
SACO: Static Analyzer for Concurrent Objects

Elvira Albert1, Puri Arenas1, Antonio Flores-Montoya2, Samir Genaim1,
Miguel Gómez-Zamalloa1, Enrique Martin-Martin1,

German Puebla3, and Guillermo Román-Dı́ez3

1 Complutense University of Madrid (UCM), Spain
2 Technische Universität Darmstadt (TUD), Germany

3 Technical University of Madrid (UPM), Spain

Abstract. We present the main concepts, usage and implementation of
SACO, a static analyzer for concurrent objects. Interestingly, SACO is
able to infer both liveness (namely termination and resource bounded-
ness) and safety properties (namely deadlock freedom) of programs based
on concurrent objects. The system integrates auxiliary analyses such as
points-to and may-happen-in-parallel, which are essential for increasing
the accuracy of the aforementioned more complex properties. SACO pro-
vides accurate information about the dependencies which may introduce
deadlocks, loops whose termination is not guaranteed, and upper bounds
on the resource consumption of methods.

1 Introduction

With the trend of parallel systems, and the emergence of multi-core comput-
ing, the construction of tools that help analyzing and verifying the behaviour
of concurrent programs has become fundamental. Concurrent programs contain
several processes that work together to perform a task and communicate with
each other. Communication can be programmed using shared variables or mes-
sage passing. When shared variables are used, one process writes into a variable
that is read by another; when message passing is used, one process sends a mes-
sage that is received by another. Shared memory communication is typically
implemented using low-level concurrency and synchronization primitives These
programs are in general more difficult to write, debug and analyze, while its main
advantage is efficiency. The message passing model uses higher-level concurrency
constructs that help in producing concurrent applications in a less error-prone
way and also more modularly. Message passing is the essence of actors [1], the
concurrency model used in concurrent objects [9], in Erlang, and in Scala.

This paper presents the SACO system, a S tatic Analyzer for Concurrent
Objects. Essentially, each concurrent object is a monitor and allows at most
one active task to execute within the object. Scheduling among the tasks of
an object is cooperative, or non-preemptive, such that the active task has to
release the object lock explicitly (using the await instruction). Each object has
an unbounded set of pending tasks. When the lock of an object is free, any task
in the set of pending tasks can grab the lock and start executing. When the
result of a call is required by the caller to continue executing, the caller and the

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 562–567, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



SACO: Static Analyzer for Concurrent Objects 563

callee methods can be synchronized by means of future variables, which act as
proxies for results initially unknown, as their computations are still incomplete.

The figure below overviews the main components of SACO, whose distinguish-
ing feature is that it infers both liveness and safety properties.

Termination

MHP
pairs
MHP

Program
Deadlock no/cycles

Web

points−topoints−to
pp

Points to

Input Auxiliary Analysis
Advanced Analysis

Resources bound
analysis

Sizeparameters
Analysis

yes/scc

unknown/

plug−in

interface

Eclipse

Visualizer

SACO receives as input a program and a selection of the analysis parameters.
Then it performs two auxiliary analyses: points-to and may-happen-in-parallel
(MHP), which are used for inferring the more complex properties in the next
phase. As regards to liveness, we infer termination as well as resource bound-
edness, i.e., find upper bounds on the resource consumption of methods. Both
analyses require the inference of size relations, which are gathered in a previous
step. Regarding safety, we infer deadlock freedom, i.e., there is no state in which
a non-empty set of tasks cannot progress because all tasks are waiting for the
termination of other tasks in the set, or otherwise we show the tasks involved
in a potential deadlock set. Finally, SACO can be used from a command line
interface, a web interface, and an Eclipse plugin. It can be downloaded and/or
used online from its website http://costa.ls.fi.upm.es/saco.

2 Auxiliary Analyses

We describe the auxiliary analyses used in SACO by means of the example below:

1 class PrettyPrinter{
2 void showIncome(Int n){. . .}
3 void showCoin(){. . .}
4 }//end class
5 class VendingMachine{
6 Int coins;
7 PrettyPrinter out;
8 void insertCoins(Int n){
9 Fut〈void〉 f;

10 while (n>0){
11 n=n−1;
12 f=this ! insertCoin();
13 await f?; }
14 }

15 void insertCoin(){
16 coins=coins+1;
17 }
18 Int retrieveCoins(){
19 Fut〈void〉 f;
20 Int total=0;
21 while (coins>0){
22 coins=coins−1;
23 f=out ! showCoin();
24 await f?;
25 total=total+1; }
26 return total;
27 }
28 }//end class

29 //main method
30 main(Int n){
31 PrettyPrinter p;
32 VendingMachine v;
33 Fut〈Int〉 f;
34 p=new PrettyPrinter();
35 v=new VendingMachine(0,p);
36 v ! insertCoins(n);
37 f=v ! retrieveCoins();
38 await f?;
39 Int total=f.get;
40 p!showIncome(total);
41 }

Wehave a classPrettyPrinter to display some information and a classVendingMachine

with methods to insert a number of coins and to retrieve all coins. The main

method is executing on the object This, which is the initial object, and receives
as parameter the number of coins to be inserted. Besides This, two other concur-
rent objects are created at Line 34 (L34 for short) and L35. Objects can be seen as
buffers in which tasks are posted and that execute in parallel. In particular, two
tasks are posted at L36 and L37 on object v. insertCoins executes asynchronously

http://costa.ls.fi.upm.es/saco


564 E. Albert et al.

on v. However, the await at L38 synchronizes the execution of This with the com-
pletion of the task retrieveCoins in v by means of the future variable f. Namely, at
the await, if the task spawned at L37 has not finished, the processor is released and
any available task on the This object could take it. The result of the execution of
retrieveCoins is obtained by means of the blocking get instruction which blocks the
execution of This until the future variable f is ready. In general, the use of get can
introduce deadlocks. In this case, the await at L38 ensures that retrieveCoins has
finished and thus the execution will not block.

Points-to Analysis. Inferring the set of memory locations to which a reference
variable may point-to is a classical analysis in object-oriented languages. In
SACO we follow Milonava et al. [11] and abstract objects by the sequence of
allocation sites of all objects that lead to its creation. E.g., if we create an
object o1 at program point pp1, and afterwards call a method of o1 that creates
an object o2 at program point pp2, then the abstract representation of o2 is
pp1.pp2. In order to ensure termination of the inference process, the analysis is
parametrized by k, the maximal length of these sequences. In the example, for
any k ≥ 2, assuming that the allocation site of the This object is ε, the points-to
analysis abstracts v and out to ε.35 and ε.34, respectively. For k = 1, they would
be abstracted to 35 and 34. As variables can be reused, the information that
the analysis gives is specified at the program point level. Basically, the analysis
results are defined by a function P(op, pp, v) which for a given (abstract) object
op, a program point pp and a variable v, it returns the set of abstract objects
to which v may point to. For instance, P(ε, 36, v) = 35 should be read as: when
executing This and instruction L36 is reached, variable v points to an object
whose allocation site is 35. Besides, we can trivially use the analysis results to find
out to which task a future variable f is pointing to. I.e., P(op, pp, f) = o.m where
o is an abstract object and m a method name, e.g., P(ε, 37, f) = 35.retrieveCoins.
Points-to analysis allows making any analysis object-sensitive [11]. In addition, in
SACO we use it: (1) in the resource analysis in order to know to which object the
cost must be attributed, and (2) in the deadlock analysis, where the abstraction
of future variables above is used to spot dependencies among tasks.

May-Happen-in-Parallel. An MHP analysis [10,3] provides a safe approximation
of the set of pairs of statements that can execute in parallel across several objects,
or in an interleaved way within an object. MHP allows ensuring absence of data
races, i.e., that several objects access the same data in parallel and at least one of
themmodifies such data. Also, it is crucial for improving the accuracy of deadlock,
termination and resource analysis. The MHP analysis implemented in SACO [3]
can be understood as a function MHP(op, pp) which returns the set of program
points that may happen in parallel with pp when executing in the abstract object
op. A remarkable feature of our analysis is that it performs a local analysis of meth-
ods followed by a composition of the local results, and it has a polynomial complex-
ity. In our example, SACO infers that the execution of showIncome (L2) cannot hap-
pen in parallel with any instruction in retrieveCoins (L18–L27), since retrieveCoins

must be finished in the await at L38. Similarly, it also reveals that showCoin (L3)
cannot happen in parallel with showIncome. On the other hand, SACO detects that



SACO: Static Analyzer for Concurrent Objects 565

the await (L24) and the assignment (L16) may happen in parallel. This could be a
problem for the termination of retrieveCoins, as the shared variable coins that con-
trols the loop may be modified in parallel, but our termination analysis can over-
come this difficulty. Since the result of the MHP analysis refines the control-flow,
we could also consider applying the MHP and points-to analyses continuously to
refine the results of each other. In SACO we apply them only once.

3 Advanced Analyses

Termination Analysis. The main challenge is in handling shared-memory con-
current programs. When execution interleaves from one task to another, the
shared-memory may be modified by the interleaved task. The modifications can
affect the behavior of the program and change its termination behavior and its
resource consumption. Inspired by the rely-guarantee principle used for com-
positional verification and analysis [12,5] of thread-based concurrent programs,
SACO incorporates a novel termination analysis for concurrent objects [4] which
assumes a property on the global state in order to prove termination of a loop
and, then, proves that this property holds. The property to prove is the finite-
ness of the shared-data involved in the termination proof, i.e., proving that such
shared-memory is updated a finite number of times. Our analysis is based on a
circular style of reasoning since the finiteness assumptions are proved by proving
termination of the loops in which that shared-memory is modified. Crucial for
accuracy is the use of the information inferred by the MHP analysis which allows
us to restrict the set of program points on which the property has to be proved
to those that may actually interleave its execution with the considered loop.

Consider the function retrieveCoins from Sec. 2. At the await (L24) the value
of the shared variable coins may change, since other tasks may take the object’s
lock and modify coins. In order to prove termination, the analysis first assumes
that coins is updated a finite number of times. Under this assumption the loop is
terminating because eventually the value of coins will stop being updated by other
tasks, and then it will decrease at each iteration of the loop. The second step is
to prove that the assumption holds, i.e., that the instructions updating coins are
executed a finite number of times. The only update instruction that may happen
in parallel with the await is in insertCoin (L16), which is called from insertCoins and
this from main. Since these three functions are terminating (their termination
can be proved without any assumption), the assumption holds and therefore
retrieveCoins terminates. Similarly, the analysis can prove the termination of the
other functions, thus proving the whole program terminating.

Resource Analysis. SACO can measure different types of costs (e.g., number
of execution steps, memory created, etc.) [2]. In the output, it returns upper
bounds on the worst-case cost of executing the concurrent program. The results
of our termination analysis provide useful information for cost: if the program
is terminating then the size of all data is bounded (we use x+ to refer to the
maximal value for x). Thus, we can give cost bounds in terms of the maximum
and/or minimum values that the involved data can reach. Still, we need novel



566 E. Albert et al.

techniques to infer upper bounds on the number of iterations of loops whose
execution might interleave with instructions that update the shared memory.
SACO incorporates a novel approach which is based on the combination of local
ranking functions (i.e., ranking functions obtained by ignoring the concurrent
interleaving behaviors) with upper bounds on the number of visits to the in-
structions which update the shared memory. As in termination, the function
MHP is used to restrict the set of points whose visits have to be counted to
those that indeed may interleave.

Consider again the loop inside retrieveCoins. Ignoring concurrent interleavings,
a local ranking function RF = coins is easily computed. In order to obtain an
upper bound on the number of iterations considering interleavings, we need to
calculate the number of visits to L16, the only instruction that updates coins and
MHP with the await in L24. We need to add the number of visits to L16 for every
path of calls reaching it, in this case main–insertCoins–insertCoin only. By applying
the analysis recursively we obtain that L16 is visited n times. Combining the
local ranking function and the number of visits to L16 we obtain that an upper
bound on the number of iterations of the loop in retrieveCoins is coin+∗n.

Finally, we use the results of points-to analysis to infer the cost at the level of
the distributed components (i.e., the objects). Namely, we give an upper bound
of the form c(ε)*(. . . )+c(35)*(coin+∗n. . . )+ c(34)*(. . . ) which distinguishes the
cost attributed to each abstract object o by means of its associated marker c(o).

Deadlock Analysis. The combination of non-blocking (await) and blocking (get
) mechanisms to access futures may give rise to complex deadlock situations.
SACO provides a rigorous formal analysis which ensures deadlock freedom, as
described in [6]. Similarly to other deadlock analyses, our analysis is based on
constructing a dependency graph which, if acyclic, guarantees that the program
is deadlock free. In order to construct the dependency graph, we use points-to
analysis to identify the set of objects and tasks created along any execution.

p34

v35

main

p34.showCoin

v35.retrieveCoins

v35.insertCoins

v35.insertCoin

38
24

13

Given this information, the construction of
the graph is done by a traversal of the pro-
gram in which we analyze await and get

instructions in order to detect possible
deadlock situations. However, without fur-
ther temporal information, our dependency
graphs would be extremely imprecise. The
crux of our analysis is the use of the MHP analysis which allows us to label the
dependency graph with the program points of the synchronization instructions
that introduce the dependencies and, thus, that may potentially induce dead-
locks. In a post-process, we discard unfeasible cycles in which the synchronization
instructions involved in the circular dependency cannot happen in parallel. The
dependency graph for our example is shown above. Circular nodes represent
objects and squares tasks. Solid edges are tagged with the program point that
generated them (await or get instructions). Dotted edges go from each task to
their objects indicating ownership. In our example, there are no cycles in the
graph. Thus, the program is deadlock free.



SACO: Static Analyzer for Concurrent Objects 567

4 Related Tools and Conclusions

We have presented a powerful static analyzer for an actor-based concurrency
model, which is lately regaining much attention due to its adoption in Erlang,
Scala and concurrent objects (e.g., there are libraries in Java implementing con-
current objects). As regards to related tools, there is another tool [7] which
performs deadlock analysis of concurrent objects but, unlike SACO, it does not
rely on MHP and points-to analyses. We refer to [3,6] for detailed descriptions
on the false positives that our tool can give. Regarding termination, we only
know of the TERMINATOR tool [8] for thread-based concurrency. As far as we
know, there are no other cost analyzers for imperative concurrent programs.

Acknowledgments. This work was funded partially by the EU project FP7-
ICT-610582ENVISAGE:EngineeringVirtualizedServices (http://www.envisage-
project.eu) and by the Spanish projects TIN2008-05624 and TIN2012-38137.

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

3. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

4. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: Termination and
Cost Analysis of Loops with Concurrent Interleavings. In: Van Hung, D., Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 349–364. Springer, Heidelberg (2013)

5. Cook, B., Podelski, A., Rybalchenko, A.: Proving Thread Termination. In: PLDI
2007, pp. 320–330. ACM (2007)

6. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-Happen-in-Parallel Based Dead-
lock Analysis for Concurrent Objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE 2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013)

7. Giachino, E., Laneve, C.: Analysis of Deadlocks in Object Groups. In: Bruni, R.,
Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 168–182. Springer,
Heidelberg (2011)

8. http://research.microsoft.com/enus/um/cambridge/projects/terminator/
9. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core

Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

10. Lee, J.K., Palsberg, J.: Featherweight X10: A Core Calculus for Async-Finish Par-
allelism. In: PPoPP 2010, pp. 25–36. ACM (2010)

11. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

12. Popeea, C., Rybalchenko, A.: Compositional Termination Proofs for Multi-
threaded Programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 237–251. Springer, Heidelberg (2012)

http://research.microsoft.com/enus/um/cambridge/projects/terminator/

	SACO: Static Analyzer for Concurrent Objects
	1 Introduction
	2 Auxiliary Analyses
	3 Advanced Analyses
	4 Related Tools and Conclusions
	References




