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Abstract. We describe an implementation of fast elliptic curve scalar
multiplication, optimized for Diffie–Hellman Key Exchange at the 128-
bit security level. The algorithms are compact (using only x-coordinates),
run in constant time with uniform execution patterns, and do not
distinguish between the curve and its quadratic twist; they thus have
a built-in measure of side-channel resistance. (For comparison, we also
implement two faster but non-constant-time algorithms.) The core of
our construction is a suite of two-dimensional differential addition
chains driven by efficient endomorphism decompositions, built on curves
selected from a family of Q-curve reductions over Fp2 with p = 2127 −
1. We include state-of-the-art experimental results for twist-secure,
constant-time, x-coordinate-only scalar multiplication.

Keywords: Elliptic curve cryptography, scalar multiplication, twist-
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1 Introduction

In this paper, we discuss the design and implementation of state-of-the-art
Elliptic Curve Diffie–Hellman key exchange (ECDH) primitives for security level
of approximately 128 bits. The major priorities for our implementation are

1. Compactness: We target x-coordinate-only systems. These systems offer
the advantages of shorter keys, simple and fast algorithms, and (when
properly designed) the use of arbitrary x-values, not just legitimate x-
coordinates of points on a curve (the “illegitimate” values are x-coordinates
on the quadratic twist). For x-coordinate ECDH, the elliptic curve exists
only to supply formulæ for scalar multiplications, and a hard elliptic curve
discrete logarithm problem (ECDLP) to underwrite a hard computational
Diffie–Hellman problem (CDHP) on x-coordinates. The users should not
have to verify whether given values correspond to points on a curve, nor
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should they have to compute any quantity that cannot be derived simply
from x-coordinates alone. In particular, neither a user nor an algorithm
should have to distinguish between the curve and its quadratic twist—and
the curve must be chosen to be twist-secure.

2. Fast, constant-time execution: Every Diffie–Hellman key exchange is
essentially comprised of four scalar multiplications,1 so optimizing scalar
multiplication P �→ [m]P for varying P and m is a very high priority.
At the same time, a minimum requirement for protecting against side-
channel timing attacks is that every scalar multiplication P �→ [m]P must be
computed in constant time (and ideally with the same execution pattern),
regardless of the values of m and P .

Our implementation targets a security level of approximately 128 bits
(comparable with Curve25519 [3], secp256r1 [12], and brainpoolP256t1 [11]).
The reference system with respect to our desired properties is Bernstein’s
Curve25519, which is based on an efficient, uniform differential addition chain
applied to a well-chosen pair of curve and twist presented as Montgomery models.
These models not only provide highly efficient group operations, but they are
optimized for x-coordinate-only operations, which (crucially) do not distinguish
between the curve and its twist. Essentially, well-chosen Montgomery curves offer
compactness straight out of the box.

Having chosen Montgomery curves as our platform, we must implement a
fast, uniform, and constant-time scalar multiplication on their x-coordinates.
To turbocharge our scalar multiplication, we apply a combination of efficiently
computable pseudo-endomorphisms and two-dimensional differential addition
chains. The use of efficient endomorphisms follows in the tradition of [21], [33],
[16], and [15], but to the best of our knowledge, this work represents the first use
of endomorphism scalar decompositions in the pure x-coordinate setting (that
is, without additional input to the addition chain).

Our implementation is built on a curve-twist pair (E , E ′) equipped with
efficiently computable endomorphisms (ψ, ψ′). The family of Q-curve reductions
in [32] offer a combination of fast endomorphisms and compatibility with
fast underlying field arithmetic. Crucially (and unlike earlier endomorphism
constructions such as [16] and [15]), they also offer the possibility of twist-secure
group orders over fast fields. One of these curves, with almost-prime order over a
254-bit field, forms the foundation of our construction (see §2). Any other curve
from the same family over the same field could be used with only very minor
modifications to the formulæ below and the source code for our implementations;
we explain our specific curve choice in Appendix A. The endomorphisms ψ and
ψ′ induce efficient pseudo-endomorphisms ψx and ψ′

x on the x-line; we explain
their construction and use in §3.
1 We do not count the cost of authenticating keys, etc., here. In the static Diffie–
Hellman protocol, two of the scalar multiplications can be computed in advance;
in this fixed-base scenario (where P is constant but m varies) one can profit
from extensive precomputations. For simplicity, in this work we concentrate on the
dynamic case (where P and m are variable).
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The key idea of this work is to replace conventional scalar multiplications
(m,x(P )) �→ x([m]P ) with multiscalar multiexponentiations

((a, b), x(P )) �−→ x([a]P ⊕ [b]ψ(P )) or x([a]P ⊕ [b]ψ′(P )) ,

where (a, b) is either a short multiscalar decomposition of a random full-length
scalar m (that is, such that [m]P = [a]P ⊕ [b]ψ(P ) or [a]P ⊕ [b]ψ′(P )), or a
random short multiscalar. The choice of ψ or ψ′ formally depends on whether
P is on E or E ′, but there is no difference between ψ and ψ′ on the level of x-
coordinates: they are implemented using exactly the same formulæ. Since every
element of the base field is the x-coordinate of a point on E or E ′, we may view
the transformation above as acting purely on field elements and not curve points.

From a practical point of view, the two crucial differences compared with
conventional ECDH over a 254-bit field are

1. The use of 128-bit multiscalars (a, b) in Z2 in place of the 254-bit scalar
m in Z. We treat the geometry of multiscalars, the distribution of their
corresponding scalar values, and the derivation of constant-bitlength scalar
decompositions in §4.

2. The use of two-dimensional differential addition chains to compute
x([a]P ⊕ [b]ψ(P )) given only (a, b) and x(P ). We detail this process in §5.

We have implemented three different two-dimensional differential addition
chains: one due to Montgomery [24] via Stam [34], one due to Bernstein [4], and
one due to Azarderakhsh and Karabina [1]. We provide implementation details
and timings for scalar multiplications based on each of our chains in §6. Each
offers a different combination of speed, uniformity, and constant-time execution.
The differential nature of these chains is essential in the x-coordinate setting,
which prevents the effective use of the vector chains traditionally used in the
endomorphism literature (such as [35]).

A Magma implementation is publicly available at

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/

and a complete mixed-assembly-and-C implementation is publicly available (in
eBATS [8] format) at

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz .

2 The Curve

We begin by defining our curve-twist pair (E , E ′). We work over

Fp2 := Fp(i) , where p := 2127 − 1 and i2 = −1 .

We chose this Mersenne prime for its compatibility with a range of fast techniques
for modular arithmetic, including Montgomery- and NIST-style approaches. We
build efficient Fp2-arithmetic on top of the fast Fp-arithmetic described in [10].

In what follows, it will be convenient to define the constants

u := 1466100457131508421 , v := 1
2 (p−1) = 2126−1 , w := 1

4 (p+1) = 2125 .

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
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The Curve E and its Twist E′. We define E to be the elliptic curve over Fp2

with affine Montgomery model

E : y2 = x(x2 +Ax+ 1) ,

where

A = A0 +A1 · i with

{
A0 = 45116554344555875085017627593321485421 ,
A1 = 2415910908 .

The element 12/A is not a square in Fp2 , so the curve over Fp2 defined by

E ′ : (12/A)y2 = x(x2 +Ax+ 1)

is a model of the quadratic twist of E . The twisting Fp4 -isomorphism δ : E → E ′

is defined by δ : (x, y) �→ (x, (A/12)1/2y). The map δ1 : (x, y) �→ (xW , yW ) =

(12A x+4, 12
2

A2 y) defines an Fp2-isomorphism between E ′ and the Weierstrass model

E2,−1,s : y
2
W = x3

W + 2(9(1 + si)− 24)xW − 8(9(1 + si)− 16)

of [32, Theorem 1] with

s = i(1− 8/A2) = 86878915556079486902897638486322141403 ,

so E is a Montgomery model of the quadratic twist of E2,−1,s. (In the notation
of [32, §5] we have E ∼= E ′

2,−1,s and E ′ ∼= E2,−1,s.) These curves all have j-invariant

j(E) = j(E ′) = j(E2,−1,s) = 28
(A2 − 3)3

A2 − 4
= 26

(5− 3si)3(1− si)

(1 + s2)2
.

Group Structures. Using the SEA algorithm [28], we find that

#E(Fp2) = 4N and #E ′(Fp2) = 8N ′

where

N = v2 + 2u2 and N ′ = 2w2 − u2

are 252-bit and 251-bit primes, respectively. Looking closer, we see that

E(Fp2) ∼= (Z/2Z)
2 × Z/NZ and E ′(Fp2) ∼= Z/2Z× Z/4Z× Z/N ′Z .

Recall that every element of Fp2 is either the x-coordinate of two points in E(Fp2),
the x-coordinate of two points in E ′(Fp2), or the x-coordinate of one point of
order two in both E(Fp2) and E ′(Fp2). The x-coordinates of the points of exact

order 2 in E(Fp2) (and in E ′(Fp2)) are 0 and − 1
2A± 1

2

√
A2 − 4; the points of exact

order 4 in E ′(Fp2) have x-coordinates ±1. Either of the points with x-coordinate
2 will serve as a generator for the cryptographic subgroup E(Fp2)[N ]; either of
the points with x-coordinate 2− i generate E ′(Fp2)[N ′].
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Curve Points, x-Coordinates, and Random Bitstrings. Being Mont-
gomery curves, both E and E ′ are compatible with the Elligator 2 construction [5,
§5]. For our curves, [5, Theorem 5] defines efficiently invertible injective maps
Fp2 → E(Fp2) and Fp2 → E ′(Fp2). This allows points on E and/or E ′ to be
encoded in such a way that they are indistinguishable from uniformly random
254-bit strings. Since we work with x-coordinates only in this article, a square
root is saved when computing the injection (see [5, §5.5] for more details).

The ECDLP on E and E′. Suppose we want to solve an instance of the DLP in
E(Fp2) or E ′(Fp2). Applying the Pohlig–Hellman–Silver reduction [25], we almost
instantly reduce to the case of solving a DLP instance in either E(Fp2)[N ] or
E ′(Fp2)[N ′]. The best known approach to solving such a DLP instance is Pollard’s
rho algorithm [26], which (properly implemented) can solve DLP instances in
E(Fp2)[N ] (resp. E ′(Fp2)[N ′]) in around 1

2

√
πN ∼ 2125.8 (resp. 1

2

√
πN ′ ∼ 2125.3)

group operations on average [9]. One might expect that working over Fp2 would

imply a
√
2-factor speedup in the rho method by using Frobenius classes; but

this seems not to be the case, since neither E nor E ′ is a subfield curve [36, §6].
The embedding degrees of E and E ′ with respect to N and N ′ are 1

50 (N − 1)
and 1

2 (N
′ − 1), respectively, so ECDLP instances in E(Fp2)[N ] and E(Fp2)[N ′]

are not vulnerable to the Menezes–Okamoto–Vanstone [22] or Frey–Rück [14]
attacks. The trace of E is p2 + 1 − 4N �= ±1, so neither E nor E ′ are amenable
to the Smart–Satoh–Araki–Semaev attack [27], [29], [30].

While our curves are defined over a quadratic extension field, this does not
seem to reduce the expected difficulty of the ECDLP when compared with elliptic
curves over similar-sized prime fields. Taking the Weil restriction of E (or E ′)
to Fp as in the Gaudry–Hess–Smart attack [18], for example, produces a simple
abelian surface over Fp; and the best known attacks on DLP instances on simple
abelian surfaces over Fp offer no advantage over simply attacking the ECDLP
on the original curve (see [31], [17], and [15, §9] for further discussion).

Superficially, E is what we would normally call twist-secure (in the sense of
Bernstein [3] and Fouque–Réal–Lercier–Valette [13]), since its twist E ′ has a
similar security level. Indeed, E (and the whole class of curves from which it
was drawn) was designed with this notion of twist-security in mind. However,
twist-security is more subtle in the context of endomorphism-based scalar
decompositions; we will return to this subject in §4 below.

The Endomorphism Ring. Let πE denote the Frobenius endomorphism of E .
The curve E is ordinary (its trace tE is prime to p), so its endomorphism ring
is an order in the quadratic field K := Q(πE). (The endomorphism ring of an
ordinary curve and its twist are always isomorphic, so what holds below for E
also holds for E ′.) We will see below that E has an endomorphism ψ such that
ψ2 = −[2]πE . The discriminant of Z[ψ] is the fundamental discriminant

DK = −8 · 5 · 397 · 10528961 · 6898209116497 · 1150304667927101
of K, so Z[ψ] is the maximal order in K; hence, End(E) = Z[ψ].
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The safecurves specification [7] suggests that the discriminant of the CM
field should have at least 100 bits; our E easily meets this requirement, since DK

has 130 bits. We note that well-chosen GLS curves can also have large CM field
discriminants, but GLV curves have tiny CM field discriminants by construction:
for example, the endomorphism ring of the curve secp256k1 [12] (at the heart
of the Bitcoin system) has discriminant −3.

Brainpool [11] requires the ideal class number of K to be larger than 106;
this property is never satisfied by GLV curves, which have tiny class numbers
(typically ≤ 2) by construction. But E easily meets this requirement: the class
number of End(E) is

h(End(E)) = h(DK) = 27 · 31 · 37517 · 146099 · 505117 ∼ 1019 .

3 Efficient Endomorphisms on E, E ′, and the x-line

Theorem 1 of [32] defines an efficient endomorphism

ψ2,−1,s : (xW , yW ) �−→
(−xp

W

2
− 9(1− si)

xp
W − 4

,
ypW√−2

(−1

2
+

9(1− si)

(xp
W − 4)2

))

of degree 2p on the Weierstrass model E2,−1,s, with kernel 〈(4, 0)〉. To avoid an
ambiguity in the sign of the endomorphism, we must fix a choice of

√−2 in Fp2 .
We choose the “small” root:

√−2 := 264 · i . (1)

Applying the isomorphisms δ and δ1, we define efficient Fp2 -endomorphisms

ψ := (δ1δ)
−1ψ2,−1,sδ1δ and ψ′ := δψδ−1 = δ−1

1 ψ2,−1,sδ1

of degree 2p on E and E ′, respectively, each with kernel 〈(0, 0)〉. More explicitly:
if we let

n(x) := Ap

A

(
x2 +Ax + 1

)
, d(x) := −2x , s(x) := n(x)p/d(x)p ,

r(x) := Ap

A (x2 − 1) , and m(x) := n′(x)d(x) − n(x)d′(x) ,

then ψ and ψ′ are defined (using the same value of
√−2 fixed in Eq. (1)) by

ψ : (x, y) �−→
(
s(x) ,

−12v

Av
√−2

ypm(x)p

d(x)2p

)

and

ψ′ : (x, y) �−→
(
s(x) ,

−122v
√−2

A2v

ypr(x)p

d(x)2p

)
.
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Actions of the Endomorphisms on Points. Theorem 1 of [32] tells us that

ψ2 = −[2]πE and (ψ′)2 = [2]πE′ , (2)

where πE and πE′ are the p2-power Frobenius endomorphisms of E and E ′,
respectively, and

P (ψ) = P (ψ′) = 0 , where P (T ) = T 2 − 4uT + 2p .

If we restrict to the cryptographic subgroup E(Fp2)[N ], then ψ must act as
multiplication by an integer eigenvalue λ, which is one of the two roots of P (T )
modulo N . Similarly, ψ′ acts on E ′(Fp2)[N ′] as multiplication by one of the roots
λ′ of P (T ) modulo N ′. The correct eigenvalues are

λ ≡ − v

u
(mod N) and λ′ ≡ −2w

u
(mod N ′) .

Equation (2) implies that λ2 ≡ −2 (mod N) and λ′2 ≡ 2 (mod N ′). (Note that
choosing the other square root of −2 in Eq. (1) negates ψ, ψ′, λ, λ′, and u.)

To complete our picture of the action of ψ on E(Fp2) and ψ′ on E ′(Fp2), we
describe its action on the points of order 2 and 4 listed above:

(0, 0) �−→ 0 under ψ and ψ′ ,(− 1
2A± 1

2

√
A2 − 4, 0

) �−→ (0, 0) under ψ and ψ′ ,(
1,± 1

2

√
A(A+ 2)/3

) �−→ (− 1
2A− 1

2

√
A2 − 4, 0

)
under ψ′ ,(−1,± 1

2

√−A(A+ 2)/3
) �−→ (− 1

2A+ 1
2

√
A2 − 4, 0

)
under ψ′ .

Pseudo-endomorphisms on the x-line. One advantage of the Montgomery
model is that it allows a particularly efficient arithmetic using only the x-
coordinate. Technically speaking, this corresponds to viewing the x-line P1 as
the Kummer variety of E : that is, P1 ∼= E/〈±1〉.

The x-line is not a group: if P and Q are points on E , then x(P ) and
x(Q) determine the pair {x(P ⊕Q), x(P �Q)}, but not the individual elements
x(P ⊕Q) and x(P �Q). However, the x-line inherits part of the endomorphism
structure of E : every endomorphism φ of E induces a pseudo-endomorphism2

φx : x �→ φx(x) of P
1, which determines φ up to sign; and if φ1 and φ2 are two

endomorphisms of E , then
(φ1)x(φ2)x = (φ2)x(φ1)x = (φ1φ2)x = (φ2φ1)x .

Montgomery’s explicit formulæ for pseudo-doubling (DBL), pseudo-addition
(ADD), combined pseudo-doubling and pseudo-addition (DBLADD) on P1 are
available in [6]. In addition to these, we need expressions for both ψx and (ψ±1)x
to initialise the addition chains in §5. Moving to projective coordinates: write

2 “Pseudo-endomorphisms” are true endomorphisms of P1. We use the term pseudo-
endomorphism to avoid confusion with endomorphisms of elliptic curves, and to
reflect the use of terms like “pseudo-addition” for basic operations on the x-line.
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x = X/Z and y = Y/Z. Then the negation map on E is [−1] : (X : Y : Z) �→ (X :
−Y : Z), and the double cover E → E/〈[±1]〉 ∼= P1 is (X : Y : Z) �→ (X : Z).
The pseudo-doubling on P1 is

[2]x((X : Z)) =
(
(X + Z)2(X − Z)2 : (4XZ)

(
(X − Z)2 + A+2

4 · 4XZ
))

. (3)

Our endomorphism ψ induces the pseudo-endomorphism

ψx((X : Z)) =
(
Ap

(
(X − Z)2 − A+2

2 (−2XZ)
)p

: A(−2XZ)p
)

.

Composing ψx with itself, we confirm that ψxψx = −[2]x(πE)x.

Proposition 1. With the notation above, and with
√−2 chosen as in Eq. (1),

(ψ ± 1)x(x) = (ψ′ ± 1)x(x)

=
2s2nd4p − x(xn)pm2pAp−1

2s(x− s)2d4pAp−1
∓ mp(xn)(p+1)/2

√−2

A(p−1)/2(x − s)2d2p
. (4)

Proof. If P and Q are points on a Montgomery curve By2 = x(x2 + Ax + 1),
then

x(P ±Q) =
B (x(P )y(Q)∓ x(Q)y(P ))2

x(P )x(Q) (x(P ) − x(Q))2
.

Taking P = (x, y) to be a generic point on E (where B = 1), setting Q = ψ(P ),
and eliminating y using y2 = −Ap

2Adn yields the expression for (ψ ± 1)x above.

The same process for E ′ (with B = 12
A ), eliminating y with 12

A y2 = −Ap

2Adn,
yields the same expression for (ψ′ ± 1)x. ��

Deriving explicit formulæ to compute the pseudo-endomorphism images in
Eq. (4) is straightforward. We omit these formulæ here for space considerations,
but they can be found in our code online. If P ∈ E , then on input of x(P ),
the combined computation of the three projective elements (Xλ−1 : Zλ−1),
(Xλ : Zλ), (Xλ+1 : Zλ+1), which respectively correspond to the three affine
elements x([λ−1]P ), x([λ]P ), x([λ+1]P ), incurs 15 multiplications, 129 squarings
and 10 additions in Fp2 . The bottleneck of this computation is raising dn to the
power of (p + 1)/2 = 2126, which incurs 126 squarings. We note that squarings
are significantly faster than multiplications in Fp2 .

4 Scalar Decompositions

We want to evaluate scalar multiplications [m]P as [a]P ⊕ [b]ψ(P ), where

m ≡ a+ bλ (mod N)

and the multiscalar (a, b) has a significantly shorter bitlength3 than m. For our
applications we impose two extra requirements on multiscalars (a, b), so as to
add a measure of side-channel resistance:
3 The bitlength of a scalar m is �log2 |m|�; the bitlength of a multiscalar (a, b) is
�log2 ‖(a, b)‖∞�.
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1. both a and b must be positive, to avoid branching and to simplify our
algorithms; and

2. the multiscalar (a, b) must have constant bitlength (independent of m as
m varies over Z), so that multiexponentiation can run in constant time.

In some protocols—notably Diffie–Hellman—we are not interested in the
particular values of our random scalars, as long as those values remain secret. In
this case, rather than starting with m in Z/NZ (or Z/N ′Z) and finding a short,
positive, constant-bitlength decomposition of m, it would be easier to randomly
sample some short, positive, constant-bitlength multiscalar (a, b) from scratch.
The sample space must be chosen to ensure that the corresponding distribution
of values a+bλ in Z/NZ does not make the discrete logarithm problem of finding
a+ bλ appreciably easier than if we started with a random m.

Zero Decomposition Lattices. The problems of finding good decompositions
and sampling good multiscalars are best addressed using the geometric structure
of the spaces of decompositions for E and E ′. The multiscalars (a, b) such that
a+ bλ ≡ 0 (mod N) or a+ bλ′ ≡ 0 (mod N ′) form lattices

L = 〈(N, 0), (−λ, 1)〉 and L′ = 〈(N ′, 0), (−λ′, 1)〉 ,

respectively, with a + bλ ≡ c + dλ (mod N) if and only if (a, b) − (c, d) is in L
(similarly, a+ bλ′ ≡ c+ dλ′ (mod N ′) if and only if (a, b)− (c, d) is in L′).

The sets of decompositions of m for E(Fp)[N ] and E(Fp2)[N ′] therefore form
lattice cosets

(m, 0) + L and (m, 0) + L′ ,

respectively, so we can compute short decompositions of m for E(Fp)[N ]
(resp. E(Fp2)[N ′]) by subtracting vectors near (m, 0) in L (resp. L′) from (m, 0).
To find these vectors, we need ‖ · ‖∞-reduced4 bases for L and L′.

Proposition 2 (Definition of e1, e2, e
′
1, e

′
2). Up to order and sign, the shortest

possible bases for L and L′ (with respect to ‖ · ‖∞) are given by

L = 〈 e1 := (v, u) , e2 := (−2u, v) 〉 and

L′ = 〈 e′1 := (u,w) , e′2 := (2u− 2w, 2w − u) 〉 .

Proof. The proof of [32, Prop. 2] constructs sublattices

〈ẽ1 := −2(v, u), ẽ2 := −2(2u, v)〉 ⊂ L
and

〈ẽ′1 := 2(2w,−u), ẽ′2 := 4(u,w)〉 ⊂ L′

with [L : 〈ẽ1, ẽ2〉] = 4 and [L′ : 〈ẽ′1, ẽ′2〉] = 8. We easily verify that e1 = − 1
2 ẽ2

and e2 = − 1
2 ẽ1 are both in L; then, since 〈ẽ1, ẽ2〉 has index 4 in 〈e1, e2〉, we

4 Reduced with respect to Kaib’s generalized Gauss reduction algorithm [20] for ‖·‖∞.
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must have L = 〈e1, e2〉. Similarly, both e′1 = 1
4 ẽ

′
2 and e′2 = 1

2 (ẽ
′
2 − ẽ′1) are in L′,

and thus form a basis for L′. According to [20, Definition 3], an ordered lattice
basis [b1,b2] is ‖ · ‖∞-reduced if

‖b1‖∞ ≤ ‖b2‖∞ ≤ ‖b1 − b2‖∞ ≤ ‖b1 + b2‖∞ .

This holds for [b1,b2] = [e2,−e1] and [e′1, e
′
2], so ‖e2‖∞ and ‖e1‖∞ (resp. ‖e′1‖∞

and ‖e′2‖∞) are the successive minima of L (resp. L′) by [20, Theorem 5].5 ��

In view of Proposition 2, the fundamental parallelograms of L and L′ are the
regions of the (a, b)-plane defined by

A :=
{
(a, b) ∈ R2 : 0 ≤ vb− ua < N, 0 ≤ 2ub+ va < N

}
and

A′ :=
{
(a, b) ∈ R2 : 0 ≤ ub− wa < N ′, 0 ≤ (2u− 2w)b − (2w − u)a < N ′} ,

respectively. Every integer m has precisely one decomposition for E(Fp2)[N ]
(resp. E ′(Fp2)[N ′]) in any translate of A by L (resp. A′ by L′).

Short, Constant-Bitlength Scalar Decompositions. Returning to the
problem of finding short decompositions of m: let (α, β) be the (unique) solution
in Q2 to the system αe1 + βe2 = (m, 0). Since e1, e2 is reduced, the closest
vector to (m, 0) in L is one of the four vectors �α�e1 + �β�e2, �α�e1 + �β�e2,
�α�e1 + �β�e2, or �α�e1 + �β�e2 by [20, Theorem 19]. Following Babai [2], we
subtract �α�e1 + �β�e2 from (m, 0) to get a decomposition (ã, b̃) of m; by
the triangle inequality, ‖(ã, b̃)‖∞ ≤ 1

2 (‖e1‖∞ + ‖e2‖∞). This decomposition
is approximately the shortest possible, in the sense that the true shortest
decomposition is at most±e1±e2 away. Observe that ‖e1‖∞ = ‖e2‖∞ = 2126−1,
so (ã, b̃) has bitlength at most 126.

However, ã or b̃ may be negative (violating the positivity requirement), or
have fewer than 126 bits (violating the constant bitlength requirement). Indeed,
m �→ (ã, b̃) maps Z onto (A − 1

2 (e1 + e2)) ∩ Z2. This region of the (a, b)-plane,
“centred” on (0, 0), contains multiscalars of every bitlength between 0 and 126—
and the majority of them have at least one negative component. We can achieve
positivity and constant bitlength by adding a carefully chosen offset vector from
L, translating (A− 1

2 (e1 + e2))∩Z2 into a region of the (a, b)-plane where every
multiscalar is positive and has the same bitlength. Adding 3e1 or 3e2 ensures
that the first or second component always has precisely 128 bits, respectively;
but adding 3(e1+e2) gives us a constant bitlength of 128 bits in both. Theorem 1
makes this all completely explicit.

Theorem 1. Given an integer m, let (a, b) be the multiscalar defined by

a := m+ (3− �α�) v − 2 (3− �β�)u and b := (3− �α�)u+ (3− �β�) v ,

5 For the Euclidean norm, the bases [e1, e2] and [e′
1, 2e

′
1 − e′

2] are ‖ · ‖2-reduced, but
[e′

1, e
′
2] is not.
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where α and β are the rational numbers

α := (v/N)m and β := −(u/N)m .

Then 2127 < a, b < 2128, and m ≡ a + bλ (mod N). In particular, (a, b) is a
positive decomposition of m, of bitlength exactly 128, for any m.

Proof. We have m ≡ a + bλ (mod N) because (a, b) = (ã, b̃) + 3(e1 + e2) ≡
(m, 0) (mod L), where (ã, b̃) is the translate of (m, 0) by the Babai roundoff
�α�e1 + �β�e2 described above. Now (ã, b̃) lies in A − 1

2 (e1 + e2), so (a, b) lies
in A + 5

2 (e1, e2); our claim on the bitlength of (a, b) follows because the four
“corners” of this domain all have 128-bit components. ��

Random Multiscalars. As we remarked above, in a pure Diffie–Hellman
implementation it is more convenient to simply sample random multiscalars
than to decompose randomly sampled scalars. Proposition 3 shows that random
multiscalars of at most 127 bits correspond to reasonably well-distributed values
in Z/NZ and in Z/N ′Z, in the sense that none of the values occur more than
one more or one fewer times than the average, and the exceptional values are
in O(

√
N). Such multiscalars can be trivially turned into constant-bitlength

positive 128-bit multiscalars—compatible with our implementation—by (for
example) completing a pair of 127-bit strings with a 1 in the 128-th bit position
of each component.

Proposition 3. Let B = [0, p]2; we identify B with the set of all pairs of strings
of 127 bits.

1. The map B → Z/NZ defined by (a, b) �→ a + bλ (mod N) is 4-to-1, except
for 4(p − 6u + 4) ≈ 4

√
2N values in Z/NZ with 5 preimages in B, and

8(u2 − 3u+ 2) ≈ 1
5

√
N values in Z/NZ with only 3 preimages in B.

2. The map B → Z/N ′Z defined by (a, b) �→ a+ bλ′ (mod N ′) is 8-to-1, except
for 8u2 ≈ 2

7

√
N ′ values with 9 preimages in B.

Proof (Sketch). For (1): the map (a, b) �→ a + bλ (mod N) defines a bijection
between each translate of A∩Z2 by L and Z/NZ. Hence, every m in Z/NZ has
a unique preimage (a0, b0) in A∩Z2, so it suffices to count ((a0, b0)+L)∩B for
each (a0, b0) in A ∩ Z2. Cover Z2 with translates of A by L; the only points in
Z2 that are on the boundaries of tiles are the points in L. Dissecting B along the
edges of translates of A and reassembling the pieces, we see that 8v−24u+20 <
4p multiscalars in B occur with multiplicity five, 8u2 − 24u + 16 < p/9 with
multiplicity three, and every other multiscalar occurs with multiplicity four.
There are therefore 4N+(8v−24u+20)−(8u2−24u+16) = (p+1)2 preimages in
total, as expected. The proof of (2) is similar to (1), but counting ((a, b)+L′)∩B
as (a, b) ranges over A′. ��
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Twist-Security with Endomorphisms. We saw in §2 that DLPs on E
and its twist E ′ have essentially the same difficulty, while Proposition 3 shows
that the real DLP instances presented to an adversary by 127-bit multiscalar
multiplications are not biased into a significantly more attackable range. But
there is an additional subtlety when we consider the fault attacks considered in [3]
and [13]: If we try to compute [m]P for P on E , but an adversary sneaks in a point
P ′ on the twist E ′ instead, then in the classical context the adversary can derive
m after solving the discrete logarithm [m mod N ′]P ′ in E ′(Fp2). But in the
endomorphism context, we compute [m]P as [a]P⊕[b]ψ(P ), and the attacker sees
[a+bλ′]P ′, which is not [m mod N ′]P ′ (or even [a+bλ mod N ′]P ′); we should
ensure that the values (a+ bλ′ mod N ′) are not concentrated in a small subset
of Z/N ′Z when (a, b) is a decomposition for E(Fp2)[N ]. This can be achieved by
a similar argument to that of Proposition 3: the map Z/NZ → Z/N ′Z defined
by m �→ (a, b) �→ a+bλ′ (mod N ′) is a good approximation of a 2-to-1 mapping.

5 Two-Dimensional Differential Addition Chains

Addition chains are used to compute scalar multiplications using a sequence
of group operations (or pseudo-group operations). A one-dimensional addition
chain computes [m]P for a given integer m and point P ; a two-dimensional
addition chain computes [a]P ⊕ [b]Q for a given multiscalar (a, b) and points
P and Q. In a differential addition chain, the computation of any ADD, P ⊕
Q, is always preceded (at some earlier stage in the chain) by the computation
of its associated difference P � Q. The simplest differential addition chain is
the original one-dimensional “Montgomery ladder” [23], which computes scalar
multiplications [m]P for a single exponent m and point P . Every ADD in the
Montgomery ladder is in the form [i]P ⊕ [i+ 1]P , so every associated difference
is equal to P . Several two-dimensional differential addition chains have been
proposed, targeting multiexponentiations in elliptic curves and other primitives;
we suggest [4] and [34] for overviews.

In any two-dimensional differential chain computing [a]P ⊕ [b]Q for general P
and Q, the input consists of the multiscalar (a, b) and the three points P , Q, and
P � Q. The initial difference P � Q (or equivalently, the initial sum P ⊕ Q) is
essential to kickstart the chain on P and Q, since otherwise (by definition) P⊕Q
cannot appear in the chain. As we noted in §1, computing this initial difference
is an inconvenient obstruction to pure x-coordinate multiexponentiations on
general input: the pseudo-group operations ADD, DBL, and DBLADD can all be
made to work on x-coordinates (the ADD and DBLADD operations make use of
the associated differences available in a differential chain), but in general it is
impossible to compute the initial difference x(P �Q) in terms of x(P ) and x(Q).

For our application, we want to compute x([a]P ⊕ [b]ψ(P )) given inputs (a, b)
and x(P ). Crucially, we can compute x(P � ψ(P )) as (ψ − 1)x(x(P )) using
Proposition 1; this allows us to compute x([a]P⊕[b]ψ(P )) using two-dimensional
differential addition chains with input (a, b), x(P ), ψx(x(P )), and (ψ−1)x(x(P )).
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We implemented one one-dimensional differential addition chain (Ladder)
and three two-dimensional differential addition chains (Prac, Ak, and Djb).
We briefly describe each chain, with its relative benefits and drawbacks, below.

(Montgomery) Ladder Chains. We implemented the full-length one-
dimensional Montgomery ladder as a reference, to assess the speedup that
our techniques offer over conventional scalar multiplication (It is also used as
a subroutine within our two-dimensional Prac chain). Ladder can be made
constant-time by adding a suitable multiple of N to the input scalar.

(Two-dimensional) Prac Chains. Montgomery [24] proposed a number of
algorithms for generating differential addition chains that are often much shorter
than his eponymous ladder. His one-dimensional “PRAC” routine contains an
easily-implemented two-dimensional subroutine, which computes the double-
exponentiation [a]P ⊕ [b]Q very efficiently. The downside for our purposes
is that the chain is not uniform: different inputs (a, b) give rise to different
execution patterns, rendering the routine vulnerable to a number of side-channel
attacks. Our implementation of this chain follows Algorithm 3.25 of [34]6: given
a multiscalar (a, b) and points P , Q, and P − Q, this algorithm computes
d = gcd(a, b) and R = [ad ]P ⊕ [ bd ]Q. To finish computing [a]P ⊕ [b]Q, we write
d = 2ie with i ≥ q and e odd, then compute S = [2i]R with i consecutive DBLs,
before finally computing [e]S with a one-dimensional Ladder chain7.

Ak Chains. Azarderakhsh and Karabina [1] recently constructed a two-
dimensional differential addition chain which offers some middle ground in the
trade-off between uniform execution and efficiency. While it is less efficient than
Prac, their chain has the advantage that all but one of the iterations consist of a
single DBLADD; this uniformity may be enough to thwart some simple side-channel
attacks. The single iteration which does not use a DBLADD requires a separate
DBL and ADD, and this slightly slower step can appear at different stages of the
algorithm. The location of this longer step could leak some information to a
side-channel adversary under some circumstances, but we can protect against
this by replacing all of the DBLADDs with separate DBL and ADDs, incurring a
very minor performance penalty. A more serious drawback for this chain is its
variable length: the total number of iterations depends on the input multiscalar.
This destroys any hope of achieving a runtime that is independent of the input.
Nevertheless, depending on the physical threat model, this chain may still be a
suitable alternative. Our implementation of this chain follows Algorithm 1 in [1].

Djb Chains. Bernstein gives the fastest known two-dimensional differential
chain that is both fixed length and uniform [4, §4]. This chain is slightly slower

6 We implemented the binary version of Montgomery’s two-dimensional Prac chain,
neglecting the ternary steps in [24, Table 4] (see also [34, Table 3.1]). Including these
ternary steps could be significantly faster than our implementation, though it would
require fast explicit formulæ for tripling on Montgomery curves.

7 In practice d is very small, so there is little benefit in using a more complicated chain
for this final step.
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than the Prac and Ak chains, but it offers stronger resistance against many
side-channel attacks.8 If the multiscalar (a, b) has bitlength 	, then this chain
requires precisely 	 − 1 iterations, each of which computes one ADD and one
DBLADD. In our context, Theorem 1 allows us to fix the number of iterations at
127. The execution pattern of the multiexponentiation is therefore independent
of the input, and will run in constant time.

Operation Counts. Table 1 profiles the number of high-level operations
required by each of our addition chain implementations on E . We used
the decomposition in Theorem 1 to guarantee positive constant-bitlength
multiscalars. In situations where side-channel resistance is not a priority, and the
Ak or Prac chain is preferable, variable-length decompositions could be used:
these would give lower operation counts and slightly faster average timings.

Table 1. Pseudo-group operation counts per scalar multiplication on the x-line for
the 2-dimensional Djb, Ak and Prac chains (using endomorphism decompositions)
and the 1-dimensional Ladder. The counts for Ladder and Djb are exact; those for
Prac and Ak are averages, with corresponding standard deviations, over 106 random
trials (random scalars and points). In addition to the operations listed here, each chain
requires a final Fp2 -inversion to convert the result into affine form.

chain dim. endomorphisms #DBL #ADD #DBLADD

ψx, (ψ ± 1)x av. std. dev. av. std. dev. av. std. dev.

Ladder 1 — 1 — — — 253 —
Djb 2 affine 1 — 128 — 127 —
Ak 2 affine 1 — 1 — 179.6 6.7

Prac 2 projective 0.2 0.4 113.8 11.6 73.4 11.1

The Ladder and Djb chains offer some slightly faster high-level operations.
In these chains, the “difference elements” fed into the ADDs are fixed; if these
points are affine, then this saves one Fp2-multiplication for each ADD. In Ladder,
the difference is always the affine x(P ), so these savings come for free. InDjb, the
difference is always one of the four values x(P ), ψx(x(P )), or (ψ ± 1)x(x(P )),
so a shared inversion is used to convert ψx(x(P )) and (ψ ± 1)x(x(P )) from
projective to affine coordinates. While this costs one Fp2 -inversion and six-Fp2

multiplications, it saves 253 Fp2 -inversions inside the loop.

6 Timings

Table 2 lists cycle counts for our implementations run on an Intel Core i7-3520M
(Ivy Bridge) processor at 2893.484 MHz with hyper-threading turned off, over-
clocking (“turbo-boost”) disabled, and all-but-one of the cores switched off in

8 It would be interesting to implement our techniques with Bernstein’s non-uniform
two-dimensional extended-gcd differential addition chain [4], which can outperform
Prac (though it “takes more time to compute and is not easy to analyse”).



Faster Compact Diffie–Hellman: Endomorphisms on the x-line 197

Table 2. Performance timings for four different implementations of compact, x-
coordinate-only scalar multiplications targeting the 128-bit security level. Timings are
given for the one-dimensional Montgomery Ladder, as well as the two-dimensional
chains (Djb, Ak and Prac) that benefit from the application of an endomorphism
and subsequent short scalar decompositions.

addition chain dimension uniform? constant time? cycles

Ladder 1 ✓ ✓ 159,000

Djb 2 ✓ ✓ 148,000

Ak 2 ✓ ✗ 133,000

Prac 2 ✗ ✗ 109,000

BIOS. The implementations were compiled with gcc 4.6.3 with the -O2 flag
set and tested on a 64-bit Linux environment. Cycles were counted using the
SUPERCOP toolkit [8].

The most meaningful comparison that we can draw is with Bernstein’s
Curve25519 software. Like our software, Curve25519 works entirely on the x-
line, from start to finish; using the uniform one-dimensional Montgomery ladder,
it runs in constant time. Thus, fair performance comparisons can only be made
between his implementation and the two of ours that are also both uniform
and constant-time: Ladder and Djb. Benchmarked on our hardware with all
settings as above, Curve25519 scalar multiplications ran in 182,000 cycles on
average. Looking at Table 2, we see that using the one-dimensional Ladder on
the x-line of E gives a factor 1.14 speed up over Curve25519, while combining
an endomorphism with the two-dimensional Djb chain on the x-line of E gives
a factor 1.23 speed up over Curve25519.

While there are several other implementations targeting the 128-bit security
level that give faster performance numbers than ours, we reiterate that our aim
was to push the boundary in the arena of x-coordinate-only implementations.

Hamburg [19] has also documented a fast software implementation employing
x-coordinate-only Montgomery arithmetic. However, it is difficult to compare
Hamburg’s software with ours: his is not available to be benchmarked, and his
figures were obtained on the Sandy Bridge architecture (and manually scaled
back to compensate for turbo-boost being enabled). Nevertheless, Hamburg’s
own comparison with Curve25519 suggests that a fair comparison between our
constant-time implementations and his would be close.

Acknowledgements. We thank Joppe W. Bos for independently bench-
marking our code on his computer and for discussions on arithmetic modulo
p = 2127 − 1.
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A How Was This Curve Chosen?

The curve-twist pair implemented in this paper was chosen from the family of
degree-2 Q-curve reductions with efficient endomorphisms (over Fp2) described
in [32]. These curves are equipped with efficient endomorphisms, and the
arithmetic properties of the family are not incompatible with twist-security.

We fixed p = 2127 − 1, a Mersenne prime; this p facilitates very fast modular
arithmetic. Next, we chose a tiny nonsquare to define Fp2 = Fp(i) with i2 = −1;
this makes for slightly faster Fp2-arithmetic, and much simpler formulæ. The
most secure group orders for a Montgomery curve-twist pair (E , E ′) over Fp2

have the form (#E ,#E ′) = (4N, 8N ′) (or (8N, 4N ′)) with N and N ′ prime. The
cofactor of 4 is forced by the existence of a Montgomery model, and then p2 ≡ 1
(mod 8) forces a cofactor of 8 on the twist.

ftp.cwi.nl/pub/pmontgom/lucas.ps.gz
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The family in [32, §5] is parametrised by a free parameter s; each choice of s in
Fp yields a curve over Fp2 , each in a distinct Fp-isomorphism class. If the curve
corresponding to s in Fp has a Montgomery model E : BY 2 = X(X2 +AX + 1)
over Fp2 , then 8/A2 = 1 + si. If we write A = A0 + A1i with A0 and A1 in Fp,
then

A4
0 + 2A2

0A
2
1 +A4

1 + 8(A2
1 −A2

0) = 0 . (5)

To optimise performance, we searched for parameter values s in Fp yielding
Montgomery representations with “small” coefficients: that is, where A0 and A1

could be represented as small integers. But in view of Eq. (5), for any small
value of A1 there are at most four corresponding possibilities for A0, none of
which have any reason to be small (and vice versa). Given the number of curves
to be searched to find a twist-secure pair, we could not expect to find a twist-
secure curve with both A0 and A1 small. Our Fp2-arithmetic placed no preference
on which of these two coefficients should be small, so we flipped a coin and
restricted our search to s yielding A1 with integer representations less than 232

(occupying only one word on 32- and 64-bit platforms). The constant appearing
in Montgomery’s formulæ [23, p. 261] is (A+2)/4, so we also required the integer
representation of A1 to be congruent to 2 modulo 4.

Our search prioritised A1 values whose integer representations had low signed
Hamming weight, in the hope that multiplication by A1 might be faster when
computed via sequence of additions and shifts. We did not find any curve-twist
pairs with optimal cofactors and A1 of weight 1, 2, or 3, but we found ten such
pairs with A1 of weight 4. Three of these pairs had an A1 of precisely 32 bits;
the curve-twist pair in §2 corresponds to the smallest such A1. Although the low
signed Hamming weight of A1 did not end up improving our implementation,
the small size of A1 yielded a minor but noticeable speedup.

The takeaway message is that the construction in [32, §5] is flexible enough
to find a vast number of twist-secure curves over any quadratic extension field,
to which all of the techniques in this paper can be directly applied (or easily
adapted), regardless of how the parameter search is designed. Such curve-twist
pairs can be readily found in a verifiably random manner, following, for instance,
the method described in [11, §5].
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