Tetta et al., unpub­
lished data). 

Using IL-l ra to counteract the effects of IL-1, the contribution of IL-1 to vari-
0us acute inflammatory diseases including pancreatitis [120], acute respiratory 
distress syndrome (ARDS) [121], and immune complex-induced colitis [122] or 
lung injury [123] has been similarly demonstrated. IL-1ra is capable of prevent­
ing LPS-induced lethality and most of the endotoxin-induced injury. The inhibi­
tion of inflammation by IL-1ra is associated with a decrease in detectable IL-1 
and TNF-a as shown in the lungs of mice following hemorrhage and resuscita­
tion [124]. While the decrease of inflammatory cytokines reflects reduction of the 
inflammatory process, it is also the direct consequence of a reduced production 
of IL-1 and TNF-a by activated phagocytes [125]. These observations further il­
lustrate the auto-regulatory loops between IL-1 and TNF-a; each can induce the 
other, as well as itself. 
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Signaling by Pro-Inflammatory Cytokine 

The Nuclear Factor-KB (NF-KB) Pathway 

The inducible transcription factor NF-KB plays a major role in intracellular sig­
naling, during inflammatory processes induced by stress, mitogens or cytokines. 
Indeed, this is one of the main nuclear factors that regulates the transcription of 
numerous genes, including cytokines and growth factors (especially pro-inflam­
matory cytokines such as TNF-u, IL-l~, IL-6 and IL-8), cytokine receptors, stress 
proteins and leukocyte adhesion molecules [126,127]. The NF-KB family is com­
posed of various members, pSO (NF-KBl), pS2 (NF-KB2), p65 (ReIA), RelB and c­
ReI, which can form homo- and heterodimers [128]. In most cells, the complex 
that is commonly found is the p50p65 heterodimer which is a potent transactiva­
tor, while it is generally believed that the pSOp50 homodimer is not [129]. NF-KB 
is regulated by a cytoplasmic inhibitor: IKB. This protein also is member of a 
large family that includes IKBu, IKB~, IKBy, IKB£ and Bcl-3. All possess multiple 
regions of homology known as the ankyrin-repeat motifs. These motifs are also 
present in the precursors of pSO and pS2, p10S and p100 respectively, which also 
behave as NF-KB inhibitors. In unstimulated cells, NF-KB is retained in the cyto­
plasm by IKB as an inactive complex. Upon stimulation, IKB is phosphorylated on 
serines 32 and 36, leading to its subsequent ubiquitination and its degradation by 
the 26S proteasome pathway. TNF-u and IL-l are potent activators of NF-KB. As 
represented in Figure 3, the binding of TNF-u or IL-l to their receptors recruits 
adaptator molecules which lead to the activation of an NF-KB-inducing kinase 
(NIK) [130]. The signaling by the TNFRI involves a TNF receptor-associated 
death domain protein (TRADD) [l31). Death domains mediate protein-protein 
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Fig. 3. Schematic cascade of NF-KB activation by TNF-a and IL-1. See text for abbreviations 
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interactions; TRADD can bind to the TNF receptor-associated factor-2 (TRAF2) 
and to receptor interacting protein (RIP), another death domain-containing kin­
ase [132, 133]. IL-1 signaling also uses many receptor-associated proteins. The IL­
l receptor I associates with the IL-1 receptor accessory protein (IL-1RAcP) [134], 
and MyD88 a death domain-containing protein. MyD88 can interact with IL-1 re­
ceptor associated kinase (IRAK) that, via TRAF6, activates NIK, a MEKK-1 relat­
ed kinase [135]. MEKK-l is a mitogen-activated protein kinase (MAPK) kinase 
kinase implicated in one of the MAPK cascades (see the next section). The data 
about the contribution of this cascade to NF-KB activation remains controversial. 
Indeed, recombinant MEKK-l has been shown to phosphorylate IKB in vitro 
[136] and its over expression in a fibroblastic cell line could induce NF-KB activa­
tion during TNF stimulation through the degradation of I KB [13 7]. However, an­
other study showed that overexpression of inactive MEKK -1 has no inhibitory ef­
fect on NF-KB activation via TRAF2, suggesting that it does not playa role in the 
activation of this transcription factor [138]. Thus, it would appear that NIK, rath­
er than MEKK-1 itself, takes part in NF-KB activation. Furthermore, NIK seems to 
be the convergence point of the TNF-a and IL-l-mediated NF-KB activation, 
since mutant forms of NIK block the signaling from the receptors of these cyto­
kines [130]. The final step of the kinase cascade leads to the activation of protein 
kinases that phosphorylate IKB. These IKB kinases (IKK) are associated with a 
high-molecular weight cytoplasmic complex [139-141]. Overexpression of NIK, 
but also MEKK-l has been shown to phosphorylate and activate IKKa and ~. 
Finally, after the degradation of IKB, the NF-KB dimer can translocate into the 
nucleus, bind to DNA and activate the transcription of target genes. 

The Mitogen-Activated Protein Kinases 

The MAPK cascades are the other intracellular signaling pathway activated dur­
ing the inflammatory process and they also lead to the activation of numerous 
transcription factors. Three MAPK cascades have been described to date - the ex­
tracellular signal-regulated kinases (ERK), the c-jun N terminal kinase/stress-ac­
tivated protein kinase ONK/SAPK) and the p38 pathways (Fig. 4). The first iden­
tified cascade was that of ERK. The activation of ERKI and 2, also known as p44 
and p42, is triggered by mitogens and growth factors, while the two other cas­
cades are strongly activated by IL-1, TNF-a, LPS and cell stress [142, 143]. c-jun is 
a component of the activator protein(AP)-1 transcription factor and the JNK cas­
cade leads to its phosphorylation and an enhancement of its capacity to activate 
transcription. The JNK pathway contains a MAPK kinase kinase, MEKK-1, which 
has been shown in some experiments to take part in the activation ofNF-KB (see 
above). The p38 kinase is the last MAPK described to date and it has been impli­
cated in the activation of various transcription factors and some reports suggest 
that it can playa role in the activation of NF-KB. Indeed, it has been shown that a 
specific inhibitor of p38 (SB203580) prevented the expression of a reporter gene 
under the control of NF-KB [144]. However, this was not due to an inhibition of 
the binding ofNF-KB to DNA. Thus, p38 does not seem to regulate IKB phosphor-
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The ERK pathway is triggered by mitogens and growth factors while SAPK/JNK and p38 are 
strongly activated by endotoxin and also by cytokines such as TNF or IL-1 

ylation, but most probably modulates the transactivation capacity of NF-KB via 
MAPKAP-kinases that in turn phosphorylate the p65 subunit. TNF and IL-l con­
tribute to the activation of JNK and p38 MAPK, but the molecular mechanisms 
between the receptors and these kinases are not completely understood. For TNF, 
it has been shown that TRADD, TRAF2 and RIP are implicated in the signaling 
leading to JNK and p38 activation [138, 145]. Furthermore, another kinase, the 
germinal center kinase (GCK), has been shown to interact with TRAF2 and 
MEKK-l and thus could be the link between the events taking place at the recep­
tor level and the MAPK kinase kinase [145]. For IL-l, MyD88 and IRAK are also 
needed for the signaling. IRAK -deficient mice showed reduced IL-l-mediated 
JNK and p38 activation [146]. Similarly, overexpression of MyD88 induced the ac­
tivation of JNK and NF-KB while mutant forms of MyD88 inhibited their activa­
tion [135]. 

Inflammatory Stimuli-Induced Immune Suppression Limits 
the PrO-Inflammatory Cytokine Cascade 

Immune depression is associated with numerous stressful conditions. Many im­
mune responses such as delayed-type hypersensitivity, lymphoproliferative re­
sponses, NK activity, and cytokine production are diminished. Immunosuppres­
sion has often been associated with increased production of IL-lO and trans­
forming growth factor-p (TGF-P) and levels of circulating IL-IO [147] and TGF-p 
[148] are increased in septic patients. Plasma IL-l 0 may contribute to the cell de­
activation observed in septic and trauma patients [149,150]. A similar hypothe-
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sis has been proposed for TGF-p [151-153]. In addition, in humans, the use of 
many drugs may further modify cell reactivity [154-156]. 

Reduced ex Vivo Cytokine Production in Critically III Patients 

Sepsis syndrome, surgery, trauma, hemorrhage and thermal injury are associat­
ed with an augmented in vivo production of pro- and anti-inflammatory cyto­
kines as assessed by their increased levels in the blood stream. Paradoxically, the 
capacity of circulating leukocytes from these patients to produce cytokines is re­
duced when compared to cells from healthy controls. Although the hyporeactiv­
ity of the cells observed in septic patients has been associated with endotoxin tol­
erance [157], this phenomenon is specific neither for endotoxin [158] nor for sep­
tic patients. Hyporesponsiveness of circulating leukocytes and low cytokine pro­
duction have been associated with immune depression observed in these pa­
tients. 

Monocyte reactivity to LPS stimulation has been particularly studied in isolat­
ed monocytes and in whole-blood assays. Monocytes from septic patients show a 
diminished capacity to release TNF-a, IL-1a, IL-l p, IL-6, IL-1O and IL-12 
[159-165] whereas this was not the case for IL-lra [162]. Reduced cytokine pro­
duction has also been observed with other stimuli such as silica, staphylococcal 
enterotoxin B (SEB), killed Streptococcus and Staphylococcus [165-168]. Similar­
ly, in patients undergoing abdominal aortic surgery [169], cardiac surgery asso­
ciated with CPB [170], or trauma [171], monocyte-derived cytokine production 
was significantly altered. 

Similar hypo reactivity has been reported when studying neutrophils. In septic 
patients the production of IL-IP, soluble IL-lra and IL-8 by LPS-activated neu­
trophils is lower than in healthy controls [157,172]. 

Indeed, the very first observation of the hyporeactivity of circulating leuko­
cytes was demonstrated with peripheral blood lymphocytes. In this initial study, 
Wood et al. [173] reported decreased IL-2 production upon phytohemaglutinin 
(PHA) stimulation in major burn patients, with a more severe depression during 
the septic episodes. In patients undergoing surgery with or without CPB, hemor­
rhage and in trauma patients, reduced mitogen-induced 1L-2 has been document­
ed [171,174-177]. The defect in IL-2 production was previously shown not to be 
related to a different CD4 + /CD8+ ratio [174]. However, the different results ob­
tained when different cell activators are used suggests that either the proportion 
of certain T-cell subsets may be modified in critically ill patients, or an alteration 
in cell reactivity may only occur among certain T-cell subsets [176]. Furthermore, 
certain monocyte subsets, particularly the human leukocyte antigen (HLA) DR + 
cells, have a modified frequency in injured or septic patients [178], and may, as ac­
cessory cells, contribute to the different observed T cell reactivity. IL-2 production 
varies depending on the animal experimental models. Concanavalin (ConA)-in­
duced 1L-2 production by spleen cells was unaffected in endotoxemia [179] and 
reduced in trauma, hemorrhage, peritonitis, and thermal injury models [177, 
180-183]. However, one should be very careful in extrapolating these data ob-
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tained from animal models to the human situation. Mouse studies use spleen cells 
whereas human studies usually involve peripheral blood leukocytes. Circulating 
cells and cells within tissues are likely not affected similarly by the various stress­
ful situations. IFN -y ex vivo production was also reported to be altered in burns 
[183], trauma [171], hemorrhage [177], CPB [184] and in sepsis [165]. 

IL-2 and IFN-y are both Th1 cytokines, therefore, it was of interest to know 
whether the production of Th2 cytokines was also modified during stressful sit­
uations. In sepsis, ConA-induced IL-2, IL-5, and IL-lO production by peripheral 
blood mononuclear cells was diminished, whereas this was not the case when 
PHA and anti-CD3 were employed as activation stimuli (Muret et al., unpub­
lished data). In contrast, Miller-Graziano et al. [185] reported that PHA- and (an­
ti-CD3 + anti-CD4)-induced IL-10 production were depressed in trauma pa­
tients. In animal models, the results depend on the insult and on the study. In ex­
perimental peritonitis following cecal ligature and puncture (CLP), ConA-in­
duced IL-lO production by splenocytes was either enhanced [181] or reduced 
[186], and in models of hemorrhage, therma injury, and trauma, ConA-induced 
IL-lO production was enhanced [149, 177, 182, 183, 186]. 

In a mouse model of severe injury (fracture + hemorrhage) it was reported 
that splenocytes produce more IL-5 upon stimulation by ConA, together with an 
increase in IL-4 and IL-10, wheareas IL-2 production is decreased [182]. This an­
imal modelled Mack et al. [182] to postulate that there was a shift to a Th2-type 
splenocyte cytokine response after injury. 

Reversibility of Immune Depression 

The enhanced susceptibility of injured patients to infection is well known and as­
sociated with a depressed immune system. Attempts to restore immune cell reac­
tivity have been made using IFN-y. In mice, IFN-y attenuated hemorrhage-in­
duced suppression of macrophage and splenocyte function and decreased sus­
ceptibility to sepsis [187]. In humans, while the results did not show definite ben­
eficial effects in severe surgery patients [188], IFN-y restored monocyte reactiv­
ity and enhanced HLA DR + frequency [189]. Other cytokines such as IL-2, IL-12, 
and GM-CSF could be considered to restore immune cell activity. IL-2 enhances 
the survival of mice in a burn and sepsis model and its activity was enhanced by 
the addition of lymphokine-activated killer cells [190]. IL-12 and GM -CSF were 
capable of reversing the LPS-induced desensitization in vitro as well as in vivo 
[191, 192]. Interestingly, other natural mediators, notably growth hormone [193] 
and prolactin [194] are capable of abrogating the immune defects associated with 
stressful conditions and of protecting against sepsis. 

A Too Simplistic Dichotomy 

The events occurring during inflammation are not as simplistic as just an inter­
play between pro- and anti-inflammatory actors. Indeed, the situation is far more 
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complex. First, the genetic background contributes to the heterogeneity of the in­
flammatory response in humans. Genetic polymorphisms have been reported for 
many pro- as well as anti-inflammatory cytokines [195-198], and, in addition, 
another polymorphism exists in terms of target cell reactivity in response to cy­
tokine signaling [199]. While an excess of pro-inflammatory cytokines may be 
deleterious and even kill when used in animal models, these same cytokines are 
essential in the initiation of the anti-infectious response. More recently, their 
anti-inflammatory potential has even been outlined. For example, in response to 
an injection of myelin oligodendrocyte glycoprotein, a model which mimics hu­
man systemic sclerosis, TNF deficient mice display a more severe auto-immune 
mediated demyelination than their wild type counterparts [200]. In in vitro mo­
dels, when delivered early enough to the cells, TNF can prevent the INF-y-primed 
production of NO [201] or IL-12 [202]. The amount of the delivered cytokine 
may also influence its property. For example, while low concentrations of IL-12 
exacerbated the disease in an experimental model of arthritis, IL-12 behaved as 
an anti-inflammatory cytokine when delivered at higher concentrations [203]. 
Surprisingly, INF-y could inhibit the production of LPS-induced chemokines 
MIP-la and MIP-lp to the same extent as IL-lO and TGF-p [204]. 

IL-4, IL-lO, IL-13, IFN-a and TGF-p are considered as anti-inflammatory cyto­
kines because of their capacity to inhibit the release of pro-inflammatory cyto­
kines, to induce the production of IL-l ra and the release of soluble TNF receptor, 
and to limit some of the pro-inflammatory activities of IL-l and TNF. However, 
many available examples illustrate that the pro- or anti-inflammatory properties 
of these cytokines may depend on the nature of the target cell, the nature of the 
stimuli the cell has encountered, the sequence of the events and the nature of the 
environmental factors. 

While IL-4 inhibits the IL-l- or TNF-induced expression of ICAM-l and 
ELAM-1 on the surface of endothelial cells, it favors the expression ofVCAM-1, 
allowing the adherence ofbasophils and eosinophils [205].Also, IL-4 inhibits the 
LPS-induced production of IL-8 by macrophages, but amplifies that of endothe­
lial cells [206]. Similarly, while IL-13 diminishes chemokine production in acti­
vated macrophages, it induces the synthesis of MCP-1 in endothelial cells [207]. 
Whether a mediator exerts an inhibiting or, on the contrary, an enhancing prop­
erty may also be linked to the timing of its exposure to the target cells. For exam­
ple, IL-4 and IL-13 inhibit IL-6, IL-12, MCP-1 and TNF production when added 
simultaneously to activated monocytes whereas they enhance the production of 
these cytokines when they are delivered before the activating signals [208-210]. 
IL-4, which can block TNF production by LPS-activated freshly isolated monocy­
tes, is unable to inhibit the TNF production by 7-day cultured monocytes stimu­
lated by LPS but can block the IL-1 production [211]. The nature of the activator 
results in a different profile; IL-4 was shown not to interfere with the production 
of RANTES (regulated on activation, normal T expressed and secreted) by hu­
man monocytes activated by IFN -y whereas it amplified it when the cells were ac­
tivated byTNF [212]. Similarly, IL-13 inhibits TNF and IL-8 production in human 
whole blood assays in the presence of LPS while it does not modify the TNF pro­
duction when heat killed streptococci are used as activators [213]. 
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The nature of the responding cell may also influence the quality of the modula­
tion of the response by TGF-~. While TGF-~ 1 limited the production of IL-la and 
IL-8 in macrophages, it induced their production in epithelial cells [214). 

IL-I0 which is undoubtely an anti-inflammatory cytokine, has been shown in 
various models to behave differently. IL-l 0 may well have some pro-inflammato­
ry properties. Evidence from in vivo work (graft rejection [215), ocular inflam­
mation [216), auto-immune diseases [217), anti-tumor activity [218)) suggests 
that in some circumstances, IL-lO may also behave as an immunostimulatory 
and/or pro-inflammatory cytokine. Injection of an adenocarcinoma expressing 
IL-I0 gene results in a far more severe local inflammation than the non -trans feet -
ed adenocarcinoma, as evaluated in terms of the presence of MCP-l and indu­
cible NOS, of leukocyte infiltrate and expression of adherence molecules [219). 
Some in vitro reports have shown that IL-lO could also favor certain aspects of 
the inflammatory response. Thus, IL-lO induced E-selectin expression on small 
and large blood-vessel endothelial cells [220). IL-lO may behave differently de­
pending on the nature of the target cells. For example, a consistent, or even en­
hanced, production of IL-8 has been reported by dendritic cells [221) and endo­
thelial cells [206). While IL-lO could perfectly repress the production of IL-8 by 
LPS-activated blood neutrophils, such inhibition could not be obtained when 
neutrophils were derived from the sputum of patients with chronic bronchial 
sepsis [222). While IL-lO repressed the production of NO by macrophages or ke­
ratinocytes [223,224]' it did not modify its release by mesangial cells [225) and 
even enhanced the production of NO by bone marrow derived macrophages and 
osteoclasts [226,227). The inhibitory capacity of IL-lO may also depend on the 
nature of the triggering agent. For example, the modulatory activity of IL-1 0 on 
the proliferation or the cytotoxic activity of CD8 + T lymphocytes was different 
when cells were activated with allogenic monocytes, anti-CD3 antibodies or IL-2 
[228). IL-I0 repressed the LPS-induced IL-8 production by neutrophils but not 
TNF-a-induced IL-8 production [229). We have shown in in vitro experimental 
studies that IL-l 0 primed leukocytes and led to enhanced production of TNF and 
IL-6 upon further stimulation by LPS. The prevention of monocyte adherence by 
red cells in the whole-blood assays or by cultures of peripheral blood mononu­
clear cells on teflon, contributed to this observation [230). Altogether, these re­
sults indicate that IL-l 0-induced modulation of cytokine production depends on 
the in vitro experimental procedures used and on the in vivo localization of the 
event. A similar effect has been reported concerning the pre-treatment with IL-l 0 
of human cell clones which then produced higher levels of IL-2, IL-4, IFN-y, and 
TNF [231). This observation was shown to be associated with the anti-apoptotic 
property of IL-10 on T cells. On T lymphocytes infected with human immunodef­
iciency virus (HIV), IL-10 was shown to act synergistically with TNF to favor vi­
ral replication and even to induce the production of TNF [232). On other cells 
such as mast cells, IL-I0 can behave differently. IL-I0 can inhibit cytokine gener­
ation by mast cells [233) but can act synergistically with c-Kit ligand to increase 
cyclooxygenase-2 expression and PGD2 production [234). 

IL-6 is also considered as an anti-inflammatory cytokine, mainly for its action 
on hepatocytes and its capacity to induce the production of acute phase proteins 
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which are essentially anti-inflammatory. However, in contrast, IL-6 can induce 
bone resorption [235), muscle atrophy [236], anemia [237] and can prime neu­
trophils for the production of PAF and superoxide anion [99, 100]. While IL-6 
does not activate endothelial cells, it induces MCP-l, MCP-3, and IL-8 produc­
tion, signal transducer and activator of transcription (STAT)-3 activation, and 
ICAM-l expression, in the presence of its soluble receptor which is naturally 
found in plasma [l02]. 

Another fascinating example of discordance between dogma and reality is giv­
en by the effect of cortisol infusion in human volunteers. While an injection of 
LPS at the end of the cortisol infusion did not lead to detectable circulating TNF, 
the same injection 14 to 144 h after the infusion led to far higher levels of TNF 
and IL-6 as compared with the same volunteers who did not receive the cortisol 
treatment [238]. Other examples will almost certainly appear in the next few 
months, illustrating, if necessary, that we still have a lot to understand and should 
be very careful when analyzing the inflammatory response during SIRS. 

Conclusion 

The generation of pro-inflammatory cytokines and the capacity of some of them 
to further induce the production of others within self-amplifying loops plays a 
major role in the perpetuation of the inflammatory process. However, most in­
flammatory mediators can be induced by other signals, such as microbial derived 
products or ischemia, activating the coagulation cascade and the complement 
system. The capacity of the pro-inflammatory cytokines to further induce a wide 
type of inflammatory mediator is characteristic of their activities. Of course nat­
ural counter-regulation occurs through the generation of acute phase proteins, 
anti-inflammatory cytokines, endogenous corticoids and heat shock proteins. 
These later events, together with the reduced capacity of circulating leukocytes to 
further produce cytokines, may reflect what Louis Pasteur called "Natura 
medicatrix". When this natural negative regulation appears insufficient, in many 
animal model of severe inflammation, the therapeutical blocking of the induc­
tion or the activities of the major pro-inflammatory cytokines has been demon­
strated to be helpful. In human, such approaches have so far been rather disap­
pointing in patients with acute inflammation and systemic inflammatory re­
sponse syndrome but appear highly promising in some chronic inflammatory 
diseases such as rheumatoid arthritis or Crohn's disease. 
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