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Abstract. We consider the following problem: two parties have each a
private function, for example one that outputs the party’s preferences on
a set of alternatives; they wish to compute the distance between their
functions without any of the parties revealing its function to the other.
The above problem is extremely important in the context of social, polit-
ical or business networks, whenever one wishes to find friends or partners
with similar interests without having to disclose one’s interests to every-
one. We provide protocols that solve the above problem for several types
of functions. Experimental work demonstrates that privacy preservation
does not significantly distort the computed distances.

Keywords: Private distance computation, privacy, social networks, util-
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1 Introduction

Shyness often has a rational component. Getting to know a stranger normally
requires us to disclose some of our privacy to that stranger. Indeed, in a fair
relationship there is normally a tit-for-tat approach, in which each of the parties
must disclose something in order to learn something. It would be more privacy-
preserving and less risky if two parties could determine whether they have similar
interests without prior disclosure of such interests to each other. Of course, the
more similar their interests turn out to be, the greater the posterior mutual
disclosure: in the extreme case, if their interests turn out to be at distance 0,
total mutual disclosure occurs.

In game-theoretic terms, the above problem can be expressed as two players
being interested in determining how close their utility functions are without
disclosing these utility functions to each other. In particular, this allows forming
coalitions with homogeneous interests without prior utility disclosure.

Solving this problem is very relevant in many practical situations:

— In social networks, users could find friends or other users to follow who share
their interests, without being forced to disclose their own private interests
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(e.g. religion, sexual orientation, health condition, etc.). For example, in the
social network PatientsLikeMe [12] users currently need to disclose their
diseases in order to find users with similar ailments, a privacy loss which
could be mitigated by our approach.

— Grooming attacks in social networks could be hindered to a good extent
with our approach. Note that the groomer would need to guess the victim’s
interests in order to become her/his friend.

— Targeted consumer profiling could be also made possible. A company could
create dummy users of a social network with the profile of the consumers it is
looking for. In this way, the company could identify communities of potential
consumers with the desired profile, without encroaching on the privacy of
people who do not fit the profile being sought.

— In commercial transactions, parties could determine whether the values they
assign to a collection of goods are similar, without prior disclosure of their
chosen value(s). For example, in some cases a company may be interested
in associating with companies with dissimilar interests, in order to form a
complementary partnership, rather than associating with companies with
too similar interests, which may be regarded as competitors.

— In job recruitment, companies and candidates would be able to confidentially
determine to what extent the corporate vision is shared by each candidate.
Thanks to the privacy-preserving mechanism, a lot of different factors could
be included in the evaluation, without the company being forced to reveal
its strategic goals to unsuccessful candidates or the latter needing to disclose
their views.

1.1 Contribution and Plan of this Paper

We present in this paper privacy-preserving protocols that allow computing the
distances between various types of functions. After that, we report on experi-
mental work that shows that privacy preservation does not cause a significant
distortion in the computed distance.

Section 2 defines several cases of privacy-preserving distance computation be-
tween functions, depending on the nature of the function and the type of distance
being considered. Section 3 describes a protocol for privacy-preserving distance
computation based on set intersection. Section 4 reports on experimental work.
Section 5 describes related work. Conclusions and future research lines are sum-
marized in Section 6.

2 Taxonomy of Distance Computation between Functions

The protocol to compute the distance between two functions in a privacy-
preserving way depends on the nature of the functions and the way the distance
is to be measured. We next discuss several cases.
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2.1 Case A: Counting Common Qualitative Preferences

In this case, the interests or preferences of each player are characterized as binary
features on various independent topics. For example, in a social networks like
Facebook, users are asked to provide their opinions on different topics as “like” or
“do not like”. In PatientsLikeMe [12], users are requested to detail their medical
histories as binary selections from sets of alternatives (diseases, symptoms, etc.).

We can consider the preferences or profile of a player as a set containing
his/her opinions or personal details. Let this set be X for the first player C and
Y for second player S. Then the distance between the interests of C and & can
be evaluated as the multiplicative inverse of the size of the intersection of X and
Y, that is 1/|X NY|, when the intersection is not empty. If it is empty, we say
that the distance is co.

Clearly, the more the coincidences between X and Y, the more similar the
preferences of both players, and the smaller the distance between them.

2.2 Case B: Correlating Qualitative Preferences

As in the previous case, the players’ preferences are expressed as qualitative
features. However, if these features are not independent (e.g. related diseases)
or they are not binary (e.g. expressed as free textual answers to questionnaires),
the distance between the players’ profiles cannot be computed as the size of
the intersection between their sets of features. For example, if C suffers from
anorexia and S from bulimia, there is some coincidence between them because
they both present eating disorders. This coincidence must be captured by the
resulting distance.

Assume we have a correlation function s : E X E +— Z, that measures the
similarity between the values in the sets of features of C and S, where F is
the domain where the sets of features of both players take values. For nomi-
nal features (e.g. disease names), semantic similarity measures can be used for
this purpose [13]; for numerical features that take values over bounded and dis-
crete domains (e.g. ages, zip codes), standard arithmetic functions can be used.
Assume further that both players know this function s from the very beginning.

Here the distance between the set X of C’s features and the set Y of S’s
features can be computed as

1/ (Xwex 2yey (2, 9))

when the denominator is nonzero. If it is zero, we say that the distance is co.

2.3 Case C: Quantitative Preference Functions

In this case, we want to compute the difference between two quantitative func-
tions over the same domain, which define the preferences or profiles of the two
players. We assume that they are integer functions. That is, C has a private pref-
erence function f: E — Z and S has a private preference function g : £ — Z.
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A way to measure the dissimilarity between f and g is to compute d(f,g) =
S 1f (@) — glx)|, where D = {xy,..., 2} is a representative discrete subset
of elements from F.

This scenario fits well the usual way of learning, modeling and managing social
network user profiles in the literature [1,16,21]. It consists in associating a vector
of weights to each user, where each weight expresses the preference of the user
on a certain topic (e.g. sports, science, health, etc.). Users are thus compared
according to the distance between their vectors of weights.

3 Computing Distances Based on Set Intersection

It will be shown further below that the above three cases A, B and C can be
reduced to computing the cardinality of set intersections. Hence, we first review
the literature for solutions to secure two-party computation of set intersection
cardinality.

Secure multiparty computation (MPC) allows a set of parties to compute
functions of their inputs in a secure way without requiring a trusted third party.
During the execution of the protocol, the parties do not learn anything about
each other’s input except what is implied by the output itself. There are two main
adversarial models: honest-but-curious adversaries and malicious adversaries. In
the former model, the parties follow the protocol instructions but they try to
obtain information about the inputs of other parties from the messages they
receive. In the latter model, the adversary may deviate from the protocol in an
arbitrary way.

We will restrict here to a two-party setting in which the input of each party
is a set, and the desired output is the cardinality of the intersection of both
sets. The intersection of two sets can be obtained by using generic constructions
based on Yao’s garbled circuit [20]. This technique allows computing any arith-
metic function, but for most of the functions it is inefficient. Many of the recent
works on two-party computation are focused on improving the efficiency of these
protocols for particular families of functions.

Freedman, Nissim, and Pinkas [4] presented a more efficient method to com-
pute the set intersection, a private matching scheme, that is secure in the honest-
but-curious model. A private matching scheme is a protocol between a client C
and a server S in which C’s input is a set X of size i¢, S’s input is a set Y
of size ig, and at the end of the protocol C learns X N'Y. The scheme uses
polynomial-based techniques and homomorphic encryption schemes.

Several variations of the private matching scheme were also presented in [4]:
an extension of the malicious adversary model, an extension of the multi-party
case, and schemes to compute the cardinality of the set intersection and other
functions. Constructing efficient schemes for set operations is an important topic
in MPC and has been studied in many other contributions. Several works such
as [2,3,5,10,15] present new protocols to compute the set intersection cardinality.

We now proceed to specifying protocols to deal with cases A, B and C above.
In all cases, the distance between the private preferences of the two parties is
computed using a protocol that yields the cardinality of a set intersection.
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3.1 Case A

C inputs X and S inputs Y, and they want to compute | X NY| without revealing
their own set.

In the protocol specified below, C inputs X = {a1,...,as} C E, S inputs
Y = {b1,...,b} C E, where s and t are known, and finally C learns | X NY.
For S to learn also |X NY, the protocol below should be run a second time
(sequentially or concurrently) with the roles of C and S being exchanged.

We will use the protocol described in [4] for the cardinality of the set inter-
section, that is secure in the honest-but-curious model. The homomorphic en-
cryption scheme we use is the Paillier cryptosystem [11]. The protocol exploits
the property that, given three elements mi,ms, ms, it is possible to efficiently
compute Enc(mq + ms) and Enc(ms - m3) from Enc(mq), Enc(ms), and mg.
We assume that C and S agree on a way to represent the elements of F as ele-
ments of the Enc function. They also agree on a special string m. The protocol
is outlined next.

Step 1 C chooses the secret-key parameters, and publishes its public keys and
parameters.

Step 2 C computes the polynomial p(z) = [[}_, (z — a;).

Step 3 C sends Enc(pp), ..., Enc(ps) to S, where p; is the coefficient of degree
1 of p.

Step 4 S picks a random element r; € Z, for every 1 < j < t. S computes
Enc(r; - p(bj) +m) for 1 < j <t. Then S sends these ciphertexts to C.
Step 5 C decrypts the received ciphertexts. The result of each decryption is m

or a random element.

If the size of the domain of Enc is much larger than | X|, the scheme computes
|X NY| with high probability: indeed, the number of times that m is obtained
in the last step indicates the number of common elements in X and Y. Observe
that C learns | X NY|, but C does not learn any additional information about ¥’
or X NY (in particular, C does not learn the elements of these sets). Moreover
S cannot distinguish between cases in which C has different inputs.

3.2 Case B

Here, C inputs X and S inputs Y, two sets of features, and they want to know
how close X and Y are without revealing their set. In the protocol below, only
C learns how close X and Y are; for S to learn it as well, the protocol should be
run a second time (sequentially or concurrently) with the roles of C and S being
exchanged.

We assume that the domain of X and Y is the same, and we call it E. The
closeness or similarity between elements is computed by means of a function s.
In particular, we consider functions s : E x E — Z. Observe that Case A is a
particular instance of this Case B in which s(z,2) =1 and s(z,y) = 0 for = # y.
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Let Y be the input of S. For every z € E, S computes £, = 3 .y s(z,9).
Observe that ¢, measures the overall similarity of z and Y. Let Y/ = {z € E :
£, > 0}. It is common to consider functions satisfying s(z, z) > 0 for every z € E,
and so in general Y C Y.

A protocol for such a computation can be obtained from the previous protocol,
by replacing Step 4 with the following one:

Step 4’ For every z € Y', S picks ¢, random elements r1,...,7,. € Z, and
computes Enc(r;-p(z)+m) for 1 < j < £,. Then S sends all these ciphertexts
to C.

Thus, for every z € Y', S sends £, ciphertexts. In Step 5 C will recover m
from these ciphertexts only if z € X. Hence, at the end of the protocol the total
number of decrypted messages that are equal to m is

D =D, ) s(@u),

rzeX rzeX yey

that is, the sum of similarities between the elements of X and Y. This clearly
measures how similar X and Y are. At the end of the protocol, C knows |Y’|
and S knows |X|. Besides that, C and § cannot gain any additional knowledge
on the elements of each other’s set of preferences.

3.3 Case C

Here C inputs a private function f and S inputs a private function g, and they
want to know how close these functions are without revealing them to each other.

The value d(f,g) will be computed in a vectorial setting. We assume that
f,9: E — Z,. Note that if f or g take negative values, then C and S can define
f' E—=7Z¢ iz~ f(x)+cand ¢ : E = Zy : z — g(x)+ c for some large
enough constant ¢ € Z, . Observe that d(f,g) = d(f’,¢’).

Given D = {x1, -+ ,z;} C FE publicly known, C defines the vector u =
(u1,...,us) € Zf, where u; = f(x;) for i = 1,...,¢, and S defines v =
(v1,...,v) € Z, where v; = g(=z;) for ¢ = 1,...,t. The problem described
in Section 2.3 can be reduced to computing ||u — v| = >'_, [u; — vil.

Given u and v, we define the sets X = {(4,7) : u; > 0and 1 <j < u;} and
Y ={(i,j) : vi >0and 1 < j <wv;}. Following the protocol for computing the
cardinality of the set intersection presented above, C and S can compute | X NY|
in a private way (the protocol needs to be run twice with the roles of C and S
being exchanged in the second run). Observe that

IXNY|=|{(%7) : vy >0and v; >0 and 1 < j < min{u;,v;}}|

Z min{u;, v; }.

1<i<t
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According to [4], in addition to learning |X NY|, during the protocol S learns
|X| and C learns |Y|. Hence both C and S can compute

X[+ Y] -2(XNnY|=

m m
= Z max{u;, v;} + min{u;, v;} — 2 Z min{u;,v;} =
i=1 i=1

m

m
= Zmax{ui,vi} — min{u;,v;} = Z lu; —v;| = |[lu— v

i=1 1=1

in a private way.

4 Experimental Analysis

This section illustrates the applicability of the proposed protocols to compare
profiles of social network users in a privacy-preserving way.

Empirical work was based on 16 Twitter users selected among the most rele-
vant ones from WeFollow [18] and WhoToFollow [19]. These web sites rank and
classify Twitter users in a set of categories. As done in [16,17], we took the
two 2012 most influential users for each of the following eight categories: Arts,
Health, Shopping, Science, Computers, Sports, Society and Business.

Both client and server use the following computing environment: Asus S56C
computer with an Intel core i7 3517U 8GB RAM DDR3 1600Mhz, running
Ubuntu 13.10 and Java7 (opendjk-1.7). The size of the keys used is 1024 bits.
The implementation of the Paillier cryptosystem is the one in [14], which we
patched to evaluate polynomials using Horner’s method.

We profiled each Twitter user by following the procedure described in [16].
In a nutshell, we extract the noun phrases from the user’s most recent set of
100 tweets, and we classify them in the above eight categories. Then, the con-
tribution of each noun phrase to the corresponding category is measured as its
informativeness, computed from its distribution in the Web. The aggregated
contributions of all the noun phrases of a category measure the interest of the
user in the category topic. Profiles are thus represented by a set of vectors
containing eight normalized weights, each one quantifying the interest of the
user in each of the eight categories. For example, the profile of the Twitter
user CERN, which corresponds to the European Center for Nuclear Research,
is: {Arts=15.1%, Health=0.27%, Shopping=1.79%, Science=47.93%, Comput-
ers=7.5%, Sports=5.45%, Society=10.65%, Business=11.81%}, which shows a
clear preference for Science-related topics. Thus, user profiles can be seen as
preference functions that can be completely represented by a discrete set of
eight quantitative features. This fits the case C discussed above, whose privacy
preserving protocol is presented in Section 3.3.

To evaluate the suitability of the privacy-preserving protocol in terms of ac-
curacy, we first computed the pairwise distance d between all 16 user profiles
as described in Section 2.3: d(f,g) = Y i, |f(@i) — g(z;)|, where z; € {Arts,
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Health, Shopping, Science, Computers, Sports, Society, Business}, and f and
g represent the profiles of two different users by assigning the user’s weight to
each input category x;. Then, we computed the same pairwise distances using
the privacy-preserving protocol described in Section 3.3.

Since our protocol assumes that the functions f and g to be compared output
integer values, in a first experiment we rounded weights to the nearest integer.
To measure the accuracy of the results, we computed the average error between
the distances obtained by straightforward (non-private) computation and the
distances obtained by our privacy-preserving distance computation. Such an av-
erage error was 1.69% with a standard deviation of 2.25%. This shows that our
protocol does not cause a significant distortion in spite of the rounding needed
to accommodate values.

On the other hand, the average run time for a privacy-preserving distance
computation was 36.7 seconds, whereas it was negligible for a non-private com-
putation. From direct analysis of the protocol (Section 3.3), it can be seen that
the run time for a privacy-preserving distance computation depends on the num-
ber of weights to be compared (eight) and on the ranges of such weights. Since
we rounded percentages to be integers between 0 and 100, the range of weights
was 100.

In situations in which reducing the response time is especially important, one
may sacrifice some accuracy to speed by using an integer representation with a
smaller range. For example, by dividing all weights by 10 and rounding to the
nearest integer, we reduce the weight range to 10, which in turn reduces the
required number of encryption/decryption steps in the set intersection protocol
by an order of magnitude. We did this and we obtained an average run time of
2.7 seconds per privacy-preserving distance computation. However, the average
error with respect to non-private distances was 18.49% with a standard deviation
of 17.8%, which illustrates how the (lack of) accuracy in the input discretization
impacts on the (lack of) accuracy of the output.

Last but not least, we examined scalability. Figure 1 shows the growth of the
computing times for C and S as the size of X and Y grow. The linear behavior is
clear, with S having a higher computational load than C. More on computational
complexity is discussed in Section 5 below.

5 Related Work

We consider the problem of computing the distance between two private utility or
preference functions. In the proposed cases, we deal with discrete or discretized
domains, which allows us to lean on the literature on private record matching. In
this type of matching, the problem is slightly different: it consists of matching the
records of the same entity (individual, company, etc.) distributed across different
data sets, while keeping those data sets private to their owners. There are three
main approaches in the private record matching literature: sanitization-based,
cryptographic and hybrid.
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Fig. 1. Execution time of the client C and the server S for different input sizes

In sanitization-based methods, matching is performed on perturbed versions
of the private data sets, in order to protect them against disclosure; a survey
of perturbation/sanitization methods and record linkage methods can be found
in [6]. This class of methods is usually computationally efficient but it incurs
an obvious accuracy toll: matching on perturbed data sets is less accurate than
matching on the original data sets. Indeed, false positive and false negative
matches can appear.

Cryptographic methods are based on secure multiparty computation and they
achieve privacy without accuracy loss. As mentioned above, we follow this ap-
proach, as we use MPC to compute the cardinality of set intersection, specifically
the protocol in [4]. Our approach could be easily adapted to use other set inter-
section cardinality protocols in the literature, such as the ones mentioned at the
beginning of Section 3 ([2,3,5,10,15]).

The communication complexity of our protocol is O(i¢ +is), where i¢c and is
are the sizes of C’s input and S’s input, respectively. C’s computation complexity
is O(ic + is), while 8’s computation complexity is in fact O(icis), but it can
be reduced to O(ic loglogis) [4]. The computational complexity of the scheme
in [3] is linear in i¢ + is. Other protocols like the ones presented in [10] do not
differentiate the users C and S: both receive the set intersection cardinality at
the end of the protocol.

There are also solutions for the private computation of the set intersection
cardinality of n > 2 sets from n parties, and constructions that are secure in
the malicious adversary model [2,3,4,5,10,15]. In a private matching scheme, the
size of the inputs is known by both parties. Some techniques presented in [2]
allow hiding the size of the inputs, but the communication and computation
complexity of the resulting protocol is higher.

Hybrid methods try to achieve a trade-off between the sanitization-based
and cryptographic methods, to retain as much accuracy as possible while keep-
ing computational complexity reasonable. The idea is to use a blocking phase
that operates over sanitized data in order to rule out pairs of records that do
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not satisfy the matching condition. Then cryptographic MPC matching is ap-
plied only to blocks of both data sets which contain pairs of candidate matches.
Methods following this approach are [7] (where k-anonymity is used as sani-
tization), [8] (where differential privacy is used as sanitization) and [9] (which
refines [8]). The approach proposed in our paper could also be adapted to the hy-
brid approach, as the final MPC stage of this approach can also be implemented
via set intersection.

6 Conclusions and Future Research

Computing the distance between the private preference functions held by two
different parties is very relevant in a number of applications. We have motivated
several application scenarios in which the private functions express the prefer-
ences or profiles of the parties or, in game-theoretic terms, the utility of the
players. These scenarios include finding friends or partners with similar interests
in social networks, hindering grooming attacks, etc.

We have defined the problem for several types of private functions and, for
each function type, we have given a protocol that solves the problem based on
two-party secure computation of the cardinality of a set intersection. Empirical
work shows that preserving the privacy of the preferences does not meaningfully
affect the accuracy of the distances obtained.

Future work will involve designing a protocol to compute the distance between
two private functions based on their whole domain E, rather than on a discrete
subset D. This general approach will require dealing with continuous domains.
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