We Need Non-formal Methods Based
on Formal Models in Interaction Design

Andreas Maier and Steffen Hess®)

Fraunhofer Institute for Experimental Software Engineering IESE,
Kaiserslautern, Germany
{andreas.maier,steffen.hess}@iese.fraunhofer.de

Abstract. According to our experience, early collaboration with non-
expert stakeholders aimed at designing interaction in a user-centered way
is mandatory if the goal is a great user experience. We have found that
insistence on formal modeling when collaborating with non-experts leads
to insufficient results. Therefore, we propose a user-centered approach
in order to enable collaboration and communication among expert and
non-expert stakeholders. This non-formal approach should be based on
a formal model, which also builds the common ground for discussions
between all involved project stakeholders.

1 Introduction

1.1 Motivation

Well-designed and usable human-computer interaction (HCI) is a key factor for
successful software products. Offering a large number of features is no longer
sufficient for achieving success on the market. We observe stronger interest in
usability and user experience factors in the decisions people make regarding
particular products in the same class of devices (e.g. iPhone vs. other smart-
phones, iPod vs. other MP3 players). Users expect good usability and want to
enjoy a great experience when interacting with the system. But what makes an
interaction a great experience? What are the elements of a great HCI? Which
dependencies exist between these elements? How do we design such an interac-
tion? These are the questions we want to answer in order to improve the results
of interaction design and contribute value to the HCI community. To do so,
we developed a formal interaction model, which shows the most important ele-
ments of HCI and their dependencies. This model is called MAINnEEAC (Model
for Accurate Interaction Engineering, Enhancement, Alteration, and Character-
ization) and is introduced briefly in Sect. 2. Since we are aware of the fact that a
model is not applicable to conversations between expert stakeholders and non-
expert stakeholders, we also created and use the non-formal interaction design
method mConcAppt, which is built on MAInEEAC and tailors HCI elements
to the given context in which an HCI is designed. During this article, we refer
to experts as experts in terms of software development. After the description

A. Ebert et al. (Eds.): HCIV Workshops 2011, LNCS 8345, pp. 150-164, 2014.
DOI: 10.1007/978-3-642-54894-9_11, © IFIP International Federation for Information Processing 2014

We Need Non-formal Methods Based on Formal Models 151

of MAInEEAC, we describe our interaction design method in Sect. 3. Section 4
sums up the advantages of our approach. The article closes with a conclusion
and an outlook on future work.

1.2 Our Model-Based Interaction Design Approach

In contrast to purely formal model-based approaches or the strict performance
of formal methods, we apply a user-centered design approach [6], which com-
bines the advantages of both formal models and non-formal methods. In this
approach, we involve non-expert stakeholders as early as possible, since only
potential operators of the system under development know what constitutes a
great experience in their context. When non-expert stakeholders are involved,
experts use formal models to work effectively and efficiently: Every expert has a
formal conceptual model of the target system in mind when designing an inter-
action [7], in this case a formal model for interaction design. With the help of
this model, the experts are aware of every element of HCI and every dependency
between elements. In conversations with non-expert stakeholders, the experts
are able to ask for all relevant information regarding HCI, trace the develop-
ment of the HCI, and find conflicting specifications immediately by matching
the conceptual model to the non-expert stakeholders mental models of the sys-
tem [ibid.]. To prevent non-expert stakeholders from being confused, the expert
does not show the formal model to them, but only uses it as preparation and for
post-processing. With the formal model in mind, the experts can describe a par-
ticular HCI on a very detailed level. They can easily show interaction elements
and dependencies, can facilitate communication between stakeholders involved
in the development process, and close the gap between interaction designers and
end users. The non-formal method is used for eliciting, analyzing, and specifying
requirements, prototyping HCI according to the elements given by the formal
model, and validating the interaction design.

2 MAInEEAC - A Model for Interaction Engineering,
Enhancement, Alteration, and Characterization

As the underlying model of our user-centered interaction design approach, we
developed MAInEEAC - Model for Accurate Interaction Engineering, Enhance-
ment, Alteration, and Characterization [4]. This model is view-based and
currently consists of ten views, six of which we present in detail in this report.
These six views are most relevant for this approach and build the formal basis
of the non-formal method. The four views we do not describe in this report
represent even more details of HCI and are mainly interesting for researchers in
this area, currently. They deal with characteristics of users, with the process of
information perception and its details, respectively, and with different types of
interactions.

152 A. Maier and S. Hess

2.1 General Overview

Figure 1 gives an overview of the interaction flow as described in MAInEEAC.
This basic and coarse overview conforms to the unanimous view on HCI taken by
almost every area dealing with HCI. Triggered by an Intention, the Human ini-
tiates an action on the Input Interface of the system. The System processes the
given input and delivers a system reaction via its Output Interface. The Human
again perceives this as a reaction to his Intention and evaluates if the perception
is appropriate. In any case, this perception might affect the subsequent Inten-
tions. This short description shows the basic concept of our model. As mentioned
above, this view is common sense in the field of HCI. The concepts follow the
Gulf Model published by Donald Norman in 1988 [8]. The distinct feature of
MAInEEAC is that it is not restricted to the general overview shown in Fig. 1,
but shows all aspects in detail as well. It enables the different roles involved in
system development to work with only one model. MAINEEAC represents the
system in great detail, without being system-centered. In fact, it is interaction-
centered, emphasizing the human at the same time. Cognition is not an explicit
element in MAInEEAC, but implicitly covered by Perception, which covers the
recognition, interpretation, and evaluation of information. Media and Modalities
are well-defined distinct elements of HCI, both with an exact meaning: Media
are representation forms of information, while Modalities are the concrete usages
of human senses to perceive information. The user interface and possible system
outputs are decomposed in order to describe HCI in even greater detail. Overall,
MAInEEAC enables us to describe an interaction with a system without having
to use another model. We decided on using a view-based representation of the
model to emphasize certain aspects of HCI. The following sections describe the
most important aspects of MAINEEAC, including detailed views on its basic
components (human action, system, system action, and interaction).

Human Action

View
Elementary Interaction System
& Interaction View iew
System Action
View

Fig.1. MAInEEAC - general overview

We Need Non-formal Methods Based on Formal Models 153

2.2 System View

The System View describes the system side during HCI (see Fig. 2). MAINEEAC
does not treat the System as a black box like many other HCI models do [8,9].
The System components highly influence HCI and thus are shown in the same
detail as Human elements and elements of the Interaction itself. In general, we
define System as a complex object based on software that fulfills a function
by processing input and creating output. Systems in the application area of
MAINEEAC might be PCs, industrial machines, handhelds, home appliances,
consumer electronics, etc. Each System consists of a number of devices. A Device
is a technical aid which acts as interface for transmitting information from human
to system and/or from system to human. Furthermore, devices are all parts of
the system, no matter if these parts are actually used for the interaction or not
(e.g. an electric shutter being controlled with the system). A device acting as
Input Interface transmits information from human to system (e.g., keyboard,
PC-mouse, touch-screen, microphone, and digitizer), whereas a device acting
as Output Interface transmits information from system to human (e.g., screen,
loudspeaker, and braille-display). A System communicates with its environment
through its User Interface, which presents the aggregation of all Input Interfaces
and Output Interfaces. The important fact we show with this distinction between
device, input interface and output interface is that input and output might take
place on different devices and even at different locations during HCI. Every Input
Interface is characterized by the Usage Types it offers. A Usage Type specifies
how an Input Interface is used concretely to transmit information to a system
(see also Sect.2.2 for a further clarification). Furthermore, an Input Interface
may give Direct Input Feedback which comes straight from the Device without
the use of any Medium (for example, the sound that occurs when pressing a
button on a mouse or keyboard). When a Device acts as an Output Interface, it
gives Application Feedback and might give Indirect Input Feedback in addition.
Both are transmitted via a Medium: Indirect Input Feedback is a reaction to the
usage of the Input Interface to confirm the systems correct understanding of the

class System View Separated /‘
i is used through
| Inputinterface ["4.+ 1.0 = Usage Type l

0.* 0.1
Feedback

gives

| User Interface | Device |
0.r gives [0.1
Indirect Input i 2 1.
is transmitbed
Feedback via 1.0 "
Medium | Output I i
u]
: X consists of
A, gives
1
; ystem performs System
—fumctior——~ 1.5 5

Fig. 2. System view

154 A. Maier and S. Hess

humans action, for example, highlighting of a selected menu item transmitted
via the Medium graphic. It is always based on a System Function. The complete
decomposition of system actions and detailed descriptions of each possible system
action is represented in Sect. 2.4.

2.3 Human Action View

The Human Action view (see Fig. 3) describes the way the Human accomplishes
his Intention on the Input Interface of the System. In MAINEEAC, this accom-
plishment is called Human Action and involves the whole activity performed by a
Human to transmit information to a System. Every activity might be influenced
by the Environmental Context in which the activity takes place. For example,
the Human might not want to transmit information to the System via speech
when he is in a noisy environment or he might want to interact with the System
from a distance when his environment is a huge warehouse. The Environmental
Context is an attribute of Human Action and thus has to be specified when
using MAInNEEAC. Each Human Action consists of at least one Action Method,
which specifies the action of the Human. It comprises generic human move-
ments according to original human abilities. We distinguish four types of action
methods: 1. Fine Motor Skills (e.g., typing, writing, moving an object, pressing
an object) 2. Gross Motor Skills (e.g., gesturing, walking, jumping) 3. Facial
Expressions (e.g., smiling, grinning, frowning) 4. Vocal Utterances (e.g., speak-
ing, whispering, shouting) Furthermore, a Human Action always has a Method
Type, which specifies if the action is uni-methodical or multi-methodical. If there
is only one kind of Action Methods, the type is uni-methodical. If there are at
least two Action Methods, the Method Type is multi-methodical. When perform-
ing the Human Action, every Input Interface features different Usage Types that

class Human Action View
is performed on
leads to
Intenti H Action ~| Input Interface
0.° 1. 0. A=
1 1.
is used through
|1 I 1. 1.*
specifies

Method = Action |~ = = = Usage Type

Type Method

Unimethodical Multimethodical
Action Action

Fig. 3. Human action view

We Need Non-formal Methods Based on Formal Models 155

specify how an Input Interface is exactly used to transmit information to the
System. For example, pressing object as an Action Method is underspecified.
There is a set of concrete movements being performed within a Human Action.
It makes a big difference whether one presses the left or the right mouse button
or whether someone performs a single or a double click. In addition, the Usage
Type concretely specifies the Action Method. For example, if the Usage Type of
the Input Interface is single left click, the Action Method is determined as press-
ing object. When characterizing an interaction with MAInNEAAC, the elements
Action Method, Usage Type, and Input Interface influence each other. When an
Action Method is determined, the possible Input Interfaces and Usage Types are
deduced from that Action Method. If, for instance, the Action Method Speaking
is determined, the number of Input Interfaces possible for sound input is low
and the possible Usage Types are restricted to that Action Method. The Action
Method in conjunction with the Usage Type restricts the number of possible
Input Interfaces even more. With respect to the Usage Type, the same holds
for the Action Method in conjunction with the Input Interface. The Usage Type
determines the Action Method and restricts the number of available Input Inter-
faces to those that offer the specified Usage Type and allow for performing the
deduced Action Method. For example, when the Usage Type Natural Speech is
selected, Speaking is automatically determined as the Action Method. The list of
Input Interfaces is restricted to different microphones like desktop microphone,
handheld microphone, wearable microphone, etc. When we decide on a particu-
lar Input Interface, the Action Method as well as the Usage Type are restricted
at the same time. When Input Interface and Usage Type have been determined,
the Action Method is deduced from those. This does not hold for the determi-
nation of the Input Interface and the Action Method: When the Input Interface
and the Action Method have been determined, we still have a choice regarding
the Usage Type. For example, when we decide on microphone as Input Interface
and natural speech as Usage Type, Speaking is automatically determined as the
Action Method. When we leave the Usage Type open and decide on an Action
Method from the class Vocal Utterance, we can still decide on which Usage Type

to apply.

2.4 System Action View

The System Action view (see Fig.4) describes the way the System reacts to
the Human Action and the transmission of information from the System to the
Human. The System Action is a composition of Direct Input Feedback, Indirect
Input Feedback, Application Feedback, and System Function. Direct Input Feed-
back is feedback the Human gets directly from the Input Interface, i.e., not via
any Medium. Example: the physical resistance of a keyboard stroke or the sound
when pressing a key on a keyboard or a PC mouse. In contrast to this, Indirect
Input Feedback is input feedback the Human gets via a Medium as a reaction to
his usage of an Input Interface. It is the System Action on a humans action to
confirm the systems correct understanding of that action. Indirect Input Feed-
back is always based on a System Function and can be influenced by a designer.

156 A. Maier and S. Hess

class System Action View /
- tri |
—.l Percepticn |“£‘ System Action
1 1. 15)
o o)
Direct Input Feadback : Direct Input
Perception T Feedback
0.
|_g_s| Indireat Input Feedbaak Indirect Input
| & Perception | - _ _ _ _ | _ Feedback Is transmitted
Modality Medium = 1 |viaf
Trpe Type it 1 [%: Madium
L_4.+| Application Feedback - Application 14
Perception |- __ _ _ | _ Feedback

-

System Function - System Function F\
0. Perception [~

Fig. 4. System action view

Examples: bordering of an icon that the mouse cursor points to or highlighting of
a selected menu entry. A System Function is a System Action that is performed
automatically by the System as a reaction to an external trigger. An external
trigger may be, for example, a Human Action, a call from an external system,
or an environmental context change. A System Function does not necessarily
address a Human directly, but recognizes events, interprets and manipulates
data, and plans and initiates Application Feedback and Indirect Input Feedback.
A System Function cannot be influenced by an interaction designer. Examples:
an internal change in the system state, working hard disk drives, control of exter-
nal but system-related objects (e.g., lights). From an interaction-centered point
of view, a System Action is given when at least one Application Feedback exists.
Furthermore, an arbitrary number of the other elements can be included. The
rationale for this composition is that Application Feedback directly refers to the
humans Intention. Without feedback to the Intention, we are not able to fulfill
an Elementary Interaction. For example, if a user performs an action on a user
interface and only receives the feedback that his input was successful, we do not
refer to this as an Elementary Interaction. The user always has to perceive the
part of the System Action that belongs to his Intention in order to complete an
Elementary Interaction. This part is the Application Feedback. Depending on
the Environmental Context in which the System Action takes place, the System
Action might be influenced by that context. For example, the System Action
might be to transmit information to the Human by means other than sound
when the environment is noisy, or to show relevant information to a particular
person when it detects that that person is near. The System Action triggers a
humans Perception, which is composed according to the System Action. Because
of this segmentation, we can trace which Perception is triggered by which kind
of System Action. For each kind of Perception, a Modality Type is specified that
determines if the Perception is unimodal or multimodal. Unimodal perception
is given when exactly one Modality is used to perceive the part of the System

We Need Non-formal Methods Based on Formal Models 157

class Interaction View langs /

consists of

|

Medium Modality Method
Type Type Type

Fig. 5. Interaction view

Action. In multimodal perception, at least two different Modalities are used. In
addition to that, for Indirect Input Feedback Perception and Application Feed-
back Perception, a Medium Type is specified that determines if the Perception
is unimedial or multimedial. This is necessary for those two types because they
are the only ones that are transmitted via a Medium. If one Medium is used for
transmission, the medium type is unimedial; if at least two different Media are
used, the medium type is multimedial.

2.5 Interaction View

The interaction view (see Fig.5) gives a holistic overview of the views described
so far and emphasizes the build-up of an Interaction. An Interaction consists
of several Elementary Interactions. Furthermore, each Interaction consists of a
Human Action that is initiated by an Intention and a System Action that triggers
a Perception. This Perception either confirms or rejects the initial Intention.
With the help of the interaction view, it is possible to describe an Interaction as
a whole in a detailed manner, which can further be broken down by using more
detailed views.

2.6 Elementary Interaction View

The Elementary interaction view (see Fig. 6) describes the composition of an Ele-
mentary Interaction and its specializations in detail. Furthermore, it is shown how
an Elementary Interaction is constructed. Elementary Interactions are restricted
to exactly one Human Action and one to many System Actions. Example: Typ-
ing text into a word processing application (Human Action) and perceiving the
written text on a screen in order to check the correct spelling (text output as
System Action). An Elementary Interaction always has three types, which spec-
ify how the Elementary Interaction takes place in detail. First, the Method Type

158 A. Maier and S. Hess

class Elementary Interaction View /

Unimethodical
Elementary
Interaction

E
3
3

Multimethodical
Elementary

Method <}

consists of
Unimodal
1. 1 Elementary

Interaction
Interaction |Q_ El tary Modality f}
Interaction 1| Type

Multimodal
Elementary
Interaction

~0

Medium [} Uinadici

1| Type Elementary
Interaction

System Action
Multimedial
Elementary
Interaction

Fig. 6. Elementary interaction view

specifies if the Elementary Interaction is unimethodical or multimethodical. A
unimethodical Elementary Interaction is an Elementary Interaction where the
Human Action is unimethodical. A simple example is pressing a key on the key-
board in order to select a list item and visually perceiving the selected item.
The attribute that is relevant for determining the Method Type derives directly
from the Human Action; i.e., a unimethodical action remains unimethodical on
the Elementary Interaction level, a multimethodical action remains multime-
thodical. Of course, in this simple example we have just one Action Method,
namely pressing a key. A multimethodical Elementary Interaction is an Elemen-
tary Interaction where the Human Action is multimethodical. A simple example
is pointing with a finger to an icon and saying open that and visually perceiving
the opening application. In this example, two different action methods are used
in parallel during the action, namely Gesturing and Speaking. Therefore, the
Elementary Interaction is multimethodical. Second, the Modality Type specifies
if the Elementary Interaction is unimodal or multimodal. A unimodal Elemen-
tary Interaction is an Elementary Interaction where Perception is unimodal. An
example is requesting information from a speech dialog system on the phone
and aurally perceiving the answers. A multimodal Elementary Interaction is
an Elementary Interaction, where the Perception is multimodal. An example
is requesting information from a speech dialog system on the PC and aurally
as well as visually perceiving the answers. To determine the modality types,
all Perceptions are subsumed and it does not matter which kind of Perception

We Need Non-formal Methods Based on Formal Models 159

the modality derives from. Third, the Medium Type specifies if the Elementary
Interaction is unimedial or multimedial. A unimedial Elementary Interaction
is an Elementary Interaction where the Perception is unimedial. An example
is using a command-based input shell (as in UNIX), perceiving only alphanu-
merical text. A multimedial Elementary Interaction is an Elementary Interaction
where the Perception is multimedial. An example is using a GUI-based operating
system (like Microsoft Windows) and perceiving alphanumerical text, graphics,
animations, and icons during one single elementary interaction. To determine
the Medium Type, each medium involved in Indirect Input Feedback Perception
and Application Feedback Perception is considered. An Elementary Interaction
always has to be characterized through the triple method type, modality type,
medium type. For example, the Elementary Interaction of clicking the recycle
bin icon on a MS Windows desktop to open the context menu is multimethod-
ical (moving an object and pressing an object), unimodal (visual perception of
the moving mouse cursor and the opening context menu), and multimedial (rep-
resentation of information via the icon, text, and graphics within the context
menu). An Elementary Interaction specified by only one or two of these types
does not exist from our point of view.

3 A Non-formal Method Based on MAInEEAC

When collaborating with non-expert stakeholders in order to define an interac-
tion concept for a particular software system, MAINEEAC as a formal model is
not applicable in its original condition. Therefore, we have developed non-formal
methods based on this formal model to facilitate this collaboration. After having
accomplished a huge number of software engineering projects with interaction
design activities, we have found that these methods, where stakeholders can
speak freely, lead to more relevant information than strict formal and restricted
approaches. One of these methods is the mConcAppt method [2,3,5], which is a
method for the user-centered conception of mobile business apps. In this chapter,

we focus on the part of mConcAppt that is relevant for the construction of the
HCI.

3.1 Upfront Requirements Elicitation and Analysis

In this practical approach for mobile interaction design, we face typical challenges
like short time to market, high user experience, and less focused user attention
than with desktop systems. Furthermore, the user interface design is related to
device, platform, and technology. It comprises upfront requirements elicitation
and analysis in combination with an iterative interaction design (see Fig.7).
Both phases are conducted with close user involvement.

During the execution of mConcAppt, different kinds of artifacts are pro-
duced. Up-front requirements elicitation and analysis are mainly performed by
means of a requirements elicitation workshop that involves end users as well as
other project-relevant stakeholders (see Fig. 8). In addition, several requirements

160 A. Maier and S. Hess

Upfront l =
Upstream Requirements lerative Downstream

Activities Elicitation and precton Activities

Analysis Design

Fig. 7. Brief overview of mConcAppt

Upfront
Requirements
Elicitation and

Analysis

Requirements Requirements
Elicitation Elicitation
Workshop Phone Calls

— Interaction Design Expert (1)
= Lead User (1-3)

= Project Management (1-3)
= Business Analyst (1)

— Customer (1-2)

Fig. 8. Upfront requirements elicitation and analysis phase

elicitation phone calls or interviews might be performed in order to clarify infor-
mation elicited in the workshop as well as to elicit further requirements. As a
result from upfront requirements elicitation and analysis, the following artifacts
are produced in close collaboration with non-expert stakeholders:

List of involved stakeholders
Stakeholder goals

Stakeholder description
Description of a user persona [1]
Description of the as-is situation
Problems in the as-is situation
Description of the to-be situation
Technical constraints

Exchanged domain data

© 0N oA N

We Need Non-formal Methods Based on Formal Models 161

Input for initial
interaction
design

Initial

interaction
design

Having formal
model in mind

Fig. 9. Initial interaction design phase

Requirements and interaction design experts already have the formal
MAInEEAC model in mind while eliciting and documenting those artifacts.
From the list of involved stakeholders, the definite end users (cf. Human in
MAInEEAC) are derived. Especially stakeholder goals elicited in combination
with the description of the to-be situation will ultimately lead to the interaction
created using the formal model. Already at this point in time, communication
between the requirements engineer and the interaction designer is improved,
since they both have a conjoint formal model in mind when discussing different
aspects. All mentioned artifacts are used as input for the development of the
initial interaction design, which will be described in the following chapter.

3.2 TIterative Interaction Design

The second phase during mConcAppt is the actual interaction design phase.
Figure 9 shows that the artifacts elicited in the first phase and the formal model
that the interaction designer has in mind are combined to create the interaction
design. Therefore, interaction cases (see the example in Fig. 10) are created that
structure the elicited to-be situation into a textual description using elements
of the MAInEEAC model. During the textual specification of Interaction Cases,
Action Methods, Usage Types, Input Feedback, and Application Feedback are
defined. Using the interaction cases, the actual wireframes are assembled by com-
bining exactly one Human Action and one System Action into one wireframe.
In early iterations, wireframes are usually produced using paper prototypes and
evaluated with real end users in a Wizard-of Oz setting. During those early
evaluations and especially during later ones, when the prototype is already in
a more mature state, the interaction designer benefits from having the formal
model in mind when talking to the end user in order to check whether all recom-
mended elements (e.g., giving Input Feedback at each Human Action) have been
considered. In this phase, it might also beneficial to apply a co-design practice:
interaction designers and end-users might create the interaction cases and wire-

162 A. Maier and S. Hess

Ttem Description
' iD IC2: Track time

A business travel for multiple days. Meeting an industrial
Usage Context partner in Leipzig. The user is on his way to the hotel and uses
the device while walking.

The system recognizes, that the user arrives at his destination '

System Action 1 and notifies him that the time of arrival is tracked (via
notification center)

Human Action 1 The user taps the notification to directly open the app
System Action 2 I:: 's:snzfan r:::dnsptr:e p:r‘:j a‘::‘ iemrnediatery shows the current
Human Action 2 The user confirms the proposed time

| system Action 3 The system provides feedback on confirmation to the user
Human Action 3 The user closes the app
Postcondition Arrival time is persistently stored.

Fig. 10. Interaction case example

frames conjointly; this will probably minimize the effort necessary for reworks
of the interaction design after it was evaluated by other end-users.

4 Advantages of Our Approach

The application of the approach we propose in this chapter bears a number of
advantages: Non-expert stakeholders are not forced to worry about formal mod-
els, since expert stakeholders do not discuss formal models with non-expert stake-
holders, but rather prepare their conversations with the help of the model. Due to
the unrestricted and non-formal conversations, all stakeholders can speak freely
and more relevant information is gathered than with strict formal and restricted
approaches like workshops and interviews. During the conversation, the expert
stakeholders know which information is missing and can describe and discuss the
impact of decisions made collaboratively. But it is still the interaction designer
who creates the final interaction design and the developer who implements the
interaction. Benefits of our approach can also be found within the groups of expert
stakeholders and non-expert stakeholders, where communications are facilitated,
since a single model with a single terminology can be used. When single group
members are familiar with or used to another terminology, both terminologies
can be mapped very easily. Besides requirements engineers, interaction design-
ers, and developers, visual designers, architects, business analysts, customers, and
end-users will also benefit from this facilitation of communication. The require-
ments elicited, analyzed, and specified by these communications while applying
the non-formal method can be traced to concrete interactions and their highly
detailed elements. While the formal model represents the elements, the non-formal
method assures traceability.

We Need Non-formal Methods Based on Formal Models 163

5 Conclusion

From our point of view, early collaboration with non-expert stakeholders is
mandatory. This is done best by applying non-formal methods based on for-
mal models. Insisting on formal modeling when collaborating with non-expert
stakeholders leads to insufficient results, since non-expert stakeholders have to
familiarize themselves with unusual formal models and unusual formal think-
ing instead of focusing on considerations about needs, wishes, and demands in
terms of HCI. In this article, we presented our user-centered design approach
for an interaction design based on our non-formal method mConcAppt, which
follows our formal model MAInEEAC. Due to the early involvement of non-
expert stakeholders, the software development process can be shortened and
thus could be applied to a wide range of software development projects, espe-
cially to projects using an agile development approach. Such agile development
approaches are often applied to mobile business applications, for example, which
need a lightweight user-centered approach because of their special challenges.
Formal approaches do not satisfy this requirement sufficiently. The approach
can be applied to a large number of domains due to its flexibility and the formal
structure in the background. The approach presented (MAINEEAC, mConcAppt
and their interrelation) is based on best practices resulting from many projects
in which we have designed interaction in collaboration with non-expert stake-
holders, and is even supposed to enable semi-experts to design a wellconceived
HCI. An example of the application of the approach in an actual project can be
found in [1]. However, the approach is still evolving and work is in progress. We
plan to integrate interaction-related aspects such as user experience and archi-
tecture in order to be able to cover a holistic view on HCI and to discuss all
relevant aspects with non-expert stakeholders. We also believe that this app-
roach is able to create new value through its capability to apply the co-creation
practice. However, investigations of such effects by applying the approach were
not conducted yet and remain an open issue to carry out as future work. Even-
tually, we hope to achieve a huge increase in interaction design quality with the
help of our approach.

References

1. Cooper, A.: The Inmates Are Running the Asylum: Why High-Tech Products Drive
Us Crazy and How to Restore the Sanity. Indianapolis, USA (1999)

2. Hess, S., Kiefer, F.: mConcAppt Methode - UX und Interaktionsdesign fiir mobile
Business Apps in Usability Professionals Association, German Chapter: Usability
Professionals 2012 Tagungsband. Konstanz (2012)

3. Hess, S., Kiefer, F.: Quality by construction through mConcAppt - toward using
Ul-construction as a driver for high quality mobile App engineering. In: QUATIC
2012 (2012)

4. Hess, S., Maier, A., Trapp, M.: Differentiating between successful and less suc-
cessful products by using MAINEEAC - a model for interaction characterization.
In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol.
6761, pp. 238-247. Springer, Heidelberg (2011)

164

A. Maier and S. Hess

Hess, S., Kiefer, F., Carbon, R., Maier, A.: mConcAppt - a method for the concep-
tion of mobile business applications. In: Uhler, D., Mehta, K., Wong, J.L. (eds.)
MobiCASE 2012. LNICST, vol. 110, pp. 1-20. Springer, Heidelberg (2013)
International Organization for Standardization. ISO 9241-210:2010 - Ergonomics
of human-system interaction - Part 210: Human-centred design for interactive sys-
tems (2010)

Norman, D.A.: Some observations on mental models. In: Gentner, D., Stevens,
A.L. (eds.) Mental Models, pp. 7-14. Lawrence Erlbaum Associates Inc., Hillsdale
(1983)

Norman, D.A.: The Design of Everyday Things. Doubleday, New York (1988)
Schomaker, L., Munch, S., Hartung, K.: A taxonomy of multimodal interaction in
the human information processing system. Technical report, ESPRIT BRA, No.
8579 (1995)

	We Need Non-formal Methods Based on Formal Models in Interaction Design
	1 Introduction
	1.1 Motivation
	1.2 Our Model-Based Interaction Design Approach

	2 MAInEEAC - A Model for Interaction Engineering, Enhancement, Alteration, and Characterization
	2.1 General Overview
	2.2 System View
	2.3 Human Action View
	2.4 System Action View
	2.5 Interaction View
	2.6 Elementary Interaction View

	3 A Non-formal Method Based on MAInEEAC
	3.1 Upfront Requirements Elicitation and Analysis
	3.2 Iterative Interaction Design

	4 Advantages of Our Approach
	5 Conclusion
	References

