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Abstract. A common strategy for designing countermeasures against side chan-
nel attacks is using randomization techniques to remove the statistical depen-
dency between sensitive data and side-channel emissions. However, this process
is both labor intensive and error prone, and currently, there is a lack of automated
tools to formally access how secure a countermeasure really is. We propose the
first SMT solver based method for formally verifying the security of a counter-
measures against such attacks. In addition to checking whether the sensitive data
are masked, we also check whether they are perfectly masked, i.e., whether the
joint distribution of any d intermediate computation results is independent of the
secret key. We encode this verification problem into a series of quantifier-free
first-order logic formulas, whose satisfiability can be decided by an off-the-shelf
SMT solver. We have implemented the new method in a tool based on the LLVM
compiler and the Yices SMT solver. Our experiments on recently proposed coun-
termeasures show that the method is both effective and efficient for practical use.

1 Introduction

Security analysis of the hardware and software systems implemented in embedded de-
vices is becoming increasingly important, since an adversary may have physical access
to such devices and therefore can launch a whole new class of side-channel attacks,
which utilize secondary information resulting from the execution of sensitive algo-
rithms on these devices. For example, the power consumption of a typical embedded
device executing the instruction tmp=text⊕key depends on the value of the secret
key [12]. This value can be reliably deduced using a statistical method known as differ-
ential power analysis (DPA [10,19]). In recent years, many commercial systems in the
embedded space have shown weaknesses against such attacks [16,14,1].

A common mitigation strategy against such attacks is using randomization techniques
to remove the statistical dependency between the sensitive data and the side-channel in-
formation. This can be done in multiple ways. Boolean masking, for example, uses an
XOR operation of a random number r with a sensitive variablea to obtain a masked (ran-
domized) variable: am = a⊕ r [1,17]. Later, the sensitive variable can be restored by a
second XOR operation with the same random number:am⊕r = a. Other randomization
based countermeasures have used additive masking (am = a+ r mod n), multiplicative
masking (am = a ∗ r mod n), and application-specific code transformations such as
RSA blinding (am = are mod N ).
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However, designing and implementing such side-channel countermeasures are labor
intensive and error prone, and currently, there is a lack of formal verification tools to
evaluate how secure a countermeasure really is. Software countermeasures are particu-
larly challenging to design, since the source of the information leakage is not the cryp-
tographic software but the microprocessor hardware that executes the software. From
the perspective of average software developers – who may not know all the architec-
tural details of the device – it is difficult to predict the myriad possible ways in which
side-channel information may be leaked. Furthermore, bugs in implementation can also
break an otherwise secure countermeasure.

In this paper, we propose a new method for formally verifying the security of mask-
ing countermeasures. Our method uses an SMT solver to check if any intermediate
computation result of a software statistically depends on the sensitive data. Since this is
a statistical property, it cannot be directly checked by conventional formal verification
methods [5,20,21,11]. Although in the literature, there exists some work on tackling
the problem using type-based information flow analysis techniques [18], these methods
are often overly conservative, leading to the classification of countermeasures as secure
when they are not. In contrast, our method always returns the precise result. Although
Bayrak et al. [2] also used a constraint solver in their method, the analysis is signifi-
cantly less precise than ours. They check whether a variable is masked by some random
variable, but not whether it is perfectly masked, i.e., whether the probability distribution
is dependent on the sensitive data. To the best of our knowledge, our method is the first
automated verification method that checks for perfect masking. This is important be-
cause with order-d perfect masking, an implementation is provably secure against any
type of order-d (and lower-order) power analysis attack [9].

Fig. 1 (left) illustrates the difference between naive and perfect masking. Here, k is
the sensitive data, r1 and r2 are the random variables, and o1, o2, o3, and o4 are the
results of four different masking schemes. Assume that all variables are Boolean, we
can construct the truth table in Fig. 1 (right). Although o1,o2,o3 all seem to depend
on the values of the random variables r1 and r2, they are vulnerable to side-channel
attacks. To see why, consider the case when o1 is logical 1. In this case, we know for
sure that k is 1, regardless of the values of the random variables. Similarly, when o2 is
logical 0, we know for sure that k is 0. Although o3 does not directly leak the sensitive
information about k as in o1 and o2, the masking is still not perfect. When o3 is logical
1 (or 0), there is a 75% chance that k is logical 1 (or 0). Therefore, an adversary may
launch a power analysis attack to deduce the value of k.

o1 = k ∧ (r1 ∧ r2)

o2 = k ∨ (r1 ∧ r2)

o3 = k ⊕ (r1 ∧ r2)

o4 = k ⊕ (r1 ⊕ r2)

k r1 r2 o1 o2 o3 o4
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 0 1 1 0
1 1 0 0 1 1 0
1 1 1 1 1 0 1

Fig. 1. Masking examples: o1,o2,o3 are not perfectly masked, but o4 is perfectly masked
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In contrast, o4 is perfectly masked in that the output is statistically independent of
the sensitive data. When k is logical 1 (or 0), there is 50% chance that o4 is logical
1 (or 0). Therefore, it is provably secure against any first-order power analysis attack,
where the adversary can observe one intermediate computation result. The example in
Fig. 1 also demonstrates a weakness of the method in [2]: Since it only checks whether
a variable is masked, but not whether its probability distribution depends on the key, it
would (falsely) classify all of o1,o2,o3,o4 as secure. In contrast, our new method can
differentiate o4 from the other three, since only o4 is perfectly masked.

We have implemented our new method in a verification tool based on the LLVM
compiler and the Yices SMT solver [6]. We encode the verification problem into a se-
ries of quantifier-free first-order logic formulas, whose satisfiability can be decided by
Yices. Our SMT encoding scheme is significantly different from the ones used by stan-
dard verification methods, because the perfect masking property checked by our tool is
statistical in nature. For comparison, we also implemented the method in [2] in our tool.
We have conducted experiments on a large set of recently proposed countermeasures,
including the ones applied to AES and the MAC-Keccak reference code submitted to
Round 3 of NIST’s SHA-3 competition. Our results show that the new method is ef-
fective in detecting flaws in the masking implementation. Furthermore, the method is
scalable enough to handle programs of practical size and complexity.

The remainder of this paper is organized as follows. We establish notation in Sec-
tion 2, before presenting our SMT based verification algorithm in Section 3. Then, we
illustrate the entire verification process using an example in Section 4. We present our
incremental verification method in Section 5, which further improves the scalability of
our SMT-based method. We present our experimental results in Section 6, and finally
give our conclusions in Section 7.

2 Preliminaries

In this section, we define the type of side-channel attacks considered in this paper and
review the notion of perfect masking.

Side-Channel Attacks. Following the notation used by Blömer et al. [4], we assume
that the program to be verified implements a function c ← enc(x, k), where x is the
plaintext, k is the secret key, and c is the ciphertext. Let I1(x, k, r), I2(x, k, r), . . .,
It(x, k, r) be the sequence of intermediate computation results inside the function,
where r is an s-bit random number in the domain {0, 1}s. The purpose of using r is
to make all intermediate results statistically independent of the secret key (k).

When enc(x, k) is a linear function in the Boolean domain, masking and de-masking
are straightforward. However, when enc(x, k) is a non-linear function, masking and de-
masking often require a complete redesign of the implementation. However, this manual
design process is both labor intensive and error prone, and currently, there is a lack of
automated tools to assess how secure a countermeasure really is.

We assume that an adversary knows the pair (x, c) of plaintext and ciphertext in
c ← enc(x, k). For each pair (x, c), the adversary also knows the joint distribution of at
most d intermediate computation results I1(x, k, r), . . . , Id(x, k, r), through access to
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some aggregated quantity such as the power dissipation. However, the adversary does
not have access to r, which is produced by a true random number generator. The goal
of the adversary is to compute the secret key (k). In embedded computing, for instance,
these are realistic assumptions. In their seminal work, Kocher et al. [10] demonstrated
that for d = 1 and 2, the sensitive data can be reliably deduced using a statistical method
known as differential power analysis (DPA).

Perfect Masking. Given a pair (x, k) of plaintext and secret key for the function
enc(x, k), and d intermediate results I1(x, k, r), . . . , Id(x, k, r), we use Dx,k(R) to
denote the joint distribution of I1, . . . , Id – while assuming that the s-bit random num-
ber r is uniformly distributed in the domain {0, 1}s. Following Blömer et al. [4], we
do not put restrictions on the technical capability of an adversary. As long as there is
information leak, we consider the implementation to be vulnerable.

Definition 1. Given an implementation of function enc(x, k) and a set of intermediate
results {Ii(x, k, r)}, we say that the implementation is order-d perfectly masked if, for
all d-tuples 〈I1, . . . , Id〉, we have

Dx,k(R) = Dx′,k′(R) for any two pairs (x, k) and (x′, k′) .

The notion of perfect masking used here is more accurate than the sensitivity [2].
There, an intermediate result is considered to be sensitive if (1) it depends on at least
one secret input and (2) it is independent of any random input. We have demonstrated
the difference between them using the example in Fig. 1, where o1,o2,o3,o4 are all
insensitive, but only o4 is perfectly masked. In general, if an intermediate result is per-
fectly masked, it is guaranteed to be insensitive. However, an insensitive intermediate
result may not be perfectly masked.

To check for violations of perfect masking, we need to decide whether there exists a
d-tuple 〈I1, . . . , Id〉 such that Dx,k(R) �= Dx′,k′(R) for some (x, k) and (x′, k′). Here,
the main challenge is to compute Dx,k(R). We will present our solution in Section 3.

In this work, we focus on verifying security-critical programs, e.g. those that im-
plement cryptographic algorithms, as opposed to arbitrary software programs. (Our
method would be too expensive for verifying general-purpose software.) In general,
the class of programs that we consider here do not have input-dependent control flow,
meaning that we can easily remove all the loops and function calls from the code using
standard loop unrolling and function inlining techniques. Furthermore, the program can
be transformed into a branch-free representation, where the if-else branches are merged.
Finally, since all variables are bounded integers, we can convert the program to a purely
Boolean program through bit-blasting. Therefore, in this paper, we shall present our
new verification method on the bit-level representation of a branch-free program. Our
goal is to verify that all intermediate bits of the program are perfectly masked.

3 SMT Based Verification of Perfect Masking

We first illustrate the overall flow of our verification method using the program in Fig. 2.
The program is a masked version of c ← (k1 ∧ k2), where k1 and k2 are two secret
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1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1 ⊕ r1;
4 : n2 = k2 ⊕ r2;
5 : n3 = n1 ∧ n2;
6 : n4 = k2 ⊕ r2;
7 : n5 = r1 ∧ n4;
8 : n6 = k1 ⊕ r1;
9 : n7 = r2 ∧ n6;
10 : n8 = n5 ⊕ n7;
11 : c = n3 ⊕ n8;
12 : return c;
13 : }

c

⊕
⊕

∧ ∧

⊕⊕

⊕

∧
n7

n6

r1r2k2
r1k1

n4

n5
n2

n3

n1

n8

r2

k2 r2 k1 r1

⊕

Fig. 2. Example: a program and its graphic representation (⊕ denotes XOR; ∧ denotes AND)

keys, r1 and r2 are random variables with independent and uniform distribution in
{0, 1}, and c is the computation result. The objective of masking is to make the power
consumption of the device executing this code independent from the values of the secret
keys. This masking scheme originated from Blömer et al. [4]. The return value c is
logically equivalent to (k1 ∧ k2)⊕ (r1 ∧ r2). The corresponding demasking function,
which is not shown in the figure, is c⊕ (r1∧ r2). Therefore, demasking would produce
a result that is logically equivalent to the desired value (k1 ∧ k2).

Our method will determine if all the intermediate variables of the program are per-
fectly masked. We use the Clang/LLVM compiler to parse the input Boolean program
and construct the data-flow graph, where the root represents the output and the leaf
nodes represent the input bits. Each internal node represents the result of a Boolean
operation of one of the following types: AND, OR, NOT, and XOR. For the example
in Fig. 2, our method starts by parsing the program and creating a graph representation.
This is followed by traversing the graph in a topological order, from the program inputs
(leaf nodes) to the return value (root node). For each internal node, which represents
an intermediate result, we check whether it is perfectly masked. The order in which we
check the internal nodes is as follows: n1, n2, n3, n4, n5, n6, n7, n8, and finally, c.

The Theory. As the starting point, we mark all the plaintext bits in x as public, the
key bits in k as secret, and the mask bits in r as random. Then, for each intermediate
computation result I(x, k, r) of the program, we check whether it is perfectly masked.
Following Definition 1, we formulate this check as a satisfiability problem as follows:

∃x.∃k, k′ . (Σr∈{0,1}sI(x, k, r) �= Σr∈{0,1}sI(x, k′, r)
)

Here, x represents the plaintext bits, k and k′ represent two different valuations of the
key bits, and r is the random number uniformly distributed in the domain {0, 1}s, where
s is the number of random bits. For any fixed (x, k, k′),

– Σr∈{0,1}sI(x, k, r) is the number of satisfying assignments for I(x, k, r), and
– Σr∈{0,1}sI(x, k′, r) is the number of satisfying assignment for I(x, k′, r).

Assume that r is uniformly distributed in the domain {0, 1}s, the above summations
can be used to indicate the probabilities of I being logical 1 under two different key
values k and k′.
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If the above formula is satisfiable, there exists a plaintext x and two different keys
(k, k′) such that the distribution of I(x, k, r) differs from the distribution of I(x, k′, r).
In other words, some information of the secret key is leaked through I , and therefore
we say that I is not perfectly masked. If the above formula is unsatisfiable, then such
information leakage is not possible, and therefore we say that I is perfectly masked.

Another way to understand the above satisfiability problem is to look at the negation.
Instead of checking the satisfiability of the formula above, we check the validity of the
formula below:

∀x.∀k, k′. (Σr∈{0,1}sI(x, k, r) = Σr∈{0,1}sI(x, k′, r)
)

If this formula is valid – meaning that it holds for all valuations of x, k and k′ – then
we say that I is perfectly masked.

The Encoding. Let Φ denote the SMT formula to be created for checking intermediate
result I(x, k, r). Let s be the number of random bits in r. Our encoding method ensures
that Φ is satisfiable if and only if I is not perfectly masked. We define Φ as follows:

Φ :=

(
2s−1∧

r=0

Ψr
k

)

∧
(

2s−1∧

r=0

Ψr
k′

)

∧ Ψb2i ∧ Ψsum ∧ Ψdiff ,

where the subformulas are defined as follows:

– Program logic (Ψr
k ): Each subformula Ψr

k encodes a copy of the functionality of
I(x, k, r), with the random variable r set to a concrete value in {0, . . . , 2s− 1} and
the key set to value k or k′. All copies share the same plaintext variable x.

– Boolean-to-int (Ψb2i): It encodes the conversion of the Boolean valued output of
I(x, k, r) to an integer (true becomes 1 and false becomes 0), so that the integer
values can be summed up later to compute Σ2s

r=1I(x, k, r).
– Sum-up-the-1s (Ψsum): It encodes the two summations of the logical 1s in the out-

puts of the 2s program logic copies, one for I(x, k, r) and the other for I(x, k′, r).
– Different sums (Ψdiff ): It asserts that the two summations should have different

results.

SAT?

code checked code checked code checked code checked

code checked code checked code checked code checked

k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2

0    0 0    1 1    0 1    1

k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2

0    0 0    1 1    0 1    1

Fig. 3. SMT encoding for checking the statistical dependence of an output on secret data (k1, k2)
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Fig. 3 is a pictorial illustration of our SMT encoding for an intermediate result
I(k1, k2, r1, r2), where k1, k2 are the secret key bits and r1, r2 are two random bits.
Here, the first four boxes, encoding Ψ0

k , . . . , Ψ
3
k , are the four copies of the program

logic for key bits (k1k2), with the random bits set to 00, 01, 10, and 11, respectively.
The other four boxes, encoding Ψ0

k′ , . . . , Ψ3
k′ , are the four copies of the program logic

for key bits (k1′k2′), with the random bits set to 00, 01, 10, and 11, respectively. The
formula checks for security against first-order DPA attacks – whether there exist two
sets of keys (k1 k2 and k1’ k2’) under which the distributions of I are different.

The Running Example. Consider node n8 in Fig. 2 as the node under verification. The
function is defined as n8 = (r1 & (k2 xor r2)) xor (r2 & (k1 xor r1)).
The SMT formula that our method generates – by instantiating r1r2 to 00, 01, 10,
and 11 – is the conjunction of all of the formulas listed below:

n8_1 = (0 & (k2 xor 0)) xor (0 & (k1 xor 0)) // four copies of I(k, r)
n8_2 = (0 & (k2 xor 1)) xor (1 & (k1 xor 0))
n8_3 = (1 & (k2 xor 0)) xor (0 & (k1 xor 1))
n8_4 = (1 & (k2 xor 1)) xor (1 & (k1 xor 1))
n8_1’ = (0 & (k2’ xor 0)) xor (0 & (k1’ xor 0)) // four copies of I(k’,r)
n8_2’ = (0 & (k2’ xor 1)) xor (1 & (k1’ xor 0))
n8_3’ = (1 & (k2’ xor 0)) xor (0 & (k1’ xor 1))
n8_4’ = (1 & (k2’ xor 1)) xor (1 & (k1’ xor 1))
(( num1 = 1 ) & n8_1 ) | ((num1=0) & not n8_1 ) // convert bool to integer
(( num2 = 1 ) & n8_2 ) | ((num2=0) & not n8_2 )
(( num3 = 1 ) & n8_3 ) | ((num3=0) & not n8_3 )
(( num4 = 1 ) & n8_4 ) | ((num4=0) & not n8_4 )
(( num1’ = 1 ) & n8_1’) | ((num1’=0) & not n8_1’) // convert bool to integer
(( num2’ = 1 ) & n8_2’) | ((num2’=0) & not n8_2’)
(( num3’ = 1 ) & n8_3’) | ((num3’=0) & not n8_3’)
(( num4’ = 1 ) & n8_4’) | ((num4’=0) & not n8_4’)
(num1 + num2 + num3 + num4) != (num1’ + num2’ + num3’ + num4’) // the check

We solve the conjunction of the above formulas using an off-the-shelf SMT solver
called Yices [6]. In this particular example, the formula is satisfiable. For example, one
of the satisfying assignments is k1k2=00 and k1’k2’=01. We shall show in the next
section that, when the key bits are 00, the probability for n8 to be logical 1 is 0%; but
when the key bits are 01, the probability is 50%. This makes it vulnerable to first-order
DPA attacks. Therefore, n8 is not perfectly masked.

High-Order Attacks. For a masked code to be resistant to first-order differential power
analysis (DPA) attacks, all the intermediate results must be perfectly masked. However,
even if each intermediate result is perfectly masked, it is still not sufficient to resist high-
order DPA attacks, where an adversary can simultaneously observe leakage from more
than one intermediate computation result. For a masking scheme to be resistant to order-
d DPA attacks, we need to ensure that the joint distribution of any d intermediate results
(where d = 2, 3, . . . ) is independent of the secret key. That is, for any d intermediate
results I1, . . . , Id, we check the satisfiability of the following formula:

∃x.∃k, k′ . (Σr∈{0,1}sΣd
i=1Ii(x, k, r) �= Σr∈{0,1}sΣd

i=1Ii(x, k
′, r)

)

Our encoding can be easily extended to implement this new check. In practice, most
countermeasures assume that the adversary has access to the side-channel leakage of
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either one or two intermediate results, which corresponds to first-order and second-
order attacks. In our actual implementation, we handle both first-order and second-order
attacks. In our experiments, we also evaluate our new method on verifying countermea-
sures against both first-order and second-order attacks (where d = 1 or 2).

4 The Working Example

Consider the automated verification of our running example in Fig. 2. For each internal
node I , we first identify all the transitive fan-in nodes of I in the program to form a code
region for the subsequent SMT solver based analysis. In the worst case, the extracted
code region should start from the instruction (node) to be verified, and cover all the
transitive fan-in nodes on which it depends. Then, the extracted code region is given
to our SMT based verification procedure, whose goal is to prove (or disprove) that the
node is statistically independent of the secret key.

Following a topological order, our method starts with node n1, which is defined in
Line 3 of the program in Fig. 2. The extracted code region consists of n1 = k1 ⊕ r1
itself. Since it involves only one key and one random variable in the XOR operation,
a simple static analysis can prove that it is perfectly masked. Therefore, although we
could have verified it using SMT, we skip it for efficiency reasons. Such simple static
analysis is able to prove that n2, n4 and n6 are also perfectly masked.

Next, we check if n3 is perfectly masked. The truth table of n3 is shown in Fig. 4
(left). In all four valuations of k1 and k2, the probability of n3 being logical 1 is 25%.
Therefore, n3 is perfectly masked. When we apply our SMT based method, the solver
is not able to find any satisfying assignment for k1 and k2 under which the probability
distributions of n3 are different. Note that our method does not check the probability of
the output being logical 0, since having an equal probability distribution of logical 1 is
equivalent to having an equal probability distribution for logical 0.

k1 k2 r1 r2 n3
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

k1 k2 r1 r2 n8
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

k1 k2 r1 r2 c
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Fig. 4. The truth-tables for internal nodes n3, n8, and c of the example program in Fig. 2

The verification steps for nodes n5 and n7 are similar to that of n3 – all of them are
perfectly masked.



70 H. Eldib, C. Wang, and P. Schaumont

Next, we check if n8 is perfectly masked. The proof would fail because, as shown in
the truth table in Fig. 4 (middle), the probability for n8 to be logical 1 is not the same
under different valuations of the keys. For example, if the keys are 00, then n8 would
be 0 regardless of the values of the random variables. Recall that we have shown the
detailed SMT encoding for n8 in Section 3. Using our method, the solver can quickly
find two configurations of the key bits (for example, 00 and 11) under which the prob-
abilities of n8 being logical 1 are different. Therefore, n8 is not perfectly masked.

The remaining node is c, whose truth table is shown in Fig. 4 (right). Similar to n8,
our SMT based method will be able to show that it is not perfectly masked.

It is worth pointing out that the result of applying the Sleuth method [2] would have
been different. Although n8 and c are clearly vulnerable to first-order DPA attacks, the
Sleuth method, based on the notion of sensitivity, would have classified them as “se-
curely masked.” This demonstrates a major advantage of our new method over Sleuth.

5 The Incremental Verification Algorithm

Note that the size of the formula created by our SMT encoding is linear in the size of
the program and exponential in the number of random variables – for s random bits, we
need to make 2s+1 copies of the program logic. This is the main bottleneck for applying
our method to large programs. In this section, we propose an incremental verification
algorithm, which applies SMT solver based analysis only to small code regions – one
at a time – as opposed to the entire fan-in cone of the node under verification. This is
crucial for scaling the method up to programs of practical size.

rnew

rkx

rkx

I 1

I 2

I 3I 3
rdummy+

+ de−mask

mask

mask2 mask2
I2 := I1 ⊕ de-mask(x , k , r)

:= rnew ⊕ mask(x , k , r) ⊕ de-mask(x , k , r)
:= rnew ⊕ (. . .)
:= rdummy

Before verifying mask2, if we have already
proved that I2 is perfectly masked, and rnew

is a new random variable not used elsewhere,
then for the purpose of checking mask2 only,
we can substitute I2 with rnew while verify-
ing mask2.

Fig. 5. Incremental verification: applying the SMT based analysis to a small fan-in region only

Extracting the Verification Region. In practice, a common strategy in implementing
randomization based countermeasures is to have a chain of modules, where the inputs
of each module are masked before executing its logic, and are demasked afterward.
To avoid having an unmasked intermediate value, the inputs to the successor module
are masked with fresh random variables, before they are demasked from the random
variables of the previous module. This can be illustrated by the example in Fig. 5,
where the output of mask(x,k,r) is masked with the new random variable rnew before it
is demasked from the old random variable r.
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Due to associativity of the ⊕ operator, reordering the masking and demasking oper-
ations would not change the logical result. For example, in Fig. 5, the instruction being
verified is in mask2(). Since the newly added random variable rnew is not used inside
mask() or de-mask(), or in the support of I3, we can replace the entire fan-in cone of
I2 by a new random variable rdummy (or even rnew itself) while verifying mask2().
We shall see in the experimental results section that such opportunities are abundant in
real-world applications. Therefore, in this subsection, we present a sound algorithm for
extracting a small code region from the fan-in cone of the node under verification.

Our algorithm relies on some auxiliary data structures associated with the current
node i under verification: supportV[i], uniqueM[i] and perfectM[i].

– supportV[i] is the set of inputs in the support of the function of node i.
– uniqueM[i] is the set of random inputs that each reaches i along only one path.
– perfectM[i] is a subset of uniqueM[i] where each random variable, by itself, guar-

antees that node i is perfectly masked.

These tables can be computed by a traversal of the program nodes as described in Algo-
rithm 1. For example, for node I1 in Fig. 5, supportV[I1]= {x, k, r, rnew}, uniqueM[I1]
= {r, rnew}, and perfectM[I1]= {rnew}, assuming r is not repeated in the mask block.
For node I2, we have supportV[I2]= {x, k, r, rnew}, uniqueM[I2]= {rnew}, since r
reaches I2 twice and so may have been de-masked, and perfectM[I2]= {rnew}.

Algorithm 1. Computing the auxiliary tables for all internal nodes of the program.

1. supportV[i] ← { v } for each input node i with variable v
2. uniqueM[i] ← { v } for each input node i with random mask variable v
3. perfectM[i] ← { v } for each input node i with random mask variable v
4. for each (internal node i in a leaf-to-root topological order) {
5. L ← LEFTCHILD(i)
6. R ← RIGHTCHILD(i)
7. supportV[i] ← supportV[L] ∪ supportV[R]
8. uniqueM ← (uniqueM[L] ∪ uniqueM[R]) \ (supportV[L] ∩ supportV[R])
9. if (i is an XOR node)

10. perfectM[i] ← uniqueM[i] ∩ (perfectM[L]∪perfectM[R])
11. else
12. perfectM[i] ← { }
13. }

Our idea of extracting a small code region for SMT based analysis is formalized in
Algorithm 2. Given the node i under verification, and uniqueM[i] as the set of random
variables that each reaches i along only one path, we call GETREGION(i,uniqueM[i])
to compute the region. Inside GETREGION, uniqueM[i] is renamed to freshMasksATi.
More specifically, we start by checking each transitive fan-in node n of the current node
i. If n is a leaf node (Line 2), then we add n and the input variable v to the region. If
n is not a leaf node, we check if there is a random variable r ∈uniqueMATi that, by
itself, can perfectly mask node n (Line 4). In Fig. 5, for example, rnew , by itself, can
uniformly mask node I2. If such random variable r exists, then we add pair (n, r) to
the region and return – skipping the entire fan-in cone of n. Otherwise, we recursively
invoke GETREGION to traverse the two child nodes of n.
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Algorithm 2. Extracting a code region for node i for the subsequent SMT based analysis.

1. GETREGION (n, uniqueMATi) {
2. if (n is an input node with variable v)
3. region.add ← (n, v)
4. else if (∃ random variable r ∈ perfectM[n] ∩ uniqueMATi)
5. region.add ← (n, r)
6. else
7. region.add ← (n, {})
8. region.add ← GETREGION(n.Left, uniqueMATi)
9. region.add ← GETREGION(n.Right, uniqueMATi)

10. return region
11. }

The Overall Algorithm. Algorithm 3 shows the overall flow of our incremental verifi-
cation method. Given the program and the lists of secret, random and plaintext variables,
our method systematically scans through all the internal nodes from the inputs to the
return value. For each node i, our method first extracts a small code region (Line 4).
Then, we invoke the SMT based analysis. If the node is not perfectly masked, we add it
to the list of bad nodes.

Algorithm 3. Incremental verification of perfect masking.

1. VERIFYPERFECTMASKING (Prog, keys, rands, plains) {
2. badNodes ← { }
3. for each (internal node i ∈ Prog in a topological order ) {
4. region ← GETREGION(i, uniqueM[i])
5. notPerfect ← CHECKMASKINGBYSMT (i, region, keys, rands, plains )
6. if (notPerfect)
7. badNodes.add( i )
8. }
9. return badNodes

10. }

To optimize the performance of Algorithm 3, we conduct a simple static analysis
between Line 4 and Line 5 to quickly check whether it is fruitful to invoke the SMT
solver. The first one checks if the region contains any secret keys, if not then the solver
is not invoked and the instruction is perfectly masked. The second analysis checks some
syntactic conditions – if all of these conditions are satisfied, the current node i is guar-
anteed to be perfectly masked. In such case, we also avoid invoking the SMT solver.
The implemented syntactic conditions are listed as follows:

– The instruction has no secret input as its child. This guarantees that when a secret
variable is introduced, its masking operation will be verified.

– None of the random variables appears in both operand’s supportV tables. This
guarantees that no perfectly masking of a secret variable in any of the operands
may be affected.
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– Both operands are perfectly masked. This guarantees to find all the resultant imper-
fect masked instructions due to an initial imperfectly masked instruction.

To further optimize the performance of Algorithm 3, we implement a method for
identifying random variables that are don’t cares for the node i under verification, and
use the information to reduce the cost of the SMT based analysis. Prior to the SMT
encoding, for each random variable r ∈supportV[i], we check if the value of r can
ever affect the output of i. If the answer is no, then r is a don’t care. During our SMT
encoding, we will set r to logical 0 rather than treat r as a random variable, to to reduce
the size of the SMT formula. This can lead to a significant performance improvement
since the formula size is exponential in the number of relevant random variables.

We check whether r ∈ support[i] is a don’t care for node i by constructing a SAT
formula and solving it using the SMT solver. The SAT formula is defined as follows:

Ψr=0
region ∧ Ψr=1

region ∧ ΨdiffO ,

where Ψr=0
region encodes the program logic of the region, with the random bit r set to

0, Ψr=1
region encodes the program logic of the region, with the random bit r set to 1,

and ΦdiffO asserts that the outputs of these two copies differ. If the above formula is
unsatisfiable, then r is a don’t care for node i.

6 Experiments

We have implemented our method in a verification tool called SC Sniffer, based on the
LLVM compiler and the Yices SMT solver [6]. It runs in two modes: monolithic and
incremental. The monolithic mode applies our SMT based encoding to the entire fan-in
cone of each node in the program, whereas the incremental method tries to restrict the
SMT encoding to a localized region. In addition, we implemented the Sleuth method [2]
for experimental comparison. The main difference is that our method not only checks
whether a node is masked (as in Sleuth), but also checks whether it is perfectly masked,
i.e. it is statistically independent of the secret key.

We have evaluated our tool on some recently proposed countermeasures. Our exper-
iments were designed to answer the following research questions:

– How effective is our new method? We know that in theory, the new method is more
accurate than the Sleuth method. But does it have a significant advantage over the
Sleuth method in practice?

– How scalable is our new method, especially in verifying applications of realistic
code size and complexity? We have extended our SMT based method with incre-
mental verification. Is it effective in practice?

Table 1 shows the statistics of the benchmarks. Column 1 shows the name of each
benchmark example. Column 2 shows a short description of the implemented algo-
rithm. Column 3 shows the number of lines of code – here, each instruction is a bit
level operation. Column 4 shows the number of nodes that represent the intermediate
computation results. Columns 5-7 show the number of input bits that are the secret key,
the plaintext, and the random variable, respectively.
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Table 1. The benchmark statistics: in addition to the program name and a short description, we
show the total lines of code, the numbers of intermediate nodes and the various inputs

Name Description Code Size Nodes Keys Plains Rands

P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 0 16
P3 CHES13 AES Shift Rows [2nd-order] 21 21 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) [2-order] 23 24 1 0 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) [2-order] 27 60 1 0 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2
P7 Logic Design for AES S-Box (2nd implementation) 40 6 2 0 3
P8 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 0 4
P9 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 0 4
P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 0 4
P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 0 4
P12 MAC-Keccak 512b Perfect masked 285k 128k 288 288 805
P13 MAC-Keccak 512b De-mask and then mask – compiler error 285k 128k 288 288 805
P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 285k 128k 288 288 805
P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 285k 152k 288 288 805
P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 285k 128k 288 288 805
P17 MAC-Keccak 512b Unmasking of Pi function 285k 131k 288 288 805

Table 2. Experimental results: comparing our SC Sniffer method with the Sleuth method [2]

Name Sleuth [2] SC Sniffer (monolithic) SC Sniffer (incremental)
masked nodes nodes time masked nodes nodes time masked nodes nodes SMT time

failed checked perfect failed checked perfect failed checked mask

P1 No 16 47 0.16s No 16 47 0.22s No 16 47 16 0.09s
P2 No 8 31 0.21s No 8 31 0.20s No 8 31 8 0.09s
P3 No 9 21 1.17s No 9 21 1.27s No 9 21 18 0.46s
P4 No 2 24 0.58s No 2 24 0.65s No 2 24 8 0.57s
P5 No 2 60 1.19s No 2 60 1.40s No 2 60 20 1.12s
P6 Yes 0 9 0.06s No 2 9 0.10s No 2 9 2 0.08s
P7 Yes 0 6 0.04s No 1 6 0.07s No 1 6 1 0.03s
P8 No 1 19 0.15s No 3 19 0.26s No 3 19 3 0.11s
P9 Yes 0 19 0.13s No 2 19 0.27s No 2 19 2 0.10s
P10 Yes 0 22 0.18s No 1 22 0.32s No 1 22 2 0.14s
P11 Yes 0 22 0.20s No 1 22 0.37s No 1 22 3 0.18s
P12 Yes 0 128k 91m53s - 0 34 mem-out Yes 0 128K 0 10m48s
P13 No 2560 128k 92m59s No 1 46 mem-out No 2560 128K 2560 14m10s
P14 Yes 0 128k 97m38s - 0 31 mem-out No 1024 128K 1024 18m20s
P15 Yes 0 152k 132m10s - 0 32 mem-out No 512 152K 1024 37m37s
P16 No 512 128k 113m12s - 0 40 mem-out No 1536 128K 1536 17m24s
P17 No 4096 131k 103m56s - 0 34 mem-out No 4096 131K 4096 17m35s

The benchmarks are classified into three groups. The first group of test cases (P1 to
P5) are taken from the Sleuth benchmark [2], all of which contain intermediate variables
that are not masked at all. More specifically, P1 is the masking key whitening code on
Page 12 of the Sleuth paper. P2 is the AES8 example, a smart card implementation of
AES resistant to power analysis, originated from Herbst et al. [8]. P3 is the code on
Page 13 of the Sleuth paper, also originated from Herbst et al. [8]. P4 is the code on
Page 18 of the Sleuth paper, originated from Messerges [13]. P5 is the code on Page 18
of the Sleuth paper, originated from Goubin [7].

The second group of test cases (P6 to P11) are examples where most of the interme-
diate variables are masked, but none of the masking schemes is perfect. P6 and P7 are
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the two examples used by Blömer et al. [4] (on Page 7). P8 and P9 are the SHA3 MAC-
Keccak computation reordered examples, originated from Bertoni et al. [3] (Eq. 5.2 on
Page 46). P10 and P11 are two experimental masking schemes for the Chi function in
SHA3, none of which is perfectly masked.

The third group of test cases (P12 to P17) comes from the regeneration of MAC-
Keccak reference code submission to NIST in the SHA-3 competition [15]. There are a
total of 285k lines of Boolean operation code. The difference among these test cases is
that they are protected by various countermeasures, some of which are perfectly masked
(e.g. P12) whereas others are not.

Table 2 shows the experimental results run on a machine with a 3.4 GHz Intel i7-
2600 CPU, 4 GB RAM, and a 32-bit Linux OS. We have compared the performance
of three methods: Sleuth, New (monolithic), and New (incremental). Here, Sleuth is
the method proposed by Bayrak et al. [2], while the other two are our own method.
In this table, Column 1 shows the name of each test program. Columns 2-5 show the
results of running Sleuth, including whether the program passed the check, the number
of nodes failed the check, and the total number of nodes checked. Columns 6-9 show the
results of running our new monolithic method. Here, mem-out means that the method
requires more than 4 GB of RAM. Columns 10-14 show the results of running our new
incremental method. Here, we also show the number of SMT based masking checks
made, which is often much smaller than the number of nodes checked, because many
of them are resolved by our static analysis.

First, the results show that our new algorithm is more accurate than Sleuth in deciding
whether a node is securely masked. Every node that failed the security check of Sleuth
would also fail the security check of our new method. However, there are many nodes
that passed the check of Sleuth, but failed the check of our new method. These are
the nodes that are masked, but their probability distributions are still dependent on the
sensitive inputs – in other words, they are not perfectly masked.

Second, the results show that our incremental method is significantly more scalable
than the monolithic method. On the first two groups of test cases, where the programs
are small, both methods can complete, and the difference in run time is small. However,
on large programs such as the Keccak reference code, the monolithic method could not
finish since it quickly ran out of the 4 GB RAM, whereas the incremental method can
finish in a reasonable amount of time. Moreover, although the Sleuth method imple-
ments a significantly simpler (and hence weaker) check, it is also based on a monolithic
verification approach. Our results in Table 2 show that, on large examples, our incre-
mental method is significantly faster than Sleuth.

As a measurement of the scalability of the
algorithms, we have conducted experiments
on a 1-bit version of test program P1 for 1
to 10 encryption rounds. In each parameter-
ized version, the input for each round is the
output from the previous round. We ran the
experiment twice, once with an unmasked in-
struction in each round, and once with all
instructions perfectly masked. The results of
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the two experiments are almost identical, and therefore, we only plot the result for the
perfectly masked version. In the right figure, the x-axis shows the program size, and the
y-axis shows the verification time in seconds. Among the three methods, our incremen-
tal method is the most scalable.

7 Conclusions

We have presented the first fully automated method for formally verifying whether a
software implementation is perfectly masked by uniformly random inputs, and there-
fore is secure against power analysis based side-channel attacks. Our new method re-
lies on translating the verification problem into a set of constraint solving problems,
which can be decided by off-the-shelf solvers such as Yices. We have also presented
an incremental checking procedure to drastically improve the scalability of the SMT
based algorithm. We have conducted experiments on a large set of recently proposed
countermeasures. Our results show that the new method is not only more precise than
existing methods, but also scalable for practical use.
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