Formalizing Information Flow Control
in a Model-Driven Approach*

Kurt Stenzel, Kuzman Katkalov, Marian Borek, and Wolfgang Reif

Institute for Software & Systems Engineering,
Augsburg University, Germany

Abstract. Information flow control is a promising formal technique to
guarantee the privacy and desired release of our data in an always con-
nected world. However, it is not easy to apply in practice. IFlow is a
model-driven approach that supports the development of distributed sys-
tems with information flow control. A system is modeled with UML
and automatically transformed into a formal specification as well as
Java code. This paper shows how the this specification is generated and
presents several advantages of a model-driven approach for information
flow control.

1 Introduction

Smartphones are useful digital assistants that simplify our life. However, they
store larger and larger amounts of private data. This data can and should be
accessed by apps, but we would like to have control over the when and how, and
what happens with the data afterwards. Information flow control (IFC) is an
area of research to achieve this. IFC (e.g., [3,7,6]) is stronger than access con-
trol, and can be applied to a large number of systems and applications. However,
it is not easy to use in practice because the theory is quite intricate, and it is
easy to lose track of what information is released. IFlow is a model-driven ap-
proach designed specifically for IFC. The overall approach is fully implemented
and explained in [4]. This paper briefly introduces an example (Sect. 2), and
then describes the advantages of the model-driven approach for the formal spec-
ification: formal proofs become easier, and specification errors are avoided (Sect.
3). Sect. 4 concludes.

2 An Example Application

The travel planner app is a typical distributed application consisting of a smart-
phone app and web services. The user enters his travel details into the app. The
app connects to a travel agency web service which in turn contacts an airline web
service for suitable flights. The found flights are returned via the travel agency

* This work is part of the IFlow project and sponsored by the Priority Programme 1496
“Reliably Secure Software Systems - RS®” of the Deutsche Forschungsgemeinschaft.

Linawati et al. (Eds.): ICT-EurAsia 2014, LNCS 8407, pp. 456-461, 2014.
© IFIP International Federation for Information Processing 2014

Formalizing Information Flow Control in a Model-Driven Approach 457
to the app. The user selects a flight and books it with his credit card (which
is stored in a credit card center app) directly at the airline. Finally the airline
pays a commission to the travel agency. Fig. 1 shows this behavior as a sequence
diagram.

«Application»

«User»
user : User

| 1: Getinput<RequestData>()

: CreditCardCenter

«Service»
: TravelAgency
T

i i i
{User, TravelAgency, Airline} I [i
i i i
2: GetFlightO Data := input) ! | !
{User, TravelAgency, Airiine} 3: GetFlightO Data) 5t !
{User, TravelAgency, Aitine} 4: GetFlightOffers(requestData) l
! {User, TravelAgency, Airline}
| 5: fiiteredFlightOffers =
i fiterOffers(requestData, flightOffers)
H {User, TravelAgency, Airline}
i _)
L _ _ _ _ TRefighOffers(fighOffers) jo & RetFlhiOffers flntOffers = fiteredFighiOrfers) [
8 Offers) (User, Travelgency, Atfine} H {User, Travelgency, Airline})
{User, Airline} } } }
9 Offer = i I i
: = i i i
py— 10: ReleaseCCDYairline := flightOffer.airine) ! !
{User) i i
i i
I i
i i
11: ConfirmRelease(ccd, airline) H i i
{User} : |
12: GetDeclassifiedCCD() i 1
(User} 13: ocd_dec! = declassifyCCD(ccd) !
i i
i i
14: DeclassifiedCCD(ccd_decl) {User->User Airine} | !
{User, Airline} ‘ I
15: BookFlightOffer(id := flightOffer.id, ccd_decl) :
{User, Airlink}
! 16: processBooking(id, ccd_dec))
H {User, Airline}
. 17: PayCormission()
{User, TravelAgency, Airline}
18: OkPayCommission() N
T
o L S —— ! {User, TravelAgency, Airline}
,,,,,,,,,,, e
: Confirm() {User, TravelAgency, Airline} | i
{User, TravelAgency, Airline} i i
i i
| i
i i
L I i
1 i i
i & U i i
I i i
i i i

Fig. 1. Sequence diagram for the travel planner app

The lifelines represent the (real human) users, the apps, and the web services.
Arrows denote message passing as in UML, but a domain-specific language is
used that supports, e.g., assignments to provide more information. Additionally,
every message is annotated with a security domain in curly brackets, e.g. {User
TravelAgency, Airline}. They are used in the formal information flow framework.

Together with a class diagram (not shown), and a security policy (Fig. 2) the
sequence diagram contains enough information and is precise enough to generate
a formal specification as well as Java code.! Two information flow properties are
of interest:

1. The user’s credit card data does not flow to the travel agency.
2. The credit card data flows to the airline only after explicit confirmation and
declassification.

! See our web page
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/iflow/
for the full model.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/iflow/

458 K. Stengzel et al.

3 The Formal Model

As the formal framework we chose Rushby’s intransitive noninterference [7]
which is an extension of Goguen’s and Meseguer’s transitive noninterference
[3], and specifically Rushby’s access control instance of intransitive noninterfer-
ence because it uses locations. On the one hand it is very natural to think about
information stored in locations that flows to other locations, and on the other
hand locations become fields in the generated Java code so that there is a tight
connection between the formal model and the code.

It works like this: Actions a modify the state with a step function step(s, a)
that computes the new state. Actions have a security domain d (e.g., public or
secret), and read (observe) and/or modify (alter) the values of the locations.
Security is defined w.r.t. an interference policy defined on domains and a generic
function output(s,d). The interference policy ~» describes allowed information
flows, i.e., if di ~» da then information may flow from d; to ds. output(s,d)
defines what an attacker with security domain d can observe in a given system
state. The idea is that an attacker has a given security domain and tries to
obtain some secret information. More specifically, an attacker should not be
able to distinguish (by observing different outputs) between a run of the system
where something secret happens and another run where the secret things do not
happen.

For a given IFlow UML model an instance of Rushby’s framework is generated
for the theorem prover KIV [5,1] that is based on Abstract State Machines (ASMs
[2]) and algebraic specifications.

3.1 Unwinding Theorem

Rushby [7] proves an unwinding theorem that implies security if four unwinding
conditions hold. The second condition was later weakened by van der Meyden
[8] (we show van der Meyden’s version):

— RM1: s1 &4 s2 — output(s1,d) = output(ss,d)
If two states look alike to an attacker with domain d (=2,) then the attacker’s
output is the same in both states.

— RM2: 51 Rdom(a) 52 N 51(1) = s2(1) Al € alter(dom(a))

— Step(sla a)(l) = Step(SZa a)(l)

If two states look alike to the security domain of an action a and this action
is executed (with the step function) then every location that is altered by
the domain and has the same value in the initial states has the same value
in the two new states. (See [8] for a discussion.)

— RM3: step(s,a)(l) # s(l) — | € alter(dom(a))
If the execution of an action modifies a location then this location is con-
tained in the alter set for the action’s domain.

— AOL alter(dy) Nobserve(ds) # 0 — di ~ da
Alter/observe respects interference: if a location is altered by one domain d;
and observed by another domain ds then there is an information flow from
dy to ds. This must be allowed by the interference policy ~~.

Formalizing Information Flow Control in a Model-Driven Approach 459

Condition RM3 basically ensures that the definition of alter is correct: If an
action a modifies a location [then [must be contained in the action’s domain
alter set. Similarly, RM2 ensures that the definition of observe is correct. RM2
and RM3 use the step function, i.e., here every action of the system must be
executed (once in the case of RM3 and twice in RM2). Hence, they are the
really expensive proof obligations for larger systems. On the other hand they
only depend on alter and observe (since ~ is defined with observe), but not on
output or the interference policy ~.

In IFlow the generation of the formal model from the UML guarantees that

— RM1 is always true because of the fixed definition of output.

— RM2 is always true because observe is computed correctly from the UML
model.

— RM3 is always true because alter is computed correctly from the UML
model.

Therefore, proving AOI
AOL: alter(dy) Nobserve(ds) # 0 — di ~ da

(which is trivial) already implies that a system is secure. This shows a great
benefit of IFlow’s model driven approach that cannot be achieved otherwise.

3.2 Automatic Declassification

Intransitive noninterference allows to model secure systems with controlled or
partial information release. However, if used excessively or in an arbitrary man-
ner the result may be a system that is secure in terms of the formal definition,
but has cryptic or undesired information flows.

Again, the model-driven approach can be helpful because usage of intransitive
domains can be controlled. This will be explained with the help of the travel plan-
ner example. In general the interference relation may be an arbitrary relation. In
IFlow some restrictions apply. Fig. 2 shows the security policy for the example.
An edge denotes a (direct) interference, i.e., {User, TravelAgency, Airline} ~-
{User, Airline}. The unmarked edges are transitive (i.e., {User, TravelAgency,
Airline} also interferes {User}), and the relation is automatically reflexive. In-
transitive edges may only be used for declassification (also called downgrading)
as shown Fig. 2: Both edges to and from a declassification domain must be in-
transitive and inverse to the “standard” policy, and a declassification domain
must have exactly one incoming and one outgoing edge. In effect, we have a
usual transitive policy with possibly some declassification domains.

When a declassification domain is used (message 13) it must be contained in
its own action to avoid undesired interferences. A program counter is introduced
automatically to ensure that actions/messages 12, 13, and 14 are executed in
the correct order. There is another complication. Generating the formal model
results in an insecure system, i.e., the only remaining unwinding condition AOI
does not hold. The problem are messages 15-17 in Fig. 1: The airline receives

460 K. Stengzel et al.

a booking message with the credit card details (message 15) that is labeled
{User, Airline}, and processes the booking (message 16) at the same security
level. However, in message 17 the airline pays a commission to the travel agency
that is labeled {User, TravelAgency, Airline}. If messages 15-17 are contained
in one action with domain {User, Airline} the action writes to domain {User,
TravelAgency, Airline} (the mailbox containing the PayCommission message)
which is an illegal information flow.

However, our desired property (Credit card details never flow to the travel
agency) holds because the PayCommission message does not include the credit
card details. The travel agency (or, to be more precise the {User, TravelAgency,
Airline} domain) does learn that a booking took place (otherwise it would not
receive a commission) but not the parameters of the booking message. This may
or may not be seen as a problem, but is independent from the desired property.
So we want to modify the formal system so that it is secure, but would still
detect that the credit card data flows to the travel agency in a faulty model.

The solution is to introduce a new declassification domain from {User, Airline}
to {User, TravelAgency, Airline} that leaks only the information that a booking
took place but nothing more. Fig. 2 shows how this works.

15: BookFlightOffer(id := flightOffer.id, ccd_dec| :

> U Airli
Usen) er {User, Airline} | . 1 rocessBooking(id, cod_decl)
) . {User, Airline}
{User} -> {User,Airline}
T donePB := true

{User,Airline} \ intransitive») ’
y if (donePB) doPayC := true| | {HighLow}

if (doPayC) ...
17: PayCommission()

{User, TravelAgency, Airline}

({User,TravelAgency, Airline} ‘
b,

Fig. 2. Security policy and new actions

The original action is split into three actions, one that receives the booking
and processes the booking (messages 15 and 16), but then sets a boolean flag to
true (donePB) to indicate that it is finished. Then the declassification domain
{HighLow} sets the flag doPayC to true to indicate that PayCommission can
happen. The third action checks the flag and pays the commission. Both flags
are reset after they are read (not shown in Fig. 2).

The action leaks only the information that donePB was true. This modi-
fied system is secure, i.e., the unwinding condition AOI holds. On the other
hand, an illegal information flow will still be detected. Assume that the Pay-
Commission message includes the credit card details as parameter (PayCommis-
sion(ccd decl)). Then the third action in Fig. 2 observes ccd decl (which must
be a local variable), and the first action alters it (because it writes the credit

Formalizing Information Flow Control in a Model-Driven Approach 461

card details to ced decl). In effect {User, TravelAgency, Airline} interferes {User,
Airline} directly which is forbidden by the policy. And the {HighLow} domain
obviously does not leak the credit card details either. So we have exactly the
desired effect.

The main point is that all this (adding a new declassification domain and
splitting the original action into three) is done automatically during generation
of the formal model. This guarantees that the {HighLow} domain is not used
anywhere else (by generating a new unique name) and that the new action only
accesses the two flags, and nothing else. A user specifying this by hand could
easily make mistakes. This again shows the benefits of a model-driven approach.

4 Conclusion

Information flow control is a promising technique, but difficult to use in practice.
IFlow is a model-driven approach that supports the development of distributed
applications with guaranteed and intuitive information flow properties. The re-
sulting UML specification is automatically transformed into a formal model
based on intransitive noninterference where IF properties can be proved, and
into Java code with the same IF properties. To the best of our knowledge TFlow
is the only work that uses a model-driven approach for IFC (a broader com-
parison with related work must be omitted due to lack of space). We showed
that the model-driven approach has additional benefits for IFC: proofs become
simpler because functions like observe and alter can be computed, and specifi-
cation errors can be avoided by the automatic introduction of declassifications
with guaranteed properties.

References

1. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system
development with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783,
pp. 363-366. Springer, Heidelberg (2000)

2. Borger, E., Stark, R.F.: Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer (2003)

3. Goguen, J.A., Meseguer, J.: Security Policy and Security Models. In: Symposium
on Security and Privacy. IEEE (1982)

4. Katkalov, K., Stenzel, K., Borek, M., Reif, W.: Model-driven development of
information flow-secure systems with IFlow. In: Proceedings of 5th ASE/IEEE
International Conference on Information Privacy, Security, Risk and Trust
(PASSAT). IEEE Press (2013)

5. KIV homepage, http://wuw.informatik.uni-augsburg.de/swt/kiv

6. Mantel, H.: Possibilistic definitions of security - an assembly kit. In: IEEE
Computer Security Foundations Workshop. IEEE Press (2000)

7. Rushby, J.: Noninterference, Transitivity, and Channel-Control Security Policies.
Technical Report CSL-92-02, SRI International (1992)

8. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup,
J., Lépez, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235-250. Springer,
Heidelberg (2007)

http://www.informatik.uni-augsburg.de/swt/kiv

	Formalizing Information Flow Control
in a Model-Driven Approach

	1 Introduction
	2 An Example Application
	3 The Formal Model
	3.1 Unwinding Theorem
	3.2 Automatic Declassification

	4 Conclusion
	References

