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Abstract. Modal transition systems provide a behavioral and composi-
tional specification formalism for reactive systems. We survey two exten-
sions of modal transition systems: parametric modal transition systems
for specifications with parameters, and weighted modal transition sys-
tems for quantitative specifications.

1 Introduction

Modal transition systems [21,23] provide a behavioral and compositional specifi-
cation formalism for reactive systems. They grew out of the notion of relativized
bisimulation [20], which allows for simple specifications of components by allow-
ing the notion of bisimulation to take into account the restricted use that a given
component may have in its context.

A modal transition system is essentially a (labeled) transition system, but
with two types of transitions: so-called may-transitions which any implementa-
tion may (or may not) have, and must -transitions which any implementation is
required to have. In fact, ordinary labeled transition systems (or implementa-
tions) are modal transition systems where the set of may- and must-transitions
coincide. Modal transition systems come equipped with a bisimulation-like no-
tion of (modal) refinement, reflecting that the more must-transitions and the
fewer may-transitions a modal specification has the more refined and closer to a
final implementation it is.

Example 1. Consider the modal transition system shown in Fig. 1 which models
the requirements of a simple email system in which emails are first received and
then delivered; must- and may-transitions are represented by solid and dashed
arrows, respectively. Before delivering the email, the system may check or pro-
cess the email, e.g. for encryption or decryption, filtering of spam emails, or
generating automatic answers using an auto-reply feature. Any implementation
of this email system specification must be able to receive and deliver email, and
it may also be able to check arriving email before delivering it. No other behavior
is allowed. Such a valid implementation is given in Fig. 2.

The theory of modal transition systems (MTS), or modal specifications as
they were called in the paper [21] in the proceedings of the first CAV conference
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Fig. 1. Modal transition system modeling a simple email system, with an optional
behavior: Once an email is received, it may be checked, e.g. be scanned for containing
viruses, or automatically decrypted, before it is delivered to the receiver
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Fig. 2. An implementation of the simple email system in Fig. 1 in which we explicitly
model two distinct types of email pre-processing

organized by Joseph Sifakis in Grenoble,1 was aiming at providing a behavioral
compositional specification formalism for reactive systems. At the time of the
introduction of MTS, there were two predominant approaches to specifications
formalisms and verification methods for reactive and concurrent systems: logi-
cal approaches where a specification is a set of properties of implementations
(labeled transition systems), and graphical approaches promoted by the various
process algebras, where implementations and specifications are systems of the
same kind – namely labeled transition systems, and verification amounts to com-
pare such systems with respect to a given behavioral preorder, e.g. bisimilarity.

In search for a complete specification theory, the following properties have
been considered desirable (the first three were listed in the early paper [6]):

expressiveness: the specification formalism should be powerful enough to ex-
press all properties of a given implementation. In other words it should be
possible to completely specify any labeled transition system, up to bisimula-
tion.

modularity: implementations are often made out of several components, and
it should be possible to infer satisfaction of an overall specification solely on
the basis of sub-specification of the sub-components.

refinement: one should have the ability to deal with partial specifications, re-
quiring more and more properties about a system, up to its complete speci-
fication.

1 In fact, the first CAV conference was not called CAV, but had the rather lengthy
title “Automatic Verification Methods for Finite State Systems.”
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logical composition: specification should be composable with respect to usual
logical operators such as conjunction and (possibly) disjunction.

quotienting: given an overall specification S of a composite systems as well
as a sub-specification T of a sub-component, the existence of a quotient
specification S\T will describe the sufficient and necessary condition of the
remaining components in order that S is satisfied by the total systems.

Applying these criteria to the logical and graphical (i.e. bisimulation) frame-
work, as was done in [6], we see that the logical and graphical frameworks offer
complementary advantages: on the graphical side, expressiveness is trivial since
a process i a specification of itself. Modularity is usually guaranteed by the fact
that bisimulations are compatible with (most) process constructors. On the log-
ical side, expressiveness is achieved if we allow possibly infinite sets of formulae
as logical specifications, or admit recursively specified properties. The point of
modularity has proved more difficult with early attempts of Sifakis and Graf [15]
and Holmstrøm [17] providing sound and highly usable proof systems for specifi-
cations mixing logical and behavioral constructs (as well as fix-point constructs)
but lacking accompanying completeness results. Much later the work of Mardare
and Policriti [25] provided a first matching completeness result.

In the rest of this paper, we survey two extensions of modal transition systems.
The first extension, parametric modal transition systems, is concerned with sys-
tems whose behaviors depend on parameters [4]. The second extension, weighted
modal transition systems [1, 2] permits to reason on systems whose behaviors
depend on quantities. Another paper in this volume [11] will be concerned with
other extensions of modal transition systems which are more closely related to
applications.

2 Parametric Modal Transition Systems

It is well admitted (see e.g. [27]) that MTS and their extensions like disjunc-
tive MTS (DMTS) [24], 1-selecting MTS (1MTS) [13] and transition systems
with obligations (OTS) [5] provide strong support for a specification formalism
allowing for step-wise refinement process. Moreover, the MTS formalisms have
applications in other contexts, which include verification of product lines [16,22],
interface theories [27,28] and modal abstractions in program analysis [14,18,26].

Unfortunately, all of these formalisms lack the capability to express some intu-
itive specification requirements like exclusive, conditional and persistent choices.
In [4] the expressive power of MTS and its variants has been extended consider-
ably so it can model model arbitrary Boolean conditions on transitions and also
allows to instantiate persistent transitions. The model, called parametric modal
transition systems (PMTS), is equipped with a finite set of parameters that are
fixed prior to the instantiation of the transitions in the specification. The gener-
alized notion of modal refinement is designed to handle the parametric extension
and it specializes to the well-studied modal refinements on all the subclasses of
our model like MTS, disjunctive MTS and MTS with obligations.
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Obligation function:
Φ(green) = (stop, red)⊕ (ready, yellow)
Φ(red) = (go, green)⊕ (ready , yellowRed)

(f) Specification S3
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Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

(g) PMTS specification S4

Fig. 3. Specifications and implementations of a traffic light controller

2.1 Motivation

We shall now discuss these limitations on an example as a motivation for the
introduction of parametric MTS formalism with general Boolean conditions in
specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green , yellow or yellowRed .
The requirements of the specification are: when green is on the traffic light may
either change to red or yellow and if it turned yellow it must go to red afterward;
when red is on it may either turn to green or yellowRed , and if it turns yellowRed
(as it is the case in some countries) it must go to green afterwords.
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Fig. 3a shows an obvious MTS specification of the proposed specification. The
transitions in the standard MTS formalism are either of type may (optional tran-
sitions depicted as dashed lines) or must (required transitions depicted as solid
lines). In Fig. 3c, Fig. 3d and Fig. 3e we present three different implementations
of the MTS specification where there are no more optional transitions. The im-
plementation I1 does not implement any may transition as it is a valid possibility
to satisfy the specification S1. Of course, in our concrete example, this means
that the light is constantly green and it is clearly an undesirable behavior that
cannot be, however, easily avoided. The second implementation I2 on the other
hand implements all may transitions, again a legal implementation in the MTS
methodology but not a desirable implementation of a traffic light as the next
action is not always deterministically given. Finally, the implementation I3 of
S1 illustrates the third problem with the MTS specifications, namely that the
choices made in each turn are not persistent and the implementation alternates
between entering yellow or not. None of these problems can be avoided when
using the MTS formalism.

A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS speci-
fication S2 is depicted in Fig. 3b. Here the ready and stop transitions, as well
as ready and go ones, are disjunctive, meaning that it is still optional which
one is implemented but at least one of them must be present. Now the system
I1 in Fig. 3c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modeling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [5], we
can model the traffic light using specification as a transition system with arbi-
trary2 obligation formulae. These formulae are Boolean propositions over the
outgoing transitions from each state, whose satisfying assignments yield the al-
lowed combinations of outgoing transitions. A possible specification called S3 is
given in Fig. 3f and it uses the operation of exclusive-or. We will follow an agree-
ment that whenever the obligation function for some node is not listed in the
system description then it is implicitly understood as requiring all the available
outgoing transitions to be present. Due to the use of exclusive-or in the obliga-
tion function, the transition systems I1 and I2 are not valid implementation any
more. Nevertheless, the implementation I3 in Fig. 3e cannot be avoided in this
formalism either.

Finally, the problem with the alternating implementation I3 is that we can-
not enforce in any of the above mentioned formalisms a uniform (persistent)
implementation of the same transitions in all its states. In order to overcome
this problem, we propose the so-called parametric MTS where we can, more-
over, choose persistently whether the transition to yellow is present or not via
the use of parameters. The PMTS specification with two parameters reqYfromR
and reqYfromG is shown in Fig. 3g. Fixing a priori the (Boolean) values of the

2 In the transition systems with obligations only positive Boolean formulae are allowed.
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parameters makes the choices permanent in the whole implementation, hence we
eliminate also the last problematic implementation I3.

2.2 Definition

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a set X of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X . The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value
true, then the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧
¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ =
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P, Φ) where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ×S)∪P ) is an obligation function
over the atomic propositions containing outgoing transitions and parameters. We
implicitly assume that whenever (a, t) ∈ Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T } we denote the set of all outgoing transitions of s.

PMTS has been provided a refinement notion that generalizes the well-studied
refinement notions on its subclasses including that of MTS. In the definition, the
parameters are fixed first (persistence) followed by all valid choices modulo the
fixed parameters that now behave as constants.

First we set the following notation. Let (S, T, P, Φ) be a PMTS and ν ⊆ P be a
truth assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E∪ν |= Φ(s)}
the set of all admissible sets of transitions from s under the fixed truth values
of the parameters.

We can now define the notion of modal refinement between PMTS.

Definition 2. Let (S1, T1, P1, Φ1) and (S2, T2, P2, Φ2) be two PMTS. A binary
relation R ⊆ S1×S2 is a modal refinement if for each μ ⊆ P1 there exists ν ⊆ P2

such that for every (s, t) ∈ R holds

∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈ M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal
refinement R such that (s, t) ∈ R.
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Fig. 4. Example of modal refinement

Example 2. Consider the rightmost PMTS in Fig. 4. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can be
refined by the system in the middle of the figure having only one parameter reqY .
This single parameter simply binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all. Notice that there are in
principle infinitely many implementations of the system in the middle, however,
they are all bisimilar to either of the two implementations depicted in the left of
Fig. 4.

[4] provides an extensive study of the complexity of refinement checking
between parametric modal transitions with classification depending on the com-
plexity of obligations as well as the presence or absence of parameters. For each
combination the complexity class of the polynomial hierarchy for which modal
refinement is complete is provided. In short, the complexities ranges from P-
complete to Πp

4 -complete (thus in PSPACE).

3 Quantitative Modal Transition Systems

Motivated by applications to embedded, real-time and hybrid systems, the modal
transition system framework has been extended in order to reason about quan-
titative aspects [3, 19]. With these applications in mind, it is necessary not only
to be able to specify quantitative aspects of systems, but also to formalize suc-
cessive refinement of quantities. To illustrate this extension, consider again the
modal transition system of Fig. 1, but this time with quantities, see Fig. 5: Ev-
ery transition label is extended by integer intervals modeling upper and lower
bounds on time required for performing the corresponding actions. For instance,
the reception of a new email (action receive) must take between one and three
time units, the checking of the email (action check) is allowed to take up to five
time units.
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receive, [1, 3]
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deliver, [1, 2]

Fig. 5. Specification of a simple email system, similar to Fig. 1, but extended by integer
intervals modeling time units for performing the corresponding actions

In this quantitative setting, there is a problem with using a Boolean notion
of refinement as is done in the preceding section: If one only can decide whether
or not an implementation refines a specification, then the quantitative aspects
get lost in the refinement process. As an example, consider the email system
implementations in Fig. 6. Implementation (a) does not refine the specification,
as there is an error in the discrete structure of actions: after receiving an email,
the system can check it indefinitely without ever delivering it. Also implemen-
tations (b) and (c) do not refine the specification: (b) takes too long to receive
email, (c) does not deliver email fast enough after checking it. Implementation (d)
on the other hand is a perfect refinement of the specification.

Intuitively however, implementations (b) and (c) conform much better to the
specification than implementation (a) in Fig. 6: there are no discrepancies in the
discrete structure, only the weights are off by 1. Additionally, the quantitative
error in implementation (c) occurs later than the one in (b). Hence one may
want to say that implementation (d) is in perfect refinement of the specification,
(c) is slightly off, (b) is a bit more problematic, whereas implementation (a) is
completely unacceptable. A Boolean notion of refinement does not allow to make
such distinctions between different negative answers.

To sum up, a Boolean notion of refinement is too fragile for quantitative
formalisms. Minor and major modifications in the implementation cannot be
distinguished, as both of them may reverse the Boolean answer. As observed
e.g. in [9], this view is obsolete; engineers need quantitative notions on how
modified implementations differ. The introduction of such a quantitative notion
of refinement, and its consequences for the specification theory, are the subject
of this section, which is based on the papers [1, 2].

Depending on the precise application of our quantitative formalism, there are
a few choices which one has to make. One such choice is the precise definition of
quantitative refinement, as the way quantitative discrepancies between specifica-
tions is measured e.g. depends on whether differences accumulate over time or
the interest more lies in the maximal individual differences. Another choice is how
to combine quantities during structural composition: when modeling e.g. energy
consumption, they should be added; when modeling timing constraints, some
form of conjunction should be used.

To facilitate quantitative reasoning on specifications and implementations, we
introduce a real-valued distance between specifications such that perfect refine-
ment corresponds to distance 0, small quantitative discrepancies give rise to
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Fig. 6. Four implementations of the simple email system in Fig. 5

small distances, and differences in the discrete control structure correspond to
distance ∞. For the examples in Figs. 5 and 6, we will deduce the following chain
of decreasing distances:

∞ = d(I1, S) > d(I2, S) > d(I3, S) > d(I4, S) = 0

3.1 Weighted Modal Transition Systems

Let Σ be a set of labels with a preorder � ⊆ Σ×Σ, and denote by Σ∞ = Σ∗∪Σω

the set of finite and infinite traces over Σ. len(σ), for σ ∈ Σ∞, denotes the length
(finite or infinite) of a trace σ. Let ε ∈ Σ∞ denote the empty trace, and for a ∈ Σ,
σ ∈ Σ∞, denote by a.σ their concatenation.

A weighted modal transition system (WMTS) is a tuple S = (S, s0, ���,−→)
consisting of a set S of states, an initial state s0 ∈ S, and must- and may-
transitions −→, ��� ⊆ S ×Σ × S for which it holds that for all s a−→ s′ there is
s

b��� s′ with a � b.
Intuitively, a may-transition s

b��� t specifies that an implementation I of S
is permitted to have a corresponding transition i

a−→ j, for any a � b, whereas a
must-transition s

b−→ t postulates that I is required to implement at least one
corresponding transition i

a−→ j for some a � b. We will make this precise below.
An WMTS S = (S, s0, ���,−→) is an implementation if −→ = ���. Hence in

an implementation, all optional behavior has been resolved.

Definition 3. A modal refinement of WMTS S1 = (S1, s
0
1, ���1,−→1), S2 =

(S2, s
0
2, ���2,−→2) is a relation R ⊆ S1 × S2 such that for any (s1, s2) ∈ R,

– whenever s1
a1���1 t1, then also s2

a2���2 t2 for some a1 � a2 and (t1, t2) ∈ R,
– whenever s2

a2−→2 t2, then also s1
a1−→1 t1 for some a1 � a2 and (t1, t2) ∈ R.
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Thus any behavior which is permitted in S1 is also permitted in S2, and any
behavior required in S2 is also required in S1. We write S1 ≤m S2 if there is a
modal refinement R ⊆ S1 × S2 with (s01, s

0
2) ∈ R.

The implementation semantics of a WMTS S is the set ��S = {I ≤m S |
I implementation}, and we write S1 ≤t S1 if �S1� ⊆ �S2�, saying that S1

thoroughly refines S2. It follows by transitivity of ≤m that S1 ≤m S2 implies
S1 ≤t S2, hence modal refinement is a syntactic over-approximation of thorough
refinement.

3.2 Distances

Recall that a hemimetric on a set X is a function d : X × X → �≥0 ∪ {∞}
which satisfies d(x, x) = 0 and d(x, y)+d(y, z) ≥ d(x, z) (the triangle inequality)
for all x, y, z ∈ X . Note that our hemimetrics are extended in that they can take
the value ∞.

We will need to generalize hemimetrics to codomains other than �≥0 ∪ {∞}.
For a partially ordered monoid (�,�,⊕, �), an �-hemimetric on X is a function
d : X ×X → � which satisfies d(x, x) = � and d(x, y)⊕ d(y, z) � d(x, z) for all
x, y, z ∈ X .

Definition 4. A trace distance is a hemimetric td : Σ∞ × Σ∞ → �≥0 ∪ {∞}
for which td(a, b) = 0 for all a, b ∈ Σ with a � b and td(σ, τ) = ∞ whenever
len(σ) �= len(τ).

For any set M , let �M = (�≥0 ∪ {∞})M the set of functions from M to
the extended non-negative real line. Then �M is a complete lattice with partial
order � ⊆ �M × �M given by α � β if and only if α(x) ≤ β(x) for all x ∈ M ,
and with an addition ⊕ given by (α⊕β)(x) = α(x)+β(x). The bottom element
of �M is also the zero of ⊕ and given by ⊥(x) = 0, and the top element is
�(x) = ∞.

Definition 5. A recursive specification of a trace distance td consists of

– a set M with a lattice homomorphism eval : �M → �≥0 ∪ {∞},
– an �M -hemimetric td�M : Σ∞×Σ∞ → �M which satisfies td = eval◦td�M

and td�M (a, b) = ⊥ for all a, b ∈ Σ with a � b, and
– a function F : Σ ×Σ × �M → �M .

F must be monotone in the third coordinate and satisfy, for all a, b ∈ Σ and
σ, τ ∈ Σ∞, that td�M (a.σ, b.τ) = F (a, b, td�M (σ, τ)).

Note that the definition implies that for all a, b ∈ Σ, td�M (a, b) =
td�M (a.ε, b.ε) = F (a, b, td�M (ε, ε)) = F (a, b,⊥). Hence also F (a, a,⊥) =
td�M (a, a) = ⊥ for all a ∈ Σ.

We have shown in [2, 10, 12] that all commonly used trace distances obey a
recursive characterization as above. The point-wise distance from [8], for exam-
ple, has � = �≥0 ∪ {∞}, eval = id and d�Mm (a.σ, b.τ) = max(d(a, b), d�Mm (σ, τ)),
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where d : Σ ×Σ → �≥0 ∪ {∞} is a hemimetric on labels. The limit-average dis-
tance used in e.g. [7] has � = (�≥0 ∪ {∞})�, the complete lattice of functions
�→ �≥0 ∪ {∞}, eval(α) = lim infj∈� α(j) and d�Mm (a.σ, b.τ)(j) = 1

j+1d(a, b) +
j

j+1d
�M
m (σ, τ).

For the rest of this section, we fix a recursively specified trace distance. A
WMTS (S, s0, ���,−→) is deterministic if it holds for all s ∈ S, s

a1��� s1, s
a2��� s2

for which there is a ∈ Σ with td�M (a, a1) �= � and td�M (a, a2) �= � that a1 = a2
and s1 = s2.

Definition 6. The lifted modal refinement distance d�Mm : S1×S2 → � between
the states of WMTS S1 = (S1, s

0
1, ���1,−→1), S2 = (S2, s

0
2, ���2,−→2) is defined

to be the least fixed point to the equations

d�Mm (s1, s2) = max

⎧
⎪⎨

⎪⎩

sup
s1

a1���1t1
inf

s2
a2���2t2

F (a1, a2, d
�M
m (t1, t2)),

sup
s2

a2−→2t2

inf
s1

a1−→1t1

F (a1, a2, d
�M
m (t1, t2)).

We let d�Mm (S1,S2) = d�Mm (s01, s
0
2). The modal refinement distance is dm =

eval ◦ d�Mm , and we write S1 ≤ε
m S2, for ε ∈ �≥0 ∪ {∞}, if d�Mm (S1,S2) ≤ ε.

Proposition 1. The modal refinement distance is a well-defined hemimetric,
and S1 ≤m S2 implies S1 ≤0

m S2.

The thorough refinement distance between WMTS S1, S2 is

dt(S1,S2) = sup
I1∈�S1�

inf
I2∈�S2�

dm(I1, I2),

and we write S1 ≤ε
t S2, for ε ∈ �≥0 ∪ {∞}, if dt(S1,S2) ≤ ε. As for the modal

distance, dt is a hemimetric, and S1 ≤t S2 implies S1 ≤0
t S2.

Theorem 1. For all WMTS S1, S2, dt(S1,S2) ≤ dm(S1,S2). If S2 is determin-
istic, then dt(S1,S2) = dm(S1,S2).

3.3 Conjunction

Let � : Σ × Σ ↪→ Σ be a commutative partial label conjunction operator for
which it holds, for all b1, b2 ∈ Σ, that there is a ∈ Σ for which both td�M (a, b1) �=
� and td�M (a, b2) �= � iff there exists c ∈ Σ for which both b1 � c and b2 � c are
defined. This is to relate determinism (left-hand side of the above) to a similar
property for label conjunction which is needed in the proof of Theorem 2.

Additionally, we assume that � is greatest lower bound on labels, i.e.

– for all a, b ∈ Σ with a � b defined, a � b � a and a � b � b;
– for all a, b, c ∈ Σ with a � b and a � c, b � c is defined and a � b � c.
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In the definition below, we denote by ρB(S) the pruning of a WMTS S =
(S, s0, ���,−→) with respect to the states in a (“bad”) subset B ⊆ S, which
is obtained as follows: Define a must-predecessor operator pre : 2S → 2S by
pre(S′) = {s ∈ S | ∃a ∈ Σ, s′ ∈ S′ : s

a−→ s′} and let pre∗ be the reflexive,
transitive closure of pre. Then ρB(S) is defined if s0 /∈ pre∗(B), and in that case,
ρB(S) = (Sρ, s

0, ���ρ,−→ρ) with Sρ = S \ pre∗(B), ���ρ = ���∩ (Sρ ×Σ × Sρ),
and −→ρ = −→∩ (Sρ ×Σ × Sρ).

Definition 7. The conjunction of two WMTS S1 = (S1, s
0
1, ���1,−→1), S2 =

(S2, s
0
2, ���2,−→2) is the WMTS S1 ∧ S2 = ρB(S1 × S2, (s

0
1, s

0
2), ���,−→) given

as follows (if it exists):

s1
a1−→1 t1 s2

a2���2 t2 a1 � a2 defined

(s1, s2)
a1�a2−→ (t1, t2)

s1
a1���1 t1 s2

a2−→2 t2 a1 � a2 defined

(s1, s2)
a1�a2−→ (t1, t2)

s1
a1���1 t1 s2

a2���2 t2 a1 � a2 defined

(s1, s2)
a1�a2��� (t1, t2)

s1
a1−→1 t1 ∀s2 a2���2 t2 : a1 � a2 undef.

(s1, s2) ∈ B

s2
a2−→2 t2 ∀s1 a1���1 t1 : a1 � a2 undef.

(s1, s2) ∈ B

Note that conjunction of WMTS may give inconsistent states which need to
be pruned away after. As seen in the last two SOS rules above, this is the case
when one WMTS specifies a must-transition which the other WMTS cannot syn-
chronize with. Here, the demand on implementations of the conjunction would
be that they simultaneously must and cannot have a transition, which of course
is unsatisfiable.

Theorem 2. Let S1, S2, S3 be WMTS.

– If S1 ∧ S2 is defined, then S1 ∧ S2 ≤m S1 and S1 ∧ S2 ≤m S2.
– If S1 ≤m S2, S1 ≤m S3, and S2 or S3 is deterministic, then S2∧S3 is defined

and S1 ≤m S2 ∧ S2.

3.4 Structural Composition

Let � : Σ ×Σ ↪→ Σ be a commutative partial label composition operator which
specifies which labels can synchronize. Again we need to relate determinism to an
analogous property for label composition, hence we require that it holds, for all
b1, b2 ∈ Σ, that there is a ∈ Σ for which both d(a, b1) �= �� and d(a, b2) �= ��
iff there exists c ∈ Σ for which both b1 � c and b2 � c are defined.

Additionally, we assume that there exists a function P : � × � → � which
allows us to infer bounds on distances on synchronized labels. We assume that P
is monotone in both coordinates, has P (⊥�,⊥�) = ⊥�, P (α,��) = P (��, α) =
�� for all α ∈ �, and that

F (a1 � a2, b1 � b2, P (α1, α2)) �� P (F (a1, b1, α1), F (a2, b2, α2)) (1)

for all a1, b1, a2, b2 ∈ Σ and α1, α2 ∈ � for which a1 � a2 and b1 � b2 are defined.
Hence d(a1 � a2, b1 � b2) � P (d(a1, b1), d(a2, b2)) for all such a1, b1, a2, b2 ∈ Σ.
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Intuitively, P gives a uniform bound on label composition: distances between
composed labels can be bounded above using P and the individual labels’ dis-
tances, and (1) ensures that this bound holds recursively.

Definition 8. The structural composition of two WMTS S1 = (S1,s
0
1,���1,−→1),

S2 = (S2, s
0
2, ���2,−→2) is the WMTS S1‖S2 = (S1 × S2, (s

1
0, s

2
0), ���,−→) with

transitions defined as follows:

s1
a1���1 t1 s2

a2���2 t2 a1 � a2 def.

(s1, s2)
a1�a2��� (t1, t2)

s1
a1−→1 t1 s2

a2−→2 t2 a1 � a2 def.

(s1, s2)
a1�a2−→ (t1, t2)

The next theorem shows that structural composition supports quantitative
independent implementability: the distance between structural compositions can
bounded above using P and the distances between the individual components.

Theorem 3. For all WMTS S1, T1, S2, T2 with dm(S1‖S2, T1‖T2) �= ��, we
have dm(S1‖S2, T1‖T2) �� P (dm(S1, T1), dm(S2, T2)).
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