
CHAPTER 14 

Involvement of the Endothelins in 
Airway Reactivity and Disease 

R.o. GOLDIE and P.I HENRY 

A. Introduction 

In 1988, a previously uncharacterized endothelium-derived contractile factor 
was isolated, purified and identified as a novel 21 amino acid sequence and 
named endothelin-1 (ET-1) (YANAGISAWA et al. 1988; INOUE et al. 1989). Some 
of the pharmacological activity of ET-1 was also reported in these studies, 
although there soon followed an avalanche of published research data from 
other laboratories describing the biology of this peptide in great detail in 
several mammalian systems, with particular emphasis on its spasmogenic 
actions in vascular tissues. In addition however, the potent contractile effects 
of ET-1 in airway smooth muscle were also reported in 1988 and again in 1989 
(TURNER et al. 1989; UCHIDA et al. 1988), predictably, followed rapidly by evi­
dence for high densities of ET receptors in airway smooth muscle (TuRNER et 
al. 1989; POWER et al. 1989). Autoradiographic analyses in human and animal 
airway tissues established the presence of significant numbers of such recep­
tors in several airway wall cell types in addition to airway and vascular smooth 
muscle (HENRY et al. 1990; GOLDIE et al. 1995). Taken together, this informa­
tion constituted a reasonable basis for speculating that the actions of ET-1 
might be associated with obstructive airway diseases such as asthma (HAY et 
al. 1993a, 1996; GOLDIE et al. 1996c), as well as with pulmonary hypertension 
(ALLEN et al. 1993; STELZNER et al. 1992; STEWART et al. 1991; FOLKERTS et al. 
1998). (The involvement of ETs in pulmonary hypertension will be dealt with 
in detail in Chap. 15.) Since then, there has been a constant stream of pub­
lished reports demonstrating that ET-1 can mimic many of the features of 
asthma in addition to its powerful spasmogenic activity in airway smooth 
muscle, all of which add weight to the concept of a mediator role for ET-1 in 
this disease (GOLDIE et al. 1996c). Evidence continues to emerge implicating 
the ETs in this and other lung pathologies, including degenerative fibrotic 
diseases such as fibrosing alveolitis (SALEH et al. 1995; SEINO et al. 1995; 
MUTSAERS et al. 1998). 

In this review, we will evaluate much of the evidence implicating the ETs 
in respiratory diseases, with particular emphasis on asthma for which a strong, 
but still circumstantial case can be made. 
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B. The Endothelin System 
I. Is There a Link to Asthma? 

R.G. GOLDIE and P.I HENRY 

Over the years, many substances have been proposed as mediators in asthma. 
However, only some of these, such as the cysteinyl leukotrienes, have been 
confirmed as significant players in this disease after years of rigorous evalua­
tion. Similarly, the theory that ET-l (and/or related endogenous peptides) is a 
significant mediator in asthma will only receive universal acceptance after 
various standard criteria are fulfilled. First, ET-l must induce actions in the 
respiratory tract that mimic most if not all of the features and symptoms of 
this disease. Second, relevant receptors must be present and actively involved 
in mediating relevant cellular responses to these peptides in the airways. A 
true asthma mediator must be an endogenous substance, synthesized, released 
and degraded at appropriate sites in the lung. Furthermore, the levels of the 
mediator must be elevated in asthma, with a positive correlation existing 
between these levels and disease symptom severity. Finally, ET receptor antag­
onists or inhibitors of ET synthesis should relieve asthma symptoms and thus 
be of at least potential therapeutic benefit. Before exploring these aspects 
further, it is important to outline briefly some of the fundamental features of 
the endothelin system in the airways as far as they are presently understood. 

II. ET Structure, Synthesis and Degradation 

1. Structure 

ET-l is one of a family of 21 amino acid endogenous mammalian pep tides 
(ET-l, ET-2 and ET-3), each of which have similar sequences. In each 
sequence, two disulfide bridges spanning positions 1, 15 and 3, 11 constrain 
their structures as seen in Fig. 1. The sarafotoxins, which are spasmogenic com­
ponents of the venom of the Middle Eastern burrowing asp, Atractaspis engad­
densis (MASAKI et al. 1992) are also 21 amino acid sequences with similar 
structural characteristics and sequences to the ETs (see Chap. 2). It is perhaps 
not surprising then that the sarafotoxins also evoke contraction of vascular 
smooth muscle. Recently, a 31-amino acid ET-l sequence was also identified 
which was derived from prepro-ET-l via the action of mast cell chymase 
(NAKANO et al. 1997) (Fig. 1). This peptide is also a directly acting spasmogen 
in both vascular and airway smooth muscle, i.e. biological activity is not depen­
dent upon cleavage to the 21 amino acid sequence, although this conversion 
can occur (YOSHlZUMI et al. 1998a, b; KISHI et al. 1998). 

2. Synthesis 

The formation of the ETs is preceded by the synthesis of 212 amino acid pre­
cursors known as prepro-ETs, e.g. prepro-ET-l (YANAGISAWA et al. 1988; see 
Chaps. 3,7). These precursors for ET-l, ET-2 and ET-3 are encoded by genes 
found on chromosomes 6, 1 and 20, respectively (INOUE et al. 1989; BLOCH et 
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Fig.1. Diagrammatic representation of the chemical structures of ET-1 and related 
peptides 

al.1989a, b, 1991) and are subsequently cleaved via dibasic amino acid residue­
specific endopeptidases or by the mammalian convertase known as furin 
(DENAULT et al. 1995), to provide 38 amino acid residues called big ETs (INOUE 
et al. 1989; ITOH et al. 1988). The big ETs are not ET receptor agonists 
and must be cleaved to the receptor-activating 21 amino acid sequences 
(YANAGISAWA and MASAKI 1989; MASAKI et al. 1992; QPGENORTH et al. 1992) 
via ET converting enzyme (ECE) (Xu et al. 1994). This enzyme is a phos­
phoramidon-sensitive, membrane-bound, neutral metalloprotease (EMOTO and 
YANAGISAWA 1995; QPGENORTH et al. 1992; VEMULAPALLI et al. 1992). 

3. Degradation 

Neutral endopeptidase (NEP) is found in abundance in the airways (JOHNSON 
et al. 1985) and the ETs have high affinity for and are actively metabolized 
by this enzyme (VIJAYARAGHAVAN et al. 1990; FAGNY et al. 1991). Interestingly, 
in activated human polymorphonuclear neutrophils, cathepsin G, rather 
than NEP, may be the enzyme responsible for eliminating ET-1 (FAGNY et al. 
1992). 
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c. ET Receptors 
The detection by molecular cloning of just two ET receptor subtypes in mam­
malian cells, designated ETA and ETB (ARAI et al. 1990; SAKURAI et al. 1990; 
SAKAMOTO et al. 1991; ADACHI et al. 1991; see Chap. 4) is entirely consistent 
with data derived using other approaches (SAKURAI et al. 1992; MASUDA et al. 
1989; TAKAYANAGI et al. 1991) in mammalian systems including the lung (HICK 
et al. 1995; KONDOH et al. 1991; KOZUKA et al. 1991; HAGIWARA et al. 1992). 
However, in amphibian cells, an ETc receptor has been cloned and may be 
functional (KARNE et al. 1993). In recent years, several studies involving vas­
cular tissues have provided evidence for the existence of distinct subtypes 
within both the ETA and ETB receptor families (SOKOLOVSKY et al. 1992; 
WARNER et al. 1993). This possibility has also been raised for ET B receptors in 
human bronchus, with the reporting of apparently anomalous contractile 
responsiveness to ETB receptor agonists (HAY et al. 1998). Despite such func­
tional evidence, the existence of genetic codes for such receptors has not been 
confirmed. Accordingly, the existence of these novel receptor subtypes must 
for the moment remain uncertain (BAX and SAXENA 1994). Indeed, some 
of the functional data for novel ET receptor subtypes may be explained in 
terms of differences in the kinetics of ligand interactions with ET receptors 
(DEVADASON and HENRY 1997). 

D. ET and the Major Pathologies in Respiratory Diseases 
I. Asthma 

Asthma is recognized as a chronic inflammatory lung disease (BARNES et al. 
1988), involving several pathologies (KAY 1991) including airway hyperreac­
tivity (BOUSHEY et al. 1980). It is also clear that asthma is an obstructive airway 
disease and that a significant component of the obstruction is caused by 
increased airway smooth muscle tone (JAMES et al. 1989). However, occlusion 
of the bronchi is also a result of the hypersecretion of mucus together with 
reduced clearance of mucus from the airways (BEASLEY et al. 1989). Epithe­
lial cell damage and desquamation and the addition of epithelial debris and 
inflammatory cells to luminal mucus further reduces the patency of the airways 
(NAYLOR 1962; LAITINEN et al. 1985; BEASLEY et al. 1989). Finally, airway wall 
restructuring as evidenced by submucosal oedema, airway smooth muscle and 
mucous gland hyperplasia (HEARD and HOSSAIN 1973; CARROLL et al. 1993; 
KNOX 1994; ROCHE 1998) and sub-epithelial fibrosis (BREWSTER et al. 1990; 
ROCHE et al. 1989) accompanying chronic airway inflammation further reduce 
lumen diameter and elevate bronchial resistance to airflow. Importantly, 
ET-1 has actions within the bronchial wall which mimic and potentially repro­
duce many of these pathologies and symptoms and these issues will be dis­
cussed in detail in later sections. It is also important to realize that treatment 
with anti-inflammatory glucocorticoids (TRIGG et al. 1994) and the removal of 
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provoking stimuli, e.g. diisocyanates (SAETIA et al. 1995) has been linked to 
reversal of such structural changes to the bronchial wall. 

II. Allergic Rhinitis 

The human nasal mucosa contains the mRNA for prepro-ET-1 and expresses 
immunoreactive ET-1 (ir-ET-1) (MuLLOL et al. 1993; CASASCO et al. 1993). Spe­
cific binding sites for ET-1 that are presumably ET receptors were found in 
nasal submucosal glands, venous sinusoids and small muscular arterioles and 
ET-1-induced stimulation of these sites in vitro caused serous and mucous cell 
secretions (MuLLOL et al. 1993) and induced prostanoid release Wu et al. 
1992). Riccio and co-workers conducted the first study describing the effects 
of intranasal ET-1 in human rhinitics and healthy volunteers (RICCIO et al. 
1995). This study demonstrated mucosal hyperresponsiveness to ET-1 in 
rhinitics, since sneezing frequency and the amounts of nasal secretions were 
increased. It has subsequently been shown that the levels of mRNAs for 
prepro-ET-1 and ECE were significantly increased in chronic rhinitis 
(FURUKAWA et al. 1996). The possibility of a mediator role for ET-1 in rhinitis 
requires further investigation. 

III. Adult Respiratory Distress Syndrome (ARDS) 

Lung injury resulting in compromised pulmonary gas exchange in ARDS is 
most often the result of sepsis, but may have other causes. Elevated circulat­
ing ir-ET levels have been linked to deterioration in ARDS and clinical 
improvement was associated with significant falls in these levels (DRUML et al. 
1993; LANGLEBEN et al. 1993). Animal studies suggest that the release of ir-ET 
in this condition may reflect the influence of endotoxin released in sepsis 
(WEITZBERG et al. 1991). In rat models of respiratory distress, abnormal blood 
gas levels and pulmonary oedema are seen, together with increases in ir-ET 
levels in bronchoalveolar lavage (BAL) fluid (HERBST et al. 1995; SIMMET et al. 
1992). Importantly, the abnormal blood gases and oedema were partly cor­
rected in the presence of ETA receptor antagonist BQ-123, suggesting the 
involvement of ET-1 in this model (HERBST et al. 1995). 

IV. Cryptogenic Fibrosing Alveolitis (CFA) 

As the name suggests, CFA is characterized by peripheral lung fibrosis involv­
ing fibroblast proliferation and collagen deposition. However, CFA is also 
linked to lung inflammation and type II pneumocyte proliferation. The pro­
duction of ir-ET was up-regulated in these cells, and in airway epithelium 
(GIAID et al. 1993). Importantly, the extent of type II cell proliferation was 
closely correlated with the levels of ir-ET. Morphological changes were also 
detected in pulmonary vessels in which the endothelium over-expressed ir-ET 
(GIAID et al. 1993). 
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V. Pulmonary Fibrosis 

Pulmonary fibrosis can be induced in the rat (MUTSAERS et al. 1998) and 
hamster by pretreatment with bleomycin (SEINO et al. 1995). In the rat, intra­
tracheal bleomycin caused a significant elevation in ir-ET which preceded the 
increase in lung collagen (MUTSAERS et al. 1998). In the hamster, the ETA 
receptor-selective antagonist BQ-123, attenuated bleomycin-induced alveolar 
fibrosis and the accompanying right ventricular hypertrophy. These data 
suggest that endogenous ET-1 released in this condition was mitogenic in pul­
monary fibroblasts, indicating a significant link to the disease process in these 
models and raising the possibility of a role in the pathogenesis of human pul­
monary fibrosis. Consistent with this, increased levels of ir-ET and ir-ECE-1 
have been co-localized in several cell types, including proliferating type II 
pneumocytes, in patients with idiopathic pulmonary fibrosis (SALEH et al. 
1995). Pulmonary fibrosis also occurs in systemic sclerosis where increased ir­
ET levels in BAL fluid were also detected (CAMBREY et al. 1994). The levels of 
ir-ET in BAL fluid were high enough to induce an ETA receptor-dependent 
proliferation of fibroblasts in vitro. In this disease, a significant amount of ir­
ET probably comes from alveolar macrophages which have been shown to 
produce excessive amounts of this peptide in response to endotoxin (ODOUX 
et al. 1997). In other fibrotic lung conditions in the human, including that asso­
ciated with scleroderma (ABRAHAM et al. 1997) and in a rat model of bron­
chiolitis obliterans (TAKEDA et al. 1998), significant increases in ir-ET were 
detected in both alveolar and peripheral bronchial epithelia. Interestingly, in 
scleroderma-associated lung fibrosis, total ET receptor number was increased 
two- to threefold. The ratio of ET A:ET B sites also changed, with ET B receptor 
numbers increased and ETA receptor numbers reduced (ABRAHAM et al. 1997). 

VI. Pulmonary Tumours 

ET receptors and prepro-ET-1 mRNA have been detected in He La and 
HEp-2 human tumour cell lines and ir-ET was also released from these cells 
(SHICHIRI et al. 1991). ET-1 evoked increased cytosolic free Ca2+ and prolifer­
ation of these cells (SHICHIRI et al. 1991). In addition, ir-ET and mRNA for 
prepro-ET has been detected predominantly in pulmonary squamous cell car­
cinomas and adenocarcinomas (GIAID et al. 1990). The precise role of ET-1 in 
these tissues is not established, although activity as an autocrine/paracrine 
growth factor cannot be dismissed. 

E. ET-l and the Standard Criteria for Mediator Status 
in Asthma 

The following is an outline of the extent to which the standard criteria for con­
firming the identity of an endogenous chemical mediator of disease, as 
described in Sect. B.I., have been fulfilled for ET-1 in asthma. 
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I. Synthesis, Release and Degradation of the ETs in the Lung 

A true endogenous asthma mediator must be synthesized, released and degraded 
at appropriate sites in the lung. 

1. Synthesis 

The first reports describing the synthesis of the ETs established the endothe­
lium as the primary vascular source of the peptides (YANAGISAWA et al. 1988; 
INOUE et al. 1989). The endothelium of small blood vessels within the airway 
wall is also a significant site of ET synthesis in the lung (GIAID et al. 1991; 
SPRINGALL et al. 1991; MACCUMBER et al. 1989). However, in relation to the 
status of ET-1 as a possible asthma mediator, arguably more important support 
for the case came in the form of several studies establishing that this peptide 
was also synthesized and released by the airway epithelium (ROZENGURT et al. 
1990; GIAID et al.1991; SPRINGALL et al.1991; RENNICK et al. 1992; MACCUMBER 
et al. 1989). This is significant because this tissue represents a relatively large 
proportion of the airway mucosal volume and can potentially produce rela­
tively large amounts of peptide which might diffuse to critical submucosal 
target tissues including airway smooth muscle and nerves. 

As previously mentioned, ECE is a phosphoramidon-sensitive metallo­
protease responsible for the conversion of Big ETs to the "mature" 21 amino 
acid ET peptides. This critical enzyme and has been found in guinea-pig, rabbit 
and human airways (BIHOVSKY et al. 1995; ISHIKAWA et al. 1992; PONS et al. 
1992b). The lung contains high levels of the ETs relative to most other organs 
(PERNOW et al. 1989; YOSHIMI et al. 1989) and it is the airway epithelium in 
animal and human lung that is the richest source of these peptides 
(ROZENGURT et al. 1990; RENNICK et al. 1992; MACCUMBER et al. 1989; 
SPRINGALL et al. 1991). 

2. Release 

Under basal conditions, ET-1 is released abluminally from human (MATTOLI 
et al. 1990), porcine and canine (BLACK et al. 1989) cultured bronchial epithe­
lial cells and from cultured tracheal epithelium from the guinea-pig (ENDO 
et al. 1992) and rabbit (RENNICK et al. 1993). Despite this, ETs released from 
vascular endothelium and some inflammatory cells (MACCUMBER et al. 
1989; GIAID et al. 1991) including mast cells (EHRENREICH et al. 1992) and 
macrophages (EHRENREICH et al. 1990) may also play important functional 
roles within the airway wall in asthma. 

3. Degradation 

The ETs are catabolized primarily by neutral endopeptidase (NEP), a phos­
phoramidon-sensitive enzyme found in abundance in the airway epithelium 
(JOHNSON et al. 1985). Not surprisingly, both removal of the epithelium or pre­
treatment with phosphoramidon causes marked potentiation of the contrac-



364 R.G. GOLDIE and P.I HENRY 

tile actions of ET-1 in guinea-pig tracheal (HAY 1989) and human bronchial 
airway preparations (CANDENAS et al.1992; YAMAGUCHI et al.1992). These data 
are consistent with the notion that epithelial NEP is the major degradative 
enzyme for the ETs in the lung and, as such, acts as a significant modulator of 
the sensitivity of airway smooth muscle to this peptide (DI MARIA et al. 1992; 
BOICHOT et al. 1991b). 

II. ET Receptor Distribution 

ET receptors must be present in the lung at sites relevant to the expression of 
asthma symptoms. 

1. Airway Smooth Muscle 

Autoradiographic studies have been valuable in mapping the distribution and 
localization of both ET receptor subtypes in the lung. Such studies have ver­
ified the presence of high densities of ET receptors in many tissue types in the 
respiratory tract in the human (HEMSEN et al. 1990; HENRY et al. 1990; BRINK 
et al. 1991; McKAY et al. 1991) and in animals (TURNER et al. 1989; POWER et 
al. 1989; TSCHIRHART et al.1991). Consistent with the potent spasmogenic activ­
ity of the ETs in the airways, ET receptors are found in greatest density in 
airway smooth muscle, with many studies showing that both ETA and ET B 

receptor subtypes are expressed. There is a wide spectrum of subtype ratios 
detected in airway smooth muscle from different species. For example, approx­
imately equal numbers of these subtypes are detected in mouse and rat tra­
cheal smooth muscle (HENRY and GOLDIE 1994; HENRY 1993). However, there 
are some notable exceptions to this general pattern, with ET B receptors con­
stituting approximately 90% of the total popUlation in human bronchial 
airway smooth muscle (GOLDIE et al. 1995). This proportion falls to about 70% 
when non-airway components of the human bronchial wall are included in the 
assessment (FUKURODA et al. 1996). ET B receptors also greatly outweigh the 
numbers of ETA receptors in rabbit bronchus (McKAY et al. 1996) and also 
predominate in guinea-pig bronchus (GOLDIE et al. 1996a) and pig trachea 
(KOSEKI et al. 1989). At the other end of the spectrum, ETA receptors exist as 
a homogeneous population in sheep tracheal airway smooth muscle (GOLDIE 
et al. 1994), strongly predominate in canine airway smooth muscle (McKAY et 
al. 1996) and constitute approximately 70% of the total in pig bronchus 
(GOLDIE et al. 1996a). 

2. Other Sites 

Many cell types within the airway wall, other than airway smooth muscle, also 
express either or both ETA and ET B receptors. For example, specific [1251]_ 
ET-1 binding was also detected in epithelium and submucosal tissues, as well 
as in blood vessels in human bronchus (POWER et al. 1989; HENRY et al. 1990; 
GOLDIE et al. 1995) and in mouse, rat, guinea-pig and pig tracheal tissue 



Involvement of the Endothelins in Airway Reactivity and Disease 365 

(TSCHIRHART et al. 1991; HENRY et al. 1990; GOLDIE et al. 1996a; KOSEKI et al. 
1989). In sheep trachea, submucosal glands and sub-epithelial tissues 
expressed relatively high levels of ETB receptors (GOLDIE et al.1994). Periph­
erallung alveoli also express very high levels of both ETA and ET B receptors. 
This has been verified in human lung (KNOTT et al. 1995) and in lung from the 
rat (TURNER et al. 1989; POWER et al. 1989), guinea-pig and pig (GOLDIE et al. 
1996b). Neuronal tissue also contains ET receptors of both subtypes. Specific 
P25I]_ET_1 binding has been detected in airway parasympathetic ganglia and 
with paravascular nerves and other neuronal pathways (McKAY et al. 1991; 
KOBAYASHI et al. 1993). ET receptors mostly of the ET B subtype, have been 
localized to guinea-pig tracheal adrenergic and cholinergic nerve cell bodies, 
processes and varicosities in primary culture (TAKIMOTO et al. 1993). Recently, 
we used an immunofluorescence approach with confocal microscopy to show 
that both receptor subtypes existed in rat tracheal nerves grown in cultures 
(FERNANDES et al. 1998; GOLDIE et al. 1998). The actions of the ETs at these 
various sites may also be relevant to the airway obstruction in asthma. This 
will be discussed below. 

In the context of assessing the role of the ETs in asthma, it is clearly impor­
tant to determine whether this disease is associated with significant changes 
in ET receptor distribution or subtype densities in the lung. We have assessed 
these parameters in central (GOLDIE et al. 1995, 1996c; HAY et al. 1993a) and 
peripheral airways (KNOTT et al. 1995) from both asthmatic and non-asthmatic 
subjects. Interestingly, in asthma, no significant differences were detected in 
ET A/ET B receptor ratio in either central bronchial airway smooth muscle 
(non-asthmatic = 12%:88%; asthmatic = 18%:82%) (GOLDIE et al. 1995), or in 
alveolar wall tissue (non-asthmatic = 32%:68%; asthmatic = 29%:71%) 
(KNOTT et al. 1995). However, issues such as altered levels of ET synthesis and 
release in asthmatics compared with healthy individuals may be of importance 
in asthma. 

III. ET Receptor-Mediated Responses Relevant to Asthma 

1. Altered Bronchial Tone 

ET receptors in the lung must mediate responses relevant to asthma symptoms 
and pathologies. 

The autoradiographic detection of specific ET binding sites does not 
establish these sites as functional ET receptors. However, ET-1 has been 
shown to induce a wide range of acute and chronic effects within the bronchial 
wall and in peripheral lung in tissue known to contain specific binding sites 
for P25I]-ET-1, that may be highly relevant to a mediator role in asthma. Of 
all the effects that an asthma mediator might be expected to induce, airway 
smooth muscle contraction is arguably one of the most important, since 
episodic and chronically elevated airway tone are cardinal features of this 
disease. 
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a) Direct Airway Smooth Muscle Contraction 

The airway spasmogenic effects of ET-1 and related peptides was reported 
very soon after the identification of these substances in 1988 (UCHIDA et al. 
1988). Subsequently, airway smooth muscle contraction has become the most 
widely studied action of ET-1 in the airways. ET-1 is one of the most power­
ful and potent spasmogens in human isolated bronchial smooth muscle prepa­
rations (UCHIDA et al. 1988; HAY et al. 1993a; TSCHIRHART et al. 1991; HEMSEN 
et al. 1990; MAGGI et al. 1989; ADVENIER et al. 1992; HAY 1990). Contraction to 
ET-1 is relatively slow to develop, but is persistent and resistant to reversal by 
washout. This may be explained in part by the pseudo-irreversible nature of 
ET-1 binding to ET receptors (NAMBI et al. 1994; WAGGONER et al. 1992; 
WU-WONG et al. 1994; WATAKABE et al. 1992; IHARA et al. 1995), which causes 
sustained receptor activation and signal transduction, consistent with the per­
sistence of elevated bronchial tone often seen in asthma. 

Although ET B receptors greatly predominate in number in human 
bronchial smooth muscle, functional studies indicate that the smaller ETA 
receptor population can also mediate ET-1-induced contraction (GOLDIE et al. 
1995; FUKURODA et al. 1996). This is also the case in animal airway smooth 
muscle in which both receptors are expressed (HENRY and GOLDIE 1994; 
HENRY 1993; HAY et al. 1993d; GOLDIE et al. 1996a; KOSEKI et al. 1989) and in 
sheep tracheal smooth muscle where only ETA receptors were detected 
(GOLDIE et al. 1994; ABRAHAM et al. 1993). Interestingly, in asthma, a decrease 
in sensitivity to the contractile effects of the ET B receptor-selective agonist 
sarafotoxin S6c was demonstrated in bronchial tissue, suggesting that ET B 

receptor desensitization may have occurred. It is possible that such desensiti­
zation was the result of increased synthesis and release of ET-1, with subse­
quent over-exposure of ET receptors to this ligand. Thus, a mediator role for 
ET-1 in asthma cannot be attributed in any degree to up-regulation of ET 
receptor function (GOLDIE et al. 1995) or density (GOLDIE et al. 1995; KNOTT 
et al. 1995). 

b) Modulation of Neurotransmission 

Neuronal pathways play an important role in bronchial wall homeostasis, 
including the regulation of airway tone. In asthma, the function of such systems 
may be perturbed, resulting in altered airway resistance or the activity of gland 
secretory processes. For example, airway obstruction resulting from increased 
airway smooth muscle tone could be induced by hyper-activity of bronchial 
cholinergic nerves (WARD et al. 1994; SHEPPARD et al. 1982; BEAKES 1997), or 
of the excitatory non-adrenergic, non-cholinergic neuronal system (BARNES et 
al. 1991) innervating this target tissue. Airway calibre might be similarly influ­
enced by hypofunction of inhibitory sympathetic pathways (GOLDIE et al.1986; 
GOLDIE 1990) or of inhibitory non-adrenergic, non-cholinergic nerves (ELLIS 
and UNDEM 1992). Thus, the balance of activities between these systems may 
be important in the etiology and progression of obstructive airway diseases 
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including asthma (GOLDIE 1990; BARNES 1992). Mediator-induced modulation 
of such pathways is one mechanism through which this balance might be 
disturbed. 

Recent evidence that the ETs induced potentiation of cholinergic neuro­
transmission in the guinea-pig ileum (WIKLUND et a1. 1989) provided a ratio­
nale for assessing the influence of these peptides on airway neuronal pathways. 
The first evidence for such an effect in the respiratory tract came with a report 
that ET-3 potentiated cholinergic nerve-evoked bronchial contraction in the 
rabbit (McKAY et a1. 1993). This was soon followed by similar findings with 
ET-1 and the ET B receptor-selective agonist sarafotoxin S6c in mouse (HENRY 
and GOLDIE 1995) and rat (KNOTT et a1. 1996) trachea. With regard to a medi­
ator role for ET peptides in asthma, it is particularly exciting to find that 
sarafotoxin S6c also caused powerful and potent potentiation of cholinergic 
nerve-mediated contraction in human isolated bronchial preparations 
(FERNANDES et a1. 1996). Importantly, very recent, but as unpublished data 
from our laboratory indicate that ET-1 also potentiated cholinergic contrac­
tion in human bronchial ring preparations, an effect involving activation of 
both ETA and ET B receptors located on post-ganglionic nerves. These findings 
are consistent with results in rat tracheal tissue, where both receptor subtypes 
were linked to increased release of acetylcholine (KNOTT et a1. 1996) and 
provide another mechanism through which ET peptides might influence 
airway tone in asthma. Ovine tracheal muscle tissue represents an interesting 
anomaly, in that prejunctional ET B receptor stimulation caused inhibition of 
contraction due to suppression of acetylcholine release (HENRY et a1. 1996). 
Thus, sheep airways do not provide a model which mimics the neuronal activ­
ities of ET-1 in human bronchus. We are presently evaluating the effects of 
exogenously applied ET-1 and similar peptides on non-cholinergic neuronal 
pathways in the airways. 

c) Bronchoconstriction In Vivo 

ET-1 caused increased airway resistance, presumably primarily as a result of 
bronchospasm, in several animal species, including the rat (MATSUSE et a1. 
1990), dog (UCHIDA et a1.1992a), guinea-pig (NOGUCHI et a1.1993; NAGASE et a1. 
1995; TOUVAY et a1. 1990) and sheep (NOGUCHI et a1.1995). Both ETA and ETB 
receptors were involved in this effect in the guinea-pig (NOGUCHI et a1. 1993; 
NAGASE et a1. 1995) where sustained bronchoconstriction to either intravenous 
or aerosolized ET-1 involved the production of the secondary mediators 
thromboxane and platelet-activating factor (PAF) (MACQUIN-MAVIER et a1. 
1989; PAYNE and WHITTLE 1988; LAGENTE et a1. 1989). Importantly, allergic 
sensitization in this model was accompanied by hyperresponsiveness to 
ET-1, perhaps related to reduced epithelial NEP activity (BOICHOT et a1. 1990, 
1991b). In addition, the early phase response to ovalbumin in this species, due 
largely to histamine and leukotriene release (BARNES et a1. 1988), may 
also involve ET release early in the cascade of events, since ET B receptor block-
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ade inhibited allergic bronchoconstriction (UCHIDA et al. 1995). The late phase 
reaction to allergen may also involve ET production and the activation of ETA 
receptors, since inhibition at these sites attenuated this response, as well as the 
usual hyperresponsiveness to inhaled carbachol (NOGUCHI et al. 1995). 

ET-1 may also induce bronchial hyperresponsiveness in some models. For 
example, ET-1 challenge in rabbits has recently been reported to enhance 
bronchoconstriction to inhaled histamine, an action that involved the activa­
tion of capsaicin-sensitive airway sensory nerves (DAGOSTINO et al. 1998). 
Hyperresponsiveness to spasmogens such as histamine and methacholine is 
also commonly observed in asthmatics (BOUSHEY et al. 1980). Inhaled ET-1 
has been shown to induce potentiated responsiveness to such agonists in the 
sheep (NOGUCHI et al. 1995), although this could only be demonstrated in one 
(KANAZAWA et al. 1992) of five (MACQUIN-MAVIER et al. 1989; BOICHOT et al. 
1991a; PONS et al. 1992a; LAGENTE et al. 1990) studies in the guinea-pig. In het­
erozygous ET-1 knockout mice in which ET-1 levels were abnormally low, 
airway responsiveness to methacholine was increased rather than reduced as 
might be predicted (NAGASE et al. 1998). This suggests that underproduction 
of this peptide might also be accompanied by anomalous production of 
another factor(s) such as a bronchodilator like nitric oxide (NO) (NAGASE 
et al. 1998). 

Studies involving the actions of the ETs in human subjects, particularly 
asthmatic individuals, have long been awaited, since asthma is a peculiarly 
human condition for which there are no completely adequate animal models. 
The first report of the actions of inhaled ET-1 in human asthmatic and non­
asthmatic subjects showed that inhaled aerosolized ET-1 had little influence 
on lung function in non-asthmatics, but induced severe bronchoconstriction in 
asthmatic patients who were also hyperresponsive to inhaled methacholine 
(CHALMERS et al. 1997). The lack of potency in normals may have been the 
result of protection of the submucosa via the degradative barrier actions of 
epithelial NEP. In contrast, in asthmatics, this protection might have been com­
promised by damaged epithelium reducing the amounts of available NEP, or 
by the greater permeability of the epithelium in asthmatics, allowing the pen­
etration of ET-1 to sub-epithelial targets including airway smooth muscle and 
cholinergic nerves. 

2. Mitogenesis 

a) Fibroblasts 

The pathologies which accompany chronic asthma include restructuring of 
various tissue elements within the bronchial wall, a phenomenon often 
described as bronchial remodelling. Amongst the most prominent of these 
changes is an increase in airway smooth muscle volume (CARROLL et al. 1993; 
KNOX 1994) and increased thickness of the sub-epithelial matrix caused by 
increased deposition of extracellular matrix protein (BREWSTER et al. 1990; 
ROCHE et al. 1989). The question is whether the action of ET pep tides can con-
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tribute to these events. If so, then further circumstantial evidence is provided 
in support of a mediator role for the ETs in asthma. Indeed, the evidence from 
animal models clearly demonstrates the mitogenic potential of ET-1 in fibrob­
lasts and airway smooth muscle cells. For example, ET-1 induced the prolifer­
ation of Swiss 3T3 fibroblasts in culture (TAKUWA 1993). In addition, ET-1 and 
ET-3 have been shown to be chemoattractants for fibroblasts and also to 
promote the replication of rat pulmonary artery-derived fibroblasts (PEACOCK 
et al. 1992). 

Importantly, evidence from human cells is consistent with data from these 
animal studies. Fibronectin released from human bronchial epithelial cells is 
both an important extracellular matrix component and itself a chemotactic 
factor for fibroblasts. ET-1 enhanced fibronectin gene expression and 
fibronectin release from these cells, actions that were mediated via ETA recep­
tors (MARINI et al. 1996). Furthermore, in human asthmatic bronchial epithe­
lial cells pretreated with allergen, the cytokine granulocyte/macrophage 
colony-stimulating factor (GM-CSF) stimulated ET-1 production, which in 
turn was associated with transformation of epithelial cells into myofibroblasts, 
cells which playa critical role in extracellular matrix deposition (SUN et al. 
1997). Thus, ET-1 and epithelial cells from which it is derived, are pivotal to 
the promotion of sub-epithelial fibrosis. Interestingly, the mitogenic action of 
interleukin-1 beta (IL-1J3) in porcine epithelial cells appear to be mediated in 
part by ET-1-induced ETA receptor activation (MURLAS et al. 1997). 

b) Airway Smooth Muscle 

ET-1 has also been shown to be a potent but relatively weak mitogen in cul­
tured tracheal airway smooth muscle cells from the guinea-pig, rabbit 
(NOVERAL et al. 1992) and sheep (GLASSBERG et al. 1994). Similar results were 
obtained in human cultured bronchial smooth muscle cells, adding consider­
able weight to the proposition that ET-1 might be an asthma mediator. Inter­
estingly, although the mitogenic activity of ET-1 was modest, this action was 
not blunted by pretreatment with J3-adrenoceptor bronchodilators such as 
salbutamol which had marked inhibitory effects against the proliferative 
effects of other mitogens including thrombin (TOMLINSON et al. 1994). Thus, 
ET-l is unusual amongst mitogens in this regard and this characteristic 
enhances its profile as a putative asthma mediator. Perhaps more importantly, 
ET-1 is a potent co-mitogen in human bronchial airway smooth muscle cells, 
i.e. although alone, ET-1 was only weakly active, this peptide dramatically 
potentiated (three- to fourfold) the already powerful mitogenic effects of 
epidermal growth factor (EGF), an action mediated exclusively via ETA 
receptors (PANETTIERI et al. 1996). 

c) Mucous Glands 

Bronchial mucous gland hyperplasia is also observed in chronic asthma, a phe­
nomenon which presumably is linked to excessive production of mucus in this 



370 R.G. GOLDIE and P.I HENRY 

disease (BEASLEY et al. 1989; HEGELE and HOGG 1996). Although not tested, 
given the mitogenic effects of ET-1 in bronchial smooth muscle and fibrob­
lasts, it seems likely that mucous gland cells might also proliferate in response 
to ET-l. 

3. Secretion of Mucus 

Receptors for ET-1 have been detected in submucosal glands associated with 
their venous sinusoids and small muscular arterioles (MULLOL et al. 1993). 
Studies in animal models suggest that ET-1 has effects in mucous glands con­
sistent with the production of mucus-obstructed airways, as often reported in 
asthma. Namely, ET-1 increased mucous glycoprotein secretion in feline iso­
lated tracheal submucosal glands (SHIMURA et al. 1992) and in ovine tracheal 
tissue, and reduced tracheal mucus velocity as a result of ETA receptor 
activation (SABATER et al. 1996). ET-1-induced increased mucus production 
coupled with reduced mucus clearance are effects consistent with the promo­
tion of airway mucus plugging as seen in asthma. Importantly, stimulation of 
ET receptors in human cultured nasal mucosal tissue also results in increased 
serous and mucous secretions (MULLOL et al. 1993) and increased production 
of prostanoids (Wu et al. 1992). Furthermore, the vascular endothelium and 
venous sinusoidal tissue in human nasal mucosal tissue produced ET-1 
(CASASCO et al. 1993). 

4. Altered Microvascular Permeability 

Asthma is an inflammatory lung disease. Accordingly, the permeability of the 
airway microvasculature may be increased, resulting in bronchial submucosal 
oedema, since increased microvascular permeability is an obligatory accompa­
niment to airway inflammation (PERSSON 1991; GOLDIE and PEDERSEN 1995). In 
addition, oedema-associated bronchial wall swelling is a potentially important 
component of airway obstruction in asthma (PERSSON 1991). Another poten­
tially important action of ET-1 in relation to asthma is the fact that it has been 
shown to increase airway microvascular permeability. This has been reported 
in perfused rat lung where the response was leukocyte- and plasma-dependent 
(RODMAN et al. 1992). The formation of secondary mediator prostanoids may 
also be involved, although this remains uncertain (RAFFESTIN et al. 1991; 
HORGAN et al.1991; PONS et al. 1991; ERCAN et al.1993). However, there is some 
consensus that ET-1-induced oedema formation in this model involves 
increased microvascular pressure (RAFFESTIN et al. 1991; RODMAN et al. 1992), 
mediated in part by ETA receptor activation (FILEP et al. 1993a ). ETA receptors 
also mediated permeability increases in the guinea-pig (FILEP et al. 1995). 

5. ET-l as a Pro-Inflammatory Mediator 

Given the inflammatory nature of bronchial asthma, a link between inflam­
matory processes in the lung and the actions of ET-1 would certainly support 
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the case that this peptide is an asthma mediator. A large body of evidence sug­
gests that ET-1 has significant pro-inflammatory activities in vitro, although 
some data suggest otherwise. 

a) ET-I-Induced Pro-Inflammatory Mediator Release 

The concept of ET-1 as a pro-inflammatory mediator in the airways, is largely 
dependent upon data from animal studies, including the description of an 
indomethacin-sensitive increase in the release of the prostanoid precursor 
arachidonic acid from feline cultured tracheal epithelial cells (Wu et al. 1993) 
and from epithelial membrane phospholipids (PLEWS et al. 1991). Other 
studies have also demonstrated ET-1-induced release of various pro­
inflammatory mediators from various airway cells types. For example, ET-1 
activated the release of the pro-inflammatory cytokines tumour necrosis factor 
alpha (TNF-a), IL-1f3 and IL-6 from human monocytes (HELSET et al. 1993) 
and of thromboxane A2 from an unidentified source(s) in perfused guinea-pig 
lung (DE NUCCI et al. 1988). In addition, thromboxane and PGD2 were detected 
following stimulation with ET-1 of cells from canine bronchial lavage lavage 
fluid (NINOMIYA et al. 1992). Furthermore, the levels of 15-HETE and of 
oxygen radicals in BAL fluid in the rat were raised in response to intravenous 
ET-1 (NAGASE et al. 1990), as was the case for oxygen radical levels in BAL 
fluid from the guinea-pig (FILEP et al. 1995). Guinea-pig alveolar macrophages 
also released arachidonic acid and thromboxane in response to ET-1 (MILLUL 
et al. 1991) and superoxide production was raised by ET-1 in human alveolar 
macrophages (HALLER et al. 1991). ET-1 also potentiated superoxide produc­
tion from alveolar macrophage in response to FMLP and PAF, via an ETA 
receptor-mediated mechanism (FILEP et al. 1995). ET-1 caused the release of 
histamine from guinea-pig pulmonary mast cells (UCHIDA et al. 1992b) and of 
histamine, 5-HT and LTC4 from IL-4-treated murine bone marrow-derived 
mast cells (EGGER et al. 1995). 

b) ET-I-Induced Inflammatory Cell Chemotaxis 

ET-l may also be a chemotactic factor under some conditions, since it caused 
adhesion of leukocytes to pulmonary vascular endothelium and induced the 
sequestration of leukocytes from pulmonary capillaries (HELSET et al. 1994). 
Antigen challenge in the sensitized mouse also caused the influx of eosinphils 
into the respiratory tract, an effect attenuated by selective ETA receptor block­
ade, or pretreatment with the dual ET A/ET B receptor antagonist SB 209670, 
but not by selective ET B receptor blockade (FUJITANI et al. 1997). 

c) Some Evidence Against a Major Pro-Inflammatory Role for ET-l 
in the Airways 

Despite these apparently positive indications of pro-inflammatory activity and 
reports that ET-1 stimulated the release of prostanoids from guinea-pig 



372 RG. GOLDIE and P.I HENRY 

trachea (HAY et al. 1993c), human bronchus (HAY et al. 1993b) and human cul­
tured nasal mucosal tissue (Wu et al. 1992), ET-1 failed to activate histamine 
or leukotriene release from intact airways from these sources (HAY et al. 
1993b, c). Some evidence from studies in vivo also do not indicate ET-1-
associated inflammatory activity. For example, in the guinea-pig, ET-1 was not 
a chemoattractant for inflammatory cells as assessed by histological examina­
tion of lung alveolar or vascular walls (MACQUIN-MAVIER et al. 1989; BOICHOT 
et al. 1991a). In addition, in this model, exposure to ET-1 was not associated 
with airway epithelial damage or elevated microvascular permeability 
(MACQUIN-MAVIER et al. 1989; PONS et al. 1992a). The chemotactic influence of 
ET-1 On human blood monocytes is also disputed, with one study reporting 
chemotaxis (ACHMAD and RAo 1992) and another failing to demonstrate this 
phenomenon (BATH et al. 1990). 

IV. Airway Inflammation, Increased ET Levels and Asthma 

Levels of ETs should be elevated in asthma and should positively correlate with 
disease severity. 

1. Evidence from Models In Vitro 

If ET-1 is involved in the chronic generation of asthma symptoms and patholo­
gies, levels of this peptide might be expected to be significantly increased as a 
result of the actions of other inflammatory mediators. Indeed, it has been 
demonstrated that endotoxin, thrombin and other inflammatory stimuli 
including various cytokines, stimulate the release of ET-1 from tracheal epithe­
lial cells in culture (NINOMIYA et al. 1991; ENDO et al.1992; RENNICK et al.1993; 
FRANCO-CERECEDA et al. 1991). In addition, in human bronchial epithelial cells 
in culture, the cytokines IL-1a, IL-1f3 and TNFa enhanced the expression 
of prepro-ET-1 mRNA and increased ET-1 release (NAKANO et al. 1994), 
providing further strong support for the proposition that inflammation and 
elevated ET levels in the airways were causally linked. 

2. Evidence from Animal Models Ex Vivo or In Vitro 

If disease-associated airway inflammation (e.g. in asthma) involves elevated 
ET-1levels in the airways, it should be possible to mimic this in animal models 
of airway inflammation. This is indeed the case in several systems. Some inves­
tigators have used sephadex administered intra-tracheally or intravenously to 
model the airway inflammation of asthma, since this stimulus causes an acute 
airway eosinophilic inflammatory response (BJERMER et al. 1994; KUBIN et al. 
1992). Results clearly demonstrate that immunoreactive ET (ir-ET) was sig­
nificantly increased in BAL fluid and this response was markedly attenuated 
by the glucocorticoid budesonide (ANDERSSON et al. 1992, 1996). Recent work 
has established that the increase in lung ir-ET after intra-tracheal sephadex in 
the rat occurred in bronchial epithelium and macrophages and importantly, 
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that this response preceded the airway eosinophilia, suggesting a role for 
ET-1 in the initiation of airway inflammation (FINSNES et al. 1997). This study 
also demonstrated that the ET A/ET B receptor antagonist bosentan blocked 
this inflammatory reaction (FINSNES et al. 1997). Tissue levels of ir-ET were 
also significantly increased in mice with airway inflammation associated with 
an Influenza-A respiratory tract viral infection (CARR et al. 1998). 

Similarly, increased levels of ir-ET have been detected in plasma, BAL 
fluid and tissue in actively and passively ovalbumin-sensitized guinea-pigs 
which have an accompanying airway inflammatory cell infiltrate (FILEP et al. 
1993b; Xu and ZHONG 1997). BAL fluid contained enough ir-ET to induce sig­
nificant proliferation of bronchial airway smooth muscle cells in culture. It was 
concluded that increases in TNF a, in response to allergic sensitization, induced 
the increased production of ET-1 which promoted airway smooth muscle cell 
proliferation (Xu and ZHONG 1997). This is consistent with evidence that TNF a 
induced elevated ET-1levels in human airway epithelial cells lines (AUBERT et 
al. 1997). In ovalbumin-sensitized mice, the accompanying airway eosinophilia 
and neutrophilia were attenuated by about 50% following ETA receptor 
blockade, but not by selective antagonism of ET B receptors (FUJITANI et al. 
1997). Taken together, these data clearly indicate that airway inflammation 
results in the enhanced production and release of ETs which then has the 
potential to activate responses within the airway wall relevant to obstructive 
diseases such as asthma. However, it is important that such a link be estab­
lished in human asthma. 

3. Asthma-Associated Airway Inflammation and ET Levels 

As previously mentioned, epithelial cells are a major potential source of ETs 
in the respiratory tract, although in healthy individuals, the expression of these 
peptides under basal conditions is very low (VITTORI et al. 1992; SPRINGALL et 
al.1991).1t might be expected that these epithelial levels would be significantly 
elevated in inflamed airways in asthma. Several studies have now established 
that this is so. Thus, the expression of both mRNA for prepro-ET-1 and of 
ET-1 protein in bronchial epithelial cells from asthmatics was significantly 
greater than in similar tissue from healthy volunteers or from chronic bron­
chitics (VITTORI et al. 1992). Cells derived from asthmatics have also been 
shown to produce increased amounts of ET-1 in response to pro-inflammatory 
stimuli compared with amounts produced in tissue from non asthmatic sub­
jects. This has been demonstrated for epithelial cells in response to IL-1, his­
tamine (ACKERMAN et al. 1995) and GM-CSF (SUN et al. 1997). Peripheral 
blood mononuclear cells from asthmatics also released greater amounts of 
ET-1 than similar cells from non-asthmatics and allergen immunotherapy sup­
pressed this response (CHEN et al. 1995). 

Importantly, various studies have now shown that active asthma is associ­
ated with increases in the production of ETs in the lung. In the first of these, 
Nomura and co-workers reported tantalizing preliminary data of a sixfold 
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elevation in the levels of ir-ET in BAL fluid from an individual in status asth­
maticus (NOMURA et al. 1989). It was subsequently shown that asthmatics have 
increased circulating blood (CHEN et al. 1995; AOKI et al. 1994) and BAL fluid 
levels of ir-ET (MATIOLI et al. 1991; SOFIA et al. 1993; BATTISTINI et al. 1991), 
suggesting that epithelial ET-1 levels should also be raised in asthma. Studies 
assessing ir-ET levels in bronchial biopsies confirmed this (SPRINGALL et al. 
1991; REDINGTON et al. 1997). It is also significant that ir-ET-1 levels in lung 
tissue were not significantly raised in asthmatics receiving anti-inflammatory 
glucocorticoid therapy (REDINGTON et al. 1997). In such asthmatics demon­
strating reduced ir-ET levels, the symptoms of asthma should be reduced in 
severity if ET-l is a significant mediator. 

4. Respiratory Tract Viral Infection, Asthma and ETs 

Respiratory tract infections with viruses such as respiratory syncytial virus 
(RSV) have long been associated with exacerbations of asthma and bronchial 
hyperresponsiveness to inhaled spasmogens (BEASLEY et al. 1989; NICHOLSON 
et al. 1993; TEICHTAHL et al.1997; SCHWARZE et al. 1997). Although many mech­
anisms for this have been proposed (BUSSE 1990; FOLKERTS et al. 1998), the 
phenomenon remains poorly understood. However, it is known that such 
infections involve airway inflammation and in the case of RSV this response 
involves an eosinophilia (FOLKERTS et al. 1998; SCHWARZE et al. 1997). This 
raises the possibility that up-regulated epithelial production of ET-1 makes a 
significant contribution to the induction of asthma symptoms. Consistent with 
this, we have recently shown that influenza-A virus infection in the mouse was 
linked to markedly elevated levels of ir-ET in both central and peripheral 
airways (CARR et al. 1998). Behera and colleagues have now established that 
RSV infection in human airway epithelial cell lines caused markedly increased 
expression of ET-1 mRNA, ET-l protein, 5-lipoxygenase activity and cysteinyl 
leukotrienes (BEHERA et al. 1998). Taken together, these data suggest that 
ET-1 could be a significant mediator of vir ally-triggered asthma. 

5. ET Levels and Asthma Symptoms 

It has now been established that glucocorticosteroids, which are an important 
anti-inflammatory therapy in asthma, reduced the amount of epithelial ET-1 
released in asthmatics (VITTORI et al. 1992; MATTOLI et al. 1991; REDINGTON et 
al. 1995). Most importantly, treatment with inhaled j3-agonists and oral gluco­
corticoids for 15 days reduced the previously elevated BAL ET levels in asth­
matics to levels approaching those detected in healthy control subjects and 
this was accompanied by improvements in lung function (MATIOLI et al.1991). 
In a separate study, the suppressant influence of steroids on BAL ir-ET levels 
in asthma was confirmed (REDINGTON et al. 1995). Significantly, it was also 
noted that the percentage of predicted FEV) was lower in patients not receiv­
ing this treatment and that this correlated with the higher levels of BAL ir-ET 
in these patients. In contrast, in patients with nocturnal asthma, the fall in FEV) 
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overnight was inversely related to the levels of ir-ET-1 in BAL fluid (KRAFT 

et al. 1994). 

F. Conclusions 
There are now many hundreds of published research papers describing the 
actions of the ETs in the respiratory tract, many of which support a case for 
ET-1 as a significant contributor to the pathologies of asthma. However, to our 
knowledge, there have been no studies assessing the clinical effects of ET 
receptor antagonists in asthmatic subjects. An alternative therapeutic 
approach would be to use agents that inhibit the synthesis or release of the 
ETs within the airway wall. Once again, studies evaluating such inhibitors have 
not been conducted. Until studies of this type are done and their therapeutic 
efficacy established, the last of the standard criteria for confirmation of ET-1 
as an asthma mediator must remain unfulfilled. 

Despite the fact that the case in support of this contention is circumstan­
tial, the weight of evidence is impressive. In particular, the facts that the actions 
of ET-1 in human respiratory tissues mimic so many of the signal features of 
asthma, and that asthma/airway inflammation has been linked to increases in 
epithelial ET levels, provide powerful evidence suggesting that ET-1 is indeed 
a mediator in this disease. However, most of the data also suggest that the ETs 
are not initiators of this disease. Rather, their production seems to be upreg­
ulated following the establishment of airway inflammation, promoting the 
expression of disease symptoms. This view might have to be modified in the 
light of data from the study by Finsnes and co-workers, who reported a rise in 
ir-ET in the airways which preceded the eosinophilia in response to a pro­
inflammatory stimulus (FINSNES et al. 1997). 
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