Feedback in Synchronous Relational Interfaces*

Stavros Tripakis"? and Chris Shaver?

! University of California, Berkeley, USA
2 Aalto University, Finland

Abstract. Synchronous relational interfaces is an interface theory which
allows to specify the I/O interface of a component with input require-
ments and relational input-output guarantees. The theory allows to check
interface compatibility during composition and to compute a composite
interface from the atomic ones. It provides a refinement operator which
allows to check whether a component can safely replace another one. This
paper discusses the options and challenges in defining feedback compo-
sition in the context of this theory.

1 Introduction

Compositionality is not simply a desirable property in system design, but a
“must” for building large and complex systems from smaller and simpler com-
ponents. In his long career, Joseph Sifakis has pursued numerous research topics
around compositionality, including, but not limited to [13,15,11,3,14,4,1,5].
The work presented in this paper is also on the general subject of composi-
tionality. Our work approaches the subject following the framework of so-called
interface theories [8,7]. In interface theories, components are captured by ab-
stract models generically called interfaces. Such a theory also provides one or
more interface composition operators, each allowing to obtain an interface for a
composite component (i.e., a network of connected subcomponents) from the in-
terfaces of the subcomponents. Finally, an interface theory provides a refinement
relation between interfaces, which typically comes with two key theorems:

— Preservation of properties of interest by refinement: if interface I satisfies a
given property ¢ (say, a safety property expressed in temporal logic), and
interface I’ refines I, then I’ also satisfies ¢.

— Preservation of refinement by composition: if I refines I, I} refines I, and
© is a composition operator, then I] ® I refines I1 ® Is.

Together the above theorems enable an incremental design methodology, which,
for instance, allows to reduce the problem of checking substitutability (when can

* This work was partially supported by the the Academy of Finland and by the NSF via
projects COSMOI: Compositional System Modeling with Interfaces and ExCAPE:
Ezxpeditions in Computer Augmented Program Engineering. This work was also par-
tially supported by IBM and United Technologies Corporation (UTC) via the iCyPhy
consortium, and by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 249-266, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

250 S. Tripakis and C. Shaver

a component with interface I’ replace a component with interface I?) to that of
checking whether I’ refines I. Indeed, if I is used in a certain composition I ® C,
and I’ refines I, then I’ can replace I to obtain the new composition I’ ® C. By
preservation of refinement by composition, I’ ® C refines I ® C. By preservation
of properties by refinement, if I ® C' satisfies a given ¢, then so does I’ ©® C. This
means that, provided the existing system I ® C is known to be correct (i.e., to
satisfy ¢), the new system I’ ® C need not be re-verified from scratch. We only
need to check whether I’ refines I to ensure substitutability.

A number of interface theories have been proposed over the years, starting
from the original interface automata (IA) theory proposed in [7]. In this paper
we consider the theory of synchronous relational interfaces proposed in [16].
Whereas interface automata use an asynchronous model of concurrency based
on interleaving and input-output label synchronization, synchronous relational
interfaces use synchronous composition similar to finite state machines of type
Moore or Mealy.

In addition, compared to interface automata, synchronous relational inter-
faces offer a more compact and symbolic specification formalism. For instance,
consider a component which receives as input an integer, adds one to it, and
outputs it. This component could be modeled using the synchronous relational
interface ({z},{y},y = x+1). Here, x and y are the input and output variables,
respectively, and y = x + 1 is a formula capturing the input-output relation (or
contract). The same component could be captured as an interface automaton,
but this would most likely require an infinite number of states, transitions, and
labels, to capture the infinite domain of possible input/output values.!

The theory of synchronous relational interfaces provides three composition
operators: composition in series (connecting an output of one component to an
input of another), in parallel (placing the two components next to each other
without any connections), and in feedback (connecting one of the outputs of
a component to one of its inputs). These are standard composition schemes
found in synchronous systems such as, for instance, digital circuits. This work is
concerned specifically with feedback composition. The work of [16] allows only a
restricted form of feedback composition. This paper recalls the reasons why this
is so, discusses why it would be desirable to extend the theory to allow a less
restrictive version of feedback, and examines the challenges in doing so.

2 Background: Synchronous Relational Interfaces

For the purposes of this paper, it suffices to restrict ourselves to the simplest

form of synchronous relational interfaces, namely, stateless interfaces, where the

input/output contract is the same during the dynamic behavior of the com-

ponent, i.e., at every synchronous cycle. Stateful interfaces are also considered

1 i0? o1! 417 os3!
We can imagine an interface automaton with transitions of the form ——, ——=,
etc., where i, ? is the input action corresponding to reading input « = n, and oy! is
the output action corresponding to writing output y = k.

Feedback in Synchronous Relational Interfaces 251

in [16], where the contract may change from one cycle to the next. We only
consider stateless interfaces in the sequel.
A (stateless synchronous relational) interface is a triple

I'=(X,Y,9)

where X is a finite set of input variables, Y is a finite set of output variables,
X NY =0 (input and output variables are disjoint), and ¢ (the contract) is a
relation between values of input and output variables, typically represented as a
logical formula on the set of variables X UY . We assume a universe U of possible
values for all variables. V(X)) denotes the set of assignments (or valuations) over
a set of variables X, that is, the set of all functions of the form a : X — U.
Semantically, a formula ¢ on X UY denotes the set of assignments over X UY
which satisfy ¢.
Assuming Y = {y1,y2, ..., yn}, we define

in(¢) = FY:¢ = Fy1:Ty2:- - Tyn:o.

That is, in(¢) is syntactically a formula only on input variables X, characterizing
the set of legal input assignments. For example, if ¢ is z # 0 Ay > x, and = is
an input and y an output, then in(¢) = z # 0, meaning that = = 0 is illegal.

¢, and in turn I, are called input-complete when in(¢$) = true, i.e., when all
input assignments are legal for I.

¢, and in turn I, are called deterministic when for every legal input assign-
ment, i.e., for every function ax : X — U satisfying in(¢), there is a unique
output assignment ay : Y — U, such that the pair (ax,ay) satisfies ¢.

Parallel Composition. Parallel composition of relational interfaces can be
defined by taking the conjunction of their corresponding contracts. Let I; =
(X:,Yi,¢;), for i = 1,2, where all sets X7, X5,Y7, Y are pair-wise disjoint. Then

L = (X1 UX2, Y1 UYs, 01 A ¢h2)

Note that in(¢1 A ¢2) = TFY1,Ys 1 01 A g = TY7 @ (b1 A TYa @ ¢2) = (TY: -
¢2) A (Hyl : ¢1) = il’l(¢1) A in(¢2)

Serial Composition. For reasons thoroughly explained in [16], and not re-
peated here, serial composition of relational interfaces is defined using the princi-
ple of “demonic” non-determinism. In the simple case, where Iy = ({x}, {y}, ¢1)
and Iy = ({y}, {z}, ¢2), the serial composition of I; and I, denoted I; ~ I,
and consisting of connecting the output y of I; to the input y of I, is defined
as follows:

I ~ Iy = <{x}, {y,z}, 01 A2 A (Vy S — in(¢2)))

Note that if Is is input-complete, then (Vy P — in(¢2)) = true and the
contract of Iy ~~ Is becomes ¢ A ¢o. The same is true when I; is deterministic.

252 S. Tripakis and C. Shaver

When the contract of I; ~ I is equivalent to false (i.e., unsatisfiable), we
say that I; ~ I is invalid and that Iy and Iy are incompatible. Otherwise, we
say that Iy ~» I is valid and that I; and Iy are compatible.

Ezample 1. Let Iy = ({«},{y},x <y) and I = {y},{z},y # 0). Then
I~ I ={z}{y,z}, s <yAy#0Az>0)

where it is worth noting the additional input assumption x > 0 obtained thanks
to the term Vy : x <y — y # 0. O

Refinement. Refinement between relational interfaces is defined as follows. Let
I, = (X,Y,¢;), for i = 1,2. Then, I refines I, written I C Iy, iff

in(¢) — in(¢2) and (in(¢1) A ¢2) = ¢1

are both valid formulas, i.e., equivalent to true.
It is shown in [16] that refinement preserves compatibility, that is, if I; ~ I
is valid, and I] C I and I} C I, then I] ~ I} is also valid.

Feedback. Suppose we want to connect an output y € Y of a relational interface
I =(X,Y,¢) to one of its inputs z € X. In the framework of [16], this is allowed
only when [is so-called Moore with respect to x. For stateless interfaces, Moore
with respect to « means that ¢ does not refer to z. In that case, connecting y
to = results in a new interface where x is an output equal to y:

feedback,, .. (I) = (X —{z},YU{z},¢Ax=y).

The Problem: General Feedback Does Not Preserve Refinement. The
reason why feedback is restricted to Moore interfaces is illustrated in the fol-
lowing example, borrowed from [9] and also discussed as Example 9.11 in [16].

Ezample 2. Let I = ({x, 2}, {y},true) and I' = ({z, z},{y},x # y). Then I’ C
1. Suppose that we want to feed the output of I back to its first input, that
is, we want to connect y to x. The straightforward way to define the resulting
feedback composition is by adding the constraint = y to the contract of I. This
constraint represents the fact that, once z and y are connected (imagine a wire
connection between the two) their values become equal. Adding this constraint,
that is, taking the conjunction of x = y with the contract of I, which is true,
we obtain the new interface Iy = ({2}, {z,y},z =y). In If, « is now an output,
since it has been connected to y. Moreover, the new contract is z = y.

Let us try to do the same with I’, that is, connect its output y to its input
z. Doing so, we obtain the new interface I} = ({z},{z,y},2 # y Az = y).
Since the formula x # y A x = y is unsatisfiable, I } is equivalent to the interface
({2}, {x, y}, false).

The problem now is that I } C I does not hold. This shows that the straight-
forward way of defining feedback results in refinement not being preserved by
feedback (I refines I, but I} does not refine Ir). o

Feedback in Synchronous Relational Interfaces 253

3 Generalizing Feedback

In this section, we first discuss why a more general form of feedback would be
desirable, and then the challenges that need to be overcome in order to achieve
this more general form of feedback.

3.1 Why Generalize the Definition of Feedback?

One might say that Example 2 is too artificial to be of value, and that forbidding
feedback for non-Moore interfaces makes sense. Consider, however, the following
example:

Ezxample 3. Take the parallel composition of two interfaces with contracts y; =
x;, where z; is an input and y; is an output, for ¢ = 1, 2. The resulting interface
has contract y; = x1 A y2 = 2. This product interface is not Moore in neither
1 nor xo. Thus, we cannot form the feedback composition by connecting, say,
y2 to x1. One might expect, however, that this feedback connection is the same
as connecting the two original interfaces in series.]

What Example 3 illustrates is that the restriction to Moore interfaces results
in serial composition not being equivalent to parallel composition followed by
feedback. Can we relax the restrictions so as to obtain a definition of feedback
which allows to express serial composition as parallel composition followed by
feedback? We examine the challenges in achieving this goal next.

3.2 Challenge: Monolithic Order

Example 3 suggests that the definition of parallel composition is too monolithic,
in the sense that it loses dependency information between inputs and outputs.
This seems to be a fundamental problem, as illustrated with an even simpler
example:

Ezample 4. Consider interfaces I; = ({}, {y},true) and I, = ({x, z}, {}, true).
I has only an output y and I has two inputs z, z. Clearly, the serial composition
I ~»yse I formed by connecting y to x 2 is valid, since I is input-complete.
Now let’s try to form the same composition by first taking the parallel com-
position of I1 and I, followed by feedback. The parallel composition of I; and
Iy is I||I; = ({z,z},{y},true). This is exactly interface I which we saw in
Example 2. If we forbid connecting I in feedback, as suggested above, then I
connected in series with Iy would not be equivalent with I7||/2 connected in
feedback, since the latter connection would be forbidden. a

The problem here seems to be the following. When we form the composition
in series of I; and I, we interpret it as a game where I; plays first, choosing
the output y, and I5 plays second, accepting y as input x. Therefore, y is chosen
first, and then assigned to x. (The point where z is chosen is irrelevant here.)

2 This composition is defined after renaming x to y in Io.

254 S. Tripakis and C. Shaver

On the other hand, in a “monolithic” interface such as I, the interpretation
of the game is different. First, the environment chooses the input z, and only
afterwards does I reply with the output y. By forming the parallel composition
of I and I, we forced the order x — y. Adding the feedback creates the opposite
order y — x, that is, a cycle. This is not the case with composition in series,
which only has y — x.

One might try to fix this by enriching the definition of interface to contain also
dependency information between input and output variables. In our example,
this means that there would be two versions of the interface ({x, z}, {y}, true).
One version where the output y depends on x (this would be I), and another
version where y does not depend on z (this would be I1]|]2).

But when we attempt to add such I/O dependency information, we run into
new problems. This is explained next:

3.3 Interfaces with I/O Dependency Information

General Partial Orders on I/O Variables. Let us first try an approach
where an interface is extended with a general partial order D on input and output
variables. That is, an interface then becomes a quadruple I = (X, Y, ¢, D) where
X,Y, ¢ are the inputs, outputs and contract as previously, and D is a partial
order on XUY. The idea is that D represents dependencies between the variables,
and also the order in which they are evaluated, as well as the possible ways for
playing the game between the component and its environment. For example,
if x is input and y is output, then dependency x — ¥y means that, first the
environment chooses & and then the component chooses y. y — x means that
first the component chooses y and then the environment chooses x. If x,y are
unrelated then they can be evaluated in any order.

This seems to solve the problems identified in §3.2, as it allows to distinguish
I (which has the dependency = — y) from I;||Iz (which has no dependency).

But consider another example:

Ezample 5. Let A = ({z},{y},2=0—-y=0,{z = y})and B = ({z,u},{},z =
u, {}). Suppose we wish to connect A and B in series, by connecting y to z. Is
the connection valid? It should be, because the environment has two possible
strategies for setting the free inputs x, u:

— either set z = u = 0, in which case A is forced to set y = 0, thus z = 0, thus
u = z and the input assumptions of B are satisfied;

— or set x to an arbitrary value, wait to observe output y of A, then set u =y,
so that again u = z is satisfied.

It seems that these two strategies cannot be represented with just a single con-
tract ¢ and a single dependency relation D. Suppose they could. Then D would
be x — y — z: notice that u is independent, since it could be given either at the
same time as x, or after observing y.

Now, what would ¢ be? If u is given at the same time as x, then x = 1,4 =0
is not a possible assignment. On the other hand, if z is first set to 1, and then

Feedback in Synchronous Relational Interfaces 255

y is set to 0, which means that also z = 0, then u must be set to 0. So, with
the second strategy, = 1,u = 0 is a valid assignment, whereas with the first
strategy, it is not. a

This example appears to suggest that we need sets of pairs (¢, D), instead of
just one pair, to represent the sets of possible strategies that may result during
composition, even if the original interfaces had only a single strategy each. This
option of using sets of pairs (¢, D) appears too complex, and we do not pursue
it further here.

Restricted DAGs: Moore Outputs, Inputs, Non-moore Outputs. To
simplify in order to avoid problems such as the one above, we may decide to
restrict the I/O dependencies to a simpler form: I = (X,Y, ¢, d) whered C Y x X.
d gives for each output the set of inputs it depends on. Those outputs that depend
on no inputs are called Moore outputs. The game is played in 3 rounds: first the
component chooses Moore outputs; then the environment chooses all inputs;
then the component chooses non-Moore outputs.

This solves the problem of Example 5 because the second strategy, where the
environment initially sets only z and then waits to observe y before setting u
would be forbidden: both z,y should be set at the same time, since there is only
one round to set all free inputs.

The problem with this approach is that feedback is non-commutative, as the
following example illustrates.

Ezample 6. Let I = ({1, 22,23}, {y1,y2}, T2 # y2Va1 = y1, {(y1,x3), (y2, 23)}).
In this example, both y1,y2 are non-Moore: x3 is a “dummy” input that serves
no other purpose except for providing dependencies for y1, y2 so that they are not
Moore. The contract can also be read as ro = y2 — x1 = y1. Then, connecting ¥
to xy results in interface feedback,, .., (I) with contract 1 = y1. Following this,
we can connect y2 to 2 to obtain the interface feedback,, ., (feedback,, . (I))
with contract 1 = y1 A z2 = y2. One would expect that if we do the same
connections in the opposite order, i.e., first yo ~» z2 and then y; ~» 1, we should
get the same result. But the contract of feedback,, ., (I) is false. Indeed, the
following game is played here: first the environment chooses x1, z3 (there are no
Moore outputs so their round is skipped); then the component chooses y1, yo;
finally x is set to y2. The environment loses this game, since no matter what it
picks for x1, the component can always pick y; # =1 and violate the contract of
I, because of the feedback xs = ys. O

Extracting Dependencies from Contracts. Note that there is an additional,
mostly orthogonal complexity to the approach of extending interfaces with vari-
able dependency information, and this has to do with where this information
comes from. The simple approach is to expect the user to provide such infor-
mation for atomic interfaces, and then compute it automatically for composite
interfaces. This does not avoid the problems illustrated by the examples above.

256 S. Tripakis and C. Shaver

Another approach is to try to extract dependencies automatically from the
contract itself. For instance, if the contract is y = x4+ 1, where x is the input and
y is the output, then we could extract the dependency = — v, i.e., y depends
on z. This interpretation assumes that, first, the input x is given, and then the
component computes the output y as x + 1. It is unclear, however, whether this
interpretation is correct. An alternative interpretation is the following: first, an
output y is chosen non-deterministically; then, the input z must be given, such
that x = y — 1. Although the first interpretation may appear more natural,
there is no reason why the second one should be considered invalid. This is more
obvious in an interface with a slightly different contract, say, contract true.
Here, as mentioned above, we should be able to distinguish the case where first
the environment provides the input x and then the component replies with the
output y, from the opposite case, where the component provides y first, and then
expects x.

The problem of extracting variable dependencies from formulas is itself in-
teresting, although it by itself does not resolve the issues raised by Examples 5
and 6. Let us briefly discuss the problem of extracting variable dependencies
from formulas. Consider a formula ¢ on a set of variables V. We may assume no
knowledge of “directionality” (input vs. output) for any of these variables, and
seek to define a symmetric notion of dependency (see Table 1).

One idea is to define depen-
dency based on the principle of

" B Table 1. Dependency examples
“geometric orthogonality”. Con-

sider a ¢ over just two variables, ¢ dependency

say, x,y. Intuitively, z,y are in- rT=y x,1y dependent
dependent in ¢, if ¢ is a “rect- T#y z,y dependent
angle”, that is, if ¢ is equivalent z=0Ay=0 z,y independent

to (3z:) Ay : ¢). For exam- 0<z<1A0<y<1 z,yindependent
ple, in both z = y and z # y, T=yAy=zAz=0 2,y independent

x and y are dependent, whereas T=YNYy==2 x,y dependent
inx = 0Ay = 0, they are in- r=y1 Nx2 =Yy z,y independent
dependent, and so are they in T<zAz<y z,y dependent
0<z<1A0<y<]l. z<TNhNz<y z,y independent 7

Let us try to generalize this
idea to formulas with n > 2 variables. Let ¢(y,z1,22) be over a set of vari-
ables y U {x1,z2}. We can attempt the definition:

indep(¢, z1,22) = ¢ = ((Fz1:¢) A (Fa2: 9))

Unfortunately this doesn’t seem to work for the formula z = y A y = z. In this
case, we find that any pair of variables are independent according to the above
definition. For instance, 3x : z = yAy=zisy =z, and Jy:zc =y Ay =2
is ¢ = z. This seems in contradiction with the fact that z,y are dependent in
x =y, which is a weaker constraint than x =y Ay = 2.

To capture the principle of geometric orthogonality, we may use the principle
of factorization. Namely, if ¢ is over a set of variables X, we should be able to

Feedback in Synchronous Relational Interfaces 257

find a partition of X into disjoint sets X1, ..., X;,, and formulas ¢4, ..., ¢, where
¢; is over X;, such that ¢ is equivalent to A, ¢;. Then, for given variables z and
y, they are independent if they do not belong in the same set X; in the partition.
This is an interesting problem, although beyond the scope of this paper.

Non-preservation of Dependencies by Refinement. One fundamental
problem with the conceptual requirements of feedback and refinement with re-
gards to independence is the issue that an interface that has independent vari-
ables can have refinements in which the variables are dependent. Concretely,
consider the case of the interface with the predicate

o(z, g) = true

This can always be written as a conjuction of functions on the individual vari-
ables, in particular because each component is similarly true.

qS(:E,gj):géglc/\qbi/\...gb;/\qbz/\... where ¢F = true

This would suggest that the interface is equivalent to a parallel composition of a
series of ambivalent source and sink actors; they can be composed serially, etc...
However, as in the above examples, clearly there are refinements of the original
function that can introduce dependencies. If

(%, §) =z # y;

refines ¢, as it is shown to in the above example, the interface with independent
variables that seems to be decomposable into parallel parts (that can be com-
posed serially), can be refined into an interface that does not have any admissible
definition for feedback.

Intuitively, there is a general sense behind this. Consider that one alteration
to an interface to refine it is to take an input for which there are multiple
satisfying outputs to choose from, non-determinism, and reduce the number of
options it permits, all the way down to a unique option. If an input and output
variable are independent, the choice of input has no effect on the choice of output.
Consequently, if there are multiple possible outputs, for any given input, making
the output depend on the input in a way that still permits a satisfiable choice
legitimately refines the behavior even though it is no longer independent. That
is, independence is not preserved by refinement.

3.4 Lifting to Powersets

Another idea is to treat contracts not as relations, but as functions. Feedback
can be naturally defined on functions using fixpoint theory, so this appears to
be a promising approach. Unfortunately, it is not as easy as it may appear to be
at first.

To transform relations to functions, we can lift their domain and codomain
to powersets. Specifically, let ¢ be a contract over I/O variable sets X and Y.

258 S. Tripakis and C. Shaver

Then ¢ is semantically a relation ¢ C V(X) x V(Y), where V(X) denotes the
set of valuations over X. ¢ defines a function

¢ 2V oV ()

where, for V, C V(X), ¢(V;) is defined as follows:

o(Vy) :={ay e V(Y) | Jax € Vx : (ax,ay) € ¢}.

¢ is monotonic with respect to set inclusion, so it appears as if fixpoint theory
can be readily applied. However, an element of V(X)) is an assignment over the
entire set of input variables X, and an output of the function ¢ is an assignment
over the entire set of output variables Y. As a result, it is unclear how to define
feedback directly on . For example, we may have X = {x1,22} and Y = {y}.
In this case, the output of ¢ does not match its input, since there are two input
variables, and only one output variable. But even when the number of input and
output variables is the same, it is unclear how to define feedback of individual
variables. For example, we may have X = {x1,22} and Y = {y1, 42}, and we
may want to connect y; to x2. It is not clear how to express this connection as
a fixpoint operation on (5

We can attempt to define a feedback connection like the one above using
projection and product functions, in addition to the ¢ function. For instance,
a projection function could be used to extract an assignment over just y; from
an assignment over {y1,y2}. This may solve the typing problems and allow to
define a fixpoint that type checks. However, the above functions (including b,
projection, and product) have the property that they return the empty set when
given the empty set as input. As a result, the empty set would be a valid fixpoint
of any composition of such functions. Moreover, the empty set would be the least
fixpoint with respect to set inclusion, therefore the preferred solution chosen in
typical fixpoint semantics approaches. Unfortunately, the empty set is not the
value that one would expect as in particular it does not allow to capture serial
composition.

3.5 Separating Input Assumptions

In the relational interface framework of [16], input assumptions and output guar-
antees are combined into a single contract ¢. One idea is to separate them.
Following this idea, an interface would be a quadruple

I=(X,Y,¢,1)

where X is a finite set of input variables, Y is a finite set of output variables (as
usual, we assume that X NY = @), ¢ is a relation/predicate on X, and 1 is a
relation/predicate on X UY. ¢ captures the requirements on inputs only, while
1 is aimed at capturing guarantees on the outputs, with relation to inputs.
Ideally, we would like to have no redundancy between ¢ and 1, for example,
9 should not impose more restrictions on the inputs than what ¢ imposes, as

Feedback in Synchronous Relational Interfaces 259

for example in the case ¢ :=x > 0,9 :=x > 1 Ay > x. One way to achieve this
which appears “canonical” is to attempt to enforce that ¢ be total (i.e., input-
complete), that is, to enforce in(¢) = true. As we shall see below, however, this
requirement is not always compatible with our other desiderata.

Let us see first how the definitions of refinement and composition could be
adapted to this setting.

Refinement. Refinement can be defined as follows. Let I; = (X,Y, ¢;, 1), for
i =1,2. Then, I refines Iy, written Iy C Iy, iff

) and (1 ANp2) = 1y

are both valid formulas, i.e., equivalent to true.
With contract pairs, the refinement order gives a lattice, with top being the
pair of contracts (false, true) and bottom being the pair (true, false).

Parallel Composition. Parallel composition of interfaces with contract pairs
can be defined as usual, by taking the conjunction of their corresponding con-
tracts. Let I, = (X;,Y;, ¢, 9;), for i = 1,2, where all sets X1, Xo,Y7,Y>2 are
pair-wise disjoint. Then

IlHIQ = (X1 UXo, Y1 U }/2,¢1 A\ ¢2,w1 A ’(/JQ)

Note that ¢1 A ¢o is over X7 U Xo, and 11 A 1pg is over X7 U Xo UY; U Ys.
Also note that

in(yYqn Ape) =3V, Y2 1 901 Ao =37 : (Y1 ATY2 2 o)

(Y2 1 4h2) A (3Y7 1 9h1) = in(h1) Ain(y)

Thus, if in(t1) = in(y2) = true, we also have in(i; A12) = true, which means
that parallel composition preserves our desiderata of no redundancy between ¢

and 1.

Feedback. Feedback can be defined as follows. Let I = (X,Y,,v¢) and let
z € X and y € Y. Then connecting output y to input = yields the new interface

feedback,,..(I) = (X —{z},YU{z}, ¢ ¢')

where

¢ =3z (¢/\(VY,962(1/J/\95:?J)_>¢))

and
W= Ar=1y.
We can immediately see that ¢ is indeed a predicate over Y U {x}.

VY,x : (Y Ax =y) — ¢ is a predicate over X —{a}. Therefore, ¢’ is equivalent
to

(Elx:gﬁ)/\(VY,x:(w/\x:y)%gﬁ).

260 S. Tripakis and C. Shaver

and, since both conjuncts above are predicates over X —{z}, we can now see that
¢’ is a predicate over X — {z}. The idea behind the definition of ¢’ is to capture
the notion of demonic non-determinism, as in the definition of serial composition,
by strengthening the original input requirements ¢ with the additional term
VY (Y Az =y)— o

Does this definition of feedback allow to reduce serial composition to paral-
lel composition followed by feedback? This indeed appears to work on simple
examples.

Ezample 7. Consider the interfaces defined in Example 1, Iy = ({z}, {y},z < y),
I, = ({y},{z},y # 0), and their serial composition

I~ I ={z} {y. 2} e <yAy#0nz>0).

Transforming I; and I into interfaces with pairs of contracts, we get I] =
({z}, {y}, true,z < y) and I = ({y'},{z},¥’ # 0, true), where we have also
renamed y to y’ in I}. We can now form the parallel composition of I and I4:

I = ({z, v} {y, 2}y # 0,2 < y)

and then connect y to vy’ in feedback, to obtain:

feedbaCkywy’ (IIHIQ) = ({.’E}, {yay/a Z}a ¢/,.’£ S Yy A Y= y/)

where
¢ = Wy AOANY Yz x<yry=y =y #0)

which is equivalent to x > 0. Therefore, after eliminating ¥’ which is equal to y
in feedback,,.., (I1||12), the latter simplifies to
feedback,,., (I1||12) = ({x},{y, 2}, > 0,2 < y)

which, as it can be seen, is the same as I; ~ I3, except that the single contract
is replaced by a contract pair. a

The above definition of feedback also appears to resolve the problem of non-
preservation of refinement described in Example 2:

Ezample 8. Let I = ({x,z},{y}, true, true) and I’ = ({z,z},{y},true,z #
y). Then I' T I. Also, feedback, ., (I) = ({z},{y,z},true,z = y) and
feedback, ... (I') = ({z},{y, z}, true, false). As it can be seen, feedback,,..,(I") C
feedback,,...(I). O

Note that, as Example 8 demonstrates, the canonical form requirement for
interfaces with contract pairs, namely that in(¢)) must be true, is not generally
preserved by feedback composition.

Feedback in Synchronous Relational Interfaces 261

Summary. As it can be seen, interfaces with pairs of contracts seem to resolve
several issues that exist in interfaces with single contracts. On the other hand,
the interpretation of interfaces with contract pairs is unclear, and some new
problems are introduced. First, regarding interpretation, it is unclear what the
meaning of interfaces such as (false, true) and (true, false) is, and what the
difference between the two is. The standard interpretation is that in (false, true)
all inputs are illegal, and that in (true, false) all inputs are legal, but no output
is produced. We find these interpretations unsatisfactory. What is the meaning of
a “legal” input if no output can be produced? And why distinguish the contract
(false, true) from, say, (false,y > 0)7 After all, both accept no inputs, therefore,
they cannot be used in any useful composition. In addition, interfaces with at
least one contract being false do not seem to have valid implementations (say,
by deterministic state machines).

Perhaps the most important problem with pairs of contracts is the fact that
refinement does not preserve the “well-formedness” property that none of the two
contracts be false, and therefore does not preserve implementability as discussed
above. For instance, (true, false) refines every pair of contracts. This means that
we could start from an implementable (well-formed) specification and reach a
non-implementable one by successive refinements. This is clearly undesirable.

4 Refinement-Preserving Feedback

In this section a definition of feedback composition, derived from a set of desider-
ata, will be proposed for general relational interfaces. Given the interface

I:= ({ﬂ, 17}’ {‘i'v g}v¢)

where the barred variables indicate sequences of individual variables, and specif-
ically, Z is of the same length as @, feedback composition will be defined

feedbaCkiwﬁ(I) = ({,D}a {"Za g}a ¢*)

eliminating the set of inputs @ from the signature of the interface. The definition
of the new relation ¢* is what will be determined here from the desiderata. For
brevity the interface will be expressed in terms of its relation, such as ¢ here
for I. Sometimes the variables will be given with the relation with the input
and output variables separated by a semicolon, as in ¢(@, U; Z, 7). Also, unless
otherwise noted, all interfaces will have this same general signature, and the
asterisk, as in ¢* will indicate the feedback composition feedback .5 (I) (and its
constituting relation).

For a relational interface characterized by a total function, the concept of a
feedback connection between an output and an input can be defined straightfor-
wardly by a fixed-point relation. Specifically, given a functional interface

f(a, v; &,)

262 S. Tripakis and C. Shaver

feedback composition can be defined as
f1(0; 2, 9) < f(z, 0,2, 9) (1)
meaning that, for given input o, Z is an output of the feedback interface f* iff z
is a fixed-point of f.3 A general definition for feedback over all relations therefore
can be constrained to at least reduce to this one in the case of the relation being
a graph of a total function; that is both input complete and deterministic. The
formula 1 will then be the first desideratum.
A second qualification desirable for a feedback definition is that it preserves

refinement relations in the same manner as serial and parallel composition. Given
two interfaces ¢ and 1 with the same signature

YE Pyt o (2)

In other words, feedback composition is monotonic under the refinement order.
This qualification is consistent with the first vacuously, since functional inter-
faces are minimal in the refinement order. The formula 2 will be the second
desideratum.

A third qualification should then be given to determine the possible values
taken on by the feedback edges of a feedback composition. The obvious possibility
is to make the set of values some subset of the fixed-points of the relation between
the connected output and input variables. In formal terms

¢"(v; T, §) = &2, v; 2, §) 3)
Here, the difference between the case for functional relations and general re-
lations is that the feedback values for the former are exactly the fixed-points,
whereas the latter could reject certain fixed points. Outside of fixed points, an-
other possible choice for feedback values might be values that have some finite
orbit through the relation. However, these points would have to be included in
desideratum 1 for total functional relations, hence for consistency with this first
qualification, this expanded set will not be considered. The formula 3 will be the
third desideratum.

Using these three desiderata, building off of the third 3, a definition for feed-
back composition can be postulated. This definition will be of the form

¢ (U; T, §) = ¢(T, U; T, §) A additional constraints (4)

where the additional constraints remove certain fixed-points. Clearly, based on
1, these constraints must reduce to true in the case of total functional relations.
These constraints will be deduced in the following by considering particular cases
of relations.

3 Note that 1 says that all fixed-points of f must be solutions of the feedback f*.
This is different from the semantics of deterministic synchronous formalisms such as
Esterel [2] or synchronous block diagrams [10], where feedback is defined by choosing
from the set of fixed-points a unique representative, namely the least fixed-point. The
least fixed-point solution relies on f being defined on an ordered set structure such
as a complete partial order. We make no such assumption here.

Feedback in Synchronous Relational Interfaces 263

4.1 Partiality

Consider first the case of the free inputs @ in the formula being fixed to a par-
ticular value a, and the remaining relation

o(u, a; T,)

being partial and deterministic with respect to the input @. Then, suppose the
following relation is defined:

V(w, a; T, §) = ¢(u, a; 7, §) V [(-3z, 0 : ¢(u, a; Z, ©)) Nu=T Ay =D]

where b is some arbitrary chosen constant tuple of the same length as g. It can
be verified that ¢ T ¢, intuitively, because v simply gives output values for
inputs not in the domain of ¢, thus refining it. Moreover, by the definition of
1 and the assumption that ¢ is deterministic, ¢ returns a unique value for all
input values. Thus, v is a total function. By desideratum 1, it follows that

V(& T,) < (2, a5 7, p).
Using the above definition, along with 3, we obtain
(& 7, y) = P& 7,).
The only way the above and 2 can both be true is if
¢*(a; T, y) := false.

What can be concluded from this is that feedback composition over a relation
that is partial with respect to the feedback input must exclude all fixed points.
This can be accomplished by conjoining the following constraint to the definition
for feedback composition

va: 3z,y: ¢(u, U; T, §).

4.2 Nondeterminism

Consider first the case of the free inputs v in the formula being fixed to a par-
ticular value a, and the remaining relation

o(u, a; Z, §)

being total or complete with respect to the input u, but also being nondeter-
ministic. Let

o(a, v) :={(Z, y) | (u, v; T, Y)}
denote the set of output values for an interface corresponding to the given input
values.

264 S. Tripakis and C. Shaver

Since ¢ is total, every refinement 1 will be total as well. More, it follows from
the definition of refinement that

U(a, v) C ¢(u,).

Suppose then that a particular relation v is defined such that zﬁ(ﬂ, v) is a sin-
gleton for every set of input values. Moreover, if (ﬁ(ﬂ, U) contains more than one
choice for the value of z, the feedback output, let the choice of singleton value
be the one where T # @; this is always possible if such a choice exists.

The above construction for 1 gives a refinement of ¢ for the above given rea-
sons. This construction is also total functional, since a unique value was chosen
for every input. By desideratum 1, the feedback values for in ¢* are exactly
the fixed point solutions for Z in . However, if there are no such fixed point
solutions for 1, and consequently no feedback values for 1*, by desideratum 2,
¢* can have no feedback values for Z; that is, ¢* would have to be false. On the
other hand, by the definition of refinement, for any set of inputs to a relation, if
the set of outputs is unique, it must be unique in every refinement for the same
inputs, thus the fixed point solutions that are also unique outputs for their corre-
sponding inputs are preserved by refinement. The construction for 1) removes all
of the other fixed point solutions from ¢, arising from nondeterministic inputs.

What can be concluded from this is that the feedback composition, to be
consistent with the desiderata, must be false unless there is at least one fixed
point solution that is a unique output value for its corresponding input. This
constraint can be formulated as the following term

321 ¢(2, 03 2, §) A (Vb : ¢(w, T; @, §) — D = 3) (5)

which can be conjoined with the feedback composition definition. A simpler
term to conjoin would be one that constrains the feedback values to only be
deterministic ones; ones that are the unique outputs for their corresponding
input values. This term would be

VZ: ¢(z,0;2,9) > T =2z (6)

From the perspective of the desiderata, this latter definition would make an
unnecessary restriction, but nevertheless it would simplify the definition for
feedback composition considerably. The decision to use the former or the lat-
ter would hinge on the presence of additional desiderata, perhaps regarding the
preservation of feedback values by refinement; clearly, it is necessary that at least
one feedback value should be preserved for others to exist, and the important
question should be whether or not they all should be.

4.3 General Feedback Composition

Combining the above considerations and assembling the corresponding con-
straints, the following two definitions may be postulated for feedback compo-
sition on relational interfaces:

Feedback in Synchronous Relational Interfaces 265

¢*(v; @, §) == ¢(, v; T, Y) (7)

ANVzZ: ¢(Z,0; 2,) > T =Z]

The full ramifications of these definitions of feedback warrant much further inves-
tigation. The property that the two definitions reduce to only the first term, the
fixed-point relation, in the case of total functional relations means that at least,
for the subclass of total functional relations (or simply functions), this defini-
tion is consistent with the usual notion of feedback in deterministic synchronous
models of computation.

As an example, the above definitions both applied to the one input, one output
true interface result in the one output false interface, consistent with the earlier
example demonstrating that this must be the case. Suppose, instead, that a
relation were defined

(s y) =z =5—>y=>5

which is similar to true, except on the input z := 5, which must be mapped
deterministically to y := 5. Then, under the two definitions of feedback, the
corresponding compositions would be

¢*(+; y) == true

and

¢"(y)=y=5
In both cases, the relation & # y is not a refinement. Indeed, every refinement
of both must at least include 5 as a feedback output value.

5 Conclusions

The definition of feedback composition in the context of synchronous relational
interfaces has been investigated. Challenges were described in Section 3, and a
systematic derivation of novel alternatives was proposed in Section 4. Future
work includes a more thorough study of these new alternatives in the context
of the full theory presented in [16], as well as in the context of recent work
on error-completion [17]. In addition, it would be interesting to examine how
the difficulties in defining feedback in synchronous interfaces are related to the
problem of compositionality of relational semantics of non-deterministic dataflow
networks and the so-called Brock-Ackerman anomaly [6,12].

266 S. Tripakis and C. Shaver
References
1. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A tool for composi-

10.

11.

12.

13.

14.

15.

16.

17.

tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614-619. Springer, Heidelberg (2009)

Berry, G.: The foundations of Esterel, pp. 425-454. MIT Press (2000)

Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.
In: EMSOFT 2007, pp. 11-20. ACM (2007)

Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508-522. Springer, Heidelberg (2008)

Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for
automated distributed implementation of component-based models. Distributed
Computing 25(5), 383-409 (2012)

Brock, J.D., Ackerman, W.B.: Scenarios: A model of non-determinate computation.
In: Diaz, J., Ramos, I. (eds.) Formalization of Programming Concepts. LNCS,
vol. 107, pp. 252-259. Springer, Heidelberg (1981)

de Alfaro, L., Henzinger, T.: Interface automata. In: Foundations of Software En-
gineering (FSE). ACM Press (2001)

de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148-165.
Springer, Heidelberg (2001)

Doyen, L., Henzinger, T., Jobstmann, B., Petrov, T.: Interface theories with com-
ponent reuse. In: EMSOFT 2008, pp. 79-88 (2008)

Edwards, S., Lee, E.: The semantics and execution of a synchronous block-diagram
language. Science of Computer Programming 48, 21-42 (2003)

Gossler, G., Sifakis, J.: Composition for component-based modeling. Science of
Computer Programming 55(1), 161-183 (2005)

Jonsson, B.: A fully abstract trace model for dataflow and asynchronous networks.
Distributed Computing 7(4), 197-212 (1994)

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property
preserving abstractions for the verification of concurrent systems. Formal Methods
in System Design 6(1), 11-44 (1995)

Poulhies, M., Pulou, J., Rippert, C., Sifakis, J.: A methodology and supporting
tools for the development of component-based embedded systems. In: Kordon, F.,
Sokolsky, O. (eds.) Monterey Workshop 2006. LNCS, vol. 4888, pp. 75-96. Springer,
Heidelberg (2007)

Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech,
C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 345-359. Springer,
Heidelberg (1996)

Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM TOPLAS 33(4) (July 2011)

Tripakis, S., Stergiou, C., Broy, M., Lee, E.A.: Error-Completion in Interface The-
ories. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976,
pp. 358-375. Springer, Heidelberg (2013)

	Feedback in Synchronous Relational Interfaces
	1 Introduction
	2 Background: Synchronous Relational Interfaces
	3 Generalizing Feedback
	3.1 Why Generalize the Definition of Feedback?
	3.2 Challenge: Monolithic Order
	3.3 Interfaces with I/O Dependency Information
	3.4 Lifting to Powersets
	3.5 Separating Input Assumptions

	4 Refinement-Preserving Feedback
	4.1 Partiality
	4.2 Nondeterminism
	4.3 General Feedback Composition

	5 Conclusions
	References

