
Toward a System Design Science

Joseph Sifakis

RiSD Laboratory, EPFL, Lausanne, Switzerland
joseph.sifakis@epfl.ch

1 About Design

Design is a universal concept. It links the immaterial world of concepts to the
physical world. It is an essential area of human experience, expertise, and knowl-
edge, which deals with our ability to mold our environment to satisfy material
and spiritual needs.

Design has two different connotations. One is simply a plan or a pattern for
assembling objects constituting a given artifact. The other is the creative process
for devising plans or patterns and carrying them out to produce an artifact. For
this paper we focus on the second interpretation. We are ultimately interested
in putting design on a more scientific basis. Toward this end, we focus here on
articulating a new structure for the design process, which we believe will support
this goal.

We consider that design is the process that leads to an artifact meeting given
requirements. The requirements include functional requirements describing the
functionality provided by the artifact and extra-functional requirements dealing
with the way in which resources are used for implementation and throughout
the artifact’s lifecycle.

Designers deal with two often antagonistic demands: 1) productivity, mean-
ing cost-effectiveness; 2) correctness, meaning compliance to requirements. In
pursuit of these demands, the design process moves through three stages. The
first, requirements specification, describes the artifact’s expected behavior and
any applicable techno-economic constraints. The second, proceduralization, gen-
erates an executable description for realizing the anticipated behavior by exe-
cuting sequences of elementary functions. The third, materialization, produces
an artifact by following the procedure using the available physical resources. De-
sign is an essential component of any engineering activity. By its nature, it is a
“problem-solving process”.

As a rule, requirements are declarative. They are usually expressed in natural
languages. For some application areas, they can be formalized by using logics.
When requirements are expressed by logical specifications, they can be treated as
axioms; proofs that the artifact meets them can start from there. Proceduraliza-
tion can be considered as a synthesis problem: procedures are executable models
meeting the specifications. Unfortunately, model synthesis from logical require-
ments often runs into serious technical limitations such as non-computability or
intrinsically high complexity.

S. Bensalem et al. (Eds.): FPS 2014 (Sifakis Festschrift), LNCS 8415, pp. 225–234, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



226 J. Sifakis

Fig. 1. Design is a universal concept applicable from cooking to computing systems

What happens when requirements are uncertain? To deal with uncertainty,
engineers developed empirical approaches including requirements capture, incre-
mental prototyping, incremental testing, etc. Some of these are done with solid
science protocols focused on experimental design, data analysis, and hypothesis
testing. Others are much less formal and involve many rules of thumb based on
engineering experience. A design science would clarify the role of such empiri-
cal methods, and it would also address the issue of designing against uncertain
requirements.

Design formalization raises a multitude of deep theoretical problems related to
the conceptualization of needs in a given area and their effective transformation
into correct artifacts. So far, it has attracted little attention from theoreticians.
One reason is the predilection of the academic world for simple and elegant
theories. Another reason is that design is by nature multi-disciplinary. Its for-
malization requires consistent integration of heterogeneous models supporting
different levels of abstraction including logics, algorithms, programs, physical
system models, risk models, statements about user practices and statements
about esthetics.

Despite the challenges, providing systematic and well-founded design tech-
niques is of paramount importance for two reasons. The first is that we need
to construct artifacts of guaranteed quality and performance based on scientific
evidence. This is the case for airplanes, cars, critical resource management sys-
tems as well as for critical computing and communication infrastructure. The
second reason is the need to master as much as possible through automation the
complexity and development costs of increasingly sophisticated artifacts. This
need can be illustrated by numerous manufacturing setbacks experienced by the
aircraft industry e.g. the A380 delivery delay or recent safety concerns with
Boeing’s Dreamliner.

Ideas for “scientizing” design emerged in the beginning of the 60’s [1, 2].
There exists today an abundant literature on design science e.g. [3] and on design
science and computing, in particular [4–7]. In this paper, we present our view
about design science and propose a vision determining its scope and perimeter.



Toward a System Design Science 227

2 Bringing Science to Design

Science is a disciplined and systematic method for building, organizing and using
knowledge about the world. We consider that scientific investigation intimately
combines two interdependent processes. The first process is descriptive and in-
tended to develop theory connecting some observed reality through abstractions
to the world of concepts and mathematics. The second process is prescriptive and
consists in applying a theory in order to assess its explicability and predictability
as well as to invent things that do not yet exist. Interaction and cross-fertilization
between these two processes is key to the progress of scientific knowledge. Today,
more than ever, the two processes are involved in an accelerating virtuous cycle
for the advancement of scientific knowledge.

The starting point in the scientific investigation cycle need not be observation.
The theory of relativity was motivated by a series of thought experiments rather
than direct observation. The development of computing as a scientific discipline
started from prior knowledge about computation based on mathematics and
logic.

We consider that design science studies design as a process for developing
artifacts meeting given requirements for trust, function, safety, reliability, es-
thetics, cost containment, etc. Our definition significantly differs from others in
the literature because it emphasizes the modeling-prediction cycle to support
the application of technical means to aid the design processes. Design science is
also concerned with deriving from the applied knowledge of the natural sciences
appropriate information in a form suitable for the designer’s use.

Inherent technical difficulties and limitations aggravate these problems.
Nonetheless, we believe that their analysis and formalization in a flow leading
from requirements to their materialization, can bring interesting insights about
the very nature of artifact creation. For many aspects of design it will be im-
possible to achieve full automation. The main benefit from a scientific approach
to design is rigor. Design can be sketched out as an iterative process consist-
ing of steps supported by a methodology. While guaranteeing the correctness of
designs may be an unattainable goal, a guarantee of accountability is realistic;
accountability means that at each design step it should be possible to know
which requirements hold, which ones do not hold and why.

3 Principles and Problems

We proposed a characterization of design science as a formal process encom-
passing the three stages of requirements expression, proceduralization and ma-
terialization. Each stage corresponds to a main type of problem to be solved by
designers. Next, we discuss four principles that should drive the definition of a
design process.

3.1 Four Driving Principles

Separation of Concerns. Design consistently integrates a sequence of three
stages: requirements specification, proceduralization and materialization.



228 J. Sifakis

– Requirements express, usually in some declarative language, why we build
an artifact. They express intention and needs motivating the design.

– Proceduralization consists in discoveringwhat functionality should be ensured
by the designed artifact to meet functional requirements; then it provides a
procedure for composing atomic components, each component providing some
elementary function or service.

– Materialization defines how function components can be implemented by
using physical components. Implementation choices are driven by extra-
functional requirements which are mainly trade-offs between cost and
performance.

This three-stage decomposition is essential from a methodological point of
view. It allows complexity to be tamed as it clearly separates concerns (why,
what, how) by separately addressing three difficult problems. Furthermore, the
distinction between proceduralization and materialization allows artifacts to
be built providing the same functionality under different techno-economic con-
straints. This makes possible the development of families of artifacts with iden-
tical functional features and different performance and cost characteristics.

Each stage of a design process may be further decomposed into steps. At each
step, the designed artifact is described at a certain level of abstraction by using
an adequate modeling language. Each step progressively reduces abstraction by
replacing conceptual constructs and primitives by more concrete ones. The final
model is a blueprint for building the physical implementation.

Separation of concerns should be supported by an adequate design method-
ology. A design methodology identifies designer activities that can be supported
by state-of-the-art tools to automate tedious and error-prone tasks. It also pre-
cisely determines where human intervention and ingenuity are needed to resolve
design choices through requirements analysis and confrontation with experimen-
tal results. Identifying adequate design parameters and channeling the designers
creativity are essential in this enterprise. The interaction between designer and
supporting tools may involve iterations to eliminate design errors and determine
optimized solutions.

Semantic Coherency. Designers use a variety of languages for the description
of the behavior of the designed artifact at different abstraction levels. These
include declarative languages for expressing requirements, and procedural lan-
guages for modeling, simulation, and performance analysis. Designers use, above
all, domain-specific languages for example, for buildings, mechanical systems,
electric systems, control-based systems, hardware description languages, and
web-based systems.

Frequently, these languages only have informal semantics, which make it dif-
ficult not only to verify that the requirements capture their intended meanings,
but also to reconcile different models that are brought together in a design pro-
cess. This may be a source of design errors. To achieve semantic coherency, and
minimize those errors, all these languages must be rooted in a common semantic
model. The choice of the semantic model depends on the type of designed artifact
for example, geometric model, differential equations, or abstract machines.



Toward a System Design Science 229

Semantic coherency enforcement may be completely transparent for the de-
signer. It can be handled by translation tools such as compilers, interpreters,
and model transformers.

A common semantic model is essential for rigor of design. It characterizes cor-
rectness through a semantic equivalence relation between artifact descriptions
in the different languages that appear in each design stage. An essential require-
ment for a common semantic model is that it directly encompasses primitives
and constructs of the hosted languages to avoid combinatorial explosion of the
translation [8].

Component-Based Construction. Building larger structures from smaller
components enhances productivity and correctness, and is essential in any de-
sign process. Components hide behavioral details behind interfaces that highlight
their interactions with their environment. They can be assembled into composite
components by partially composing their interfaces. Their semantics are defined
by stating the rules of the composite component in terms of the behaviors of
its constituent components. Component composition can use a large variety of
mechanisms expressing how the behaviors of the composed components are re-
stricted through mutual interaction.

Designers need a unified composition paradigm for describing and analyzing
coordination between components in terms of tangible, well-founded, and well-
organized concepts.

Correctness-by-Construction. Correctness means that a designed artifact
meets its requirements specifications. Many designers consider it an ideal to estab-
lish correctness by checking that a design, once completed,meets its specifications.
This ideal is usually impossible because automatic verification entails intractable
computations. The size of state space to be examined by a verification method
explodes exponentially with the number of components in the artifact. The best
we can do is limit automatic verification to small or medium size models and to
specific properties. Some researchers have investigated compositional verification
techniques, which aim to decompose a global requirement for a composite artifact
into sets of requirements for its constituent components. So far, compositional ver-
ification approaches have failed to make any significant breakthrough [9].

An alternative approach is to establish correctness-by-construction incremen-
tally, as you go along the design process, through the combined application of
three principles: property enforcement, property composability, and property
preservation.

Property enforcement: Property enforcement is very common in engineering.
Engineers extensively use principles for building complex artifacts from com-
ponents so as to meet given properties. These principles can be embodied in
patterns for buildings design or for software design, in communication protocols,
in distributed algorithms, in hardware or system architectures. They are solu-
tions to particular problems. For example, a communication protocol ensures
reliable message transmission despite packet losses. A token-ring algorithm en-
sures mutual exclusion in a distributed system. Client-server architectures ensure
atomicity of transactions and fault-tolerance. All these component coordination



230 J. Sifakis

mechanisms can be reused provided they are adequately formalized. They allow
correctness almost for free.

Notice that property enforcement enables designers to ensure that compo-
sitions of components meet a specific global requirement. In contrast to com-
positional verification, it does not require breaking up the global requirement
into sub-requirements to be met by components. For example, we do not have
general compositionality theory for deadlock-freedom preservation. Nonetheless,
specific protocols or architectures may be used to build deadlock-free systems
from deadlock-free components.

Property composability: A key issue in this approach is maintaining coherence
while combining multiple existing solutions to specific problems. For example,
a database programmer might apply several instances of a lock algorithm, but
their multiple application may contain a deadlock. How does the designer know
that the combination of correct solutions might be unsafe?

Another illustration of this problem comes from fault-tolerant computing.
Fault-tolerant systems combine multiple methods for protection against invalid
actions, including: 1) triple modular redundancy mechanisms ensuring continu-
ous operation in case of single component failure; 2) hardware checks to validate
that programs use data only in their defined regions of memory; 3) default to
least privilege (least sharing) to enforce file protection; 4) checkpoints that per-
mit backing up to, and restarting from, a prior valid system state in case of
a failure. If we combine all these methods, how can we be sure there are no
unwanted interactions that make the system prone to new faults?

Guaranteeing non-interaction of features is essential for correct-by-
construction design. Violations of this principle invariably cause trouble. For ex-
ample, features of telecommunication systems frequently interact, causing user
confusion and misuse. Interference among web services and among features in
aspect programming are additional examples.

Property preservation: When a requirement holds for an artifact description at
some design step, it is essential that it remains valid at all subsequent steps. This
allows establishing correctness incrementally. Each new modeling step must not
invalidate correctness of previous steps. Artifact models are progressively built
by first ensuring validity of each functional requirement and then models are re-
fined to satisfy additional extra-functional requirements. Model refinement can
be characterized as a preorder relation between models. It can be implemented
through a set of model transformation rules. The demand for property preser-
vation means that these rules preserve the semantic equivalence of models.

3.2 Three Basic Problems

The three stages of the design process correspond to three types of basic prob-
lems. Their solution is aggravated by many factors including undecidability,
overwhelming algorithmic complexity, conceptual ambiguity, and physical un-
certainty. The objective is not to tackle these problems in their full generality
but rather to identify avenues for their partial solution in specific application
contexts by supporting the designer’s ingenuity with automation.



Toward a System Design Science 231

Formalizing Requirements. Many design processes begin with an expres-
sion in a rigorous language that declares the needs to be met by an artifact
and the associated techno-economic constraints. Several difficulties obstruct full
formalization of requirements. Requirements are by their nature declarative;
thus logic is, in principle, an adequate framework for their expression. However,
requirements are initially expressed in natural languages, which usually allow
ambiguities. Ambiguities inhibit translation into a formal language, limiting the
designer’s ability to be systematic and rigorous. In addition, many requirements
are meant to describe the behavior of the artifact in context of its environment
including its potential users. Formalization of an artifact’s environment is no
easy task it must be done at the right abstraction level, accounting for all the
relevant behavioral properties. Today we lack theoretical approaches for tackling
this problem.

The concept of correctness conjoins two types of requirements: 1) trustwor-
thiness requirements ensuring that nothing bad could happen; 2) optimization
requirements for performance, cost-effectiveness, and tradeoffs between them.
Trustworthiness characterizes qualitative correctness. It means that the arti-
fact can be trusted, and that it will behave as expected. It accounts for non-
vulnerability to hazards such as: 1) design errors; 2) physical failures and defects;
3) interaction with potential users including erroneous use and threats; and 4)
interaction with the physical environment including disturbances and unpre-
dictable events.

Optimization requirements deal with the optimization of functions subject
to constraints involving resources used for implementing and using the artifact.
They deal with: 1) requirements on performance metrics such as throughput
and response time, which characterize how well the artifact does with respect to
user-defined criteria; 2) cost-effectiveness, which characterizes how well resources
are used with respect economic criteria; 3) tradeoffs between performance and
cost-effectiveness.

Trustworthiness and optimization requirements can be difficult to reconcile.
As a rule, improving trustworthiness causes wasted resources. Conversely, re-
source optimization may jeopardize trustworthiness. Designers try to balance
trustworthiness and optimization.

There is a limit to how far we can push a formal logic approach to require-
ments. The biggest problem is that users themselves often cannot articulate
their deep concerns about trust and performance. How can we formalize what
the customer cannot say? For example, with computer security, how can we be
exhaustive and precise about threats from unseen or unsuspected adversaries?
Here there is a real possibility that empirical approaches can help. We can build
prototypes of systems and ask users to try them out and tell us about good
points and problems. By systematically iterating between prototypes and cus-
tomer assessments, we can converge on a set of requirements that earn their
trust. The big challenge is to develop sound scientific methods for this process
and reconcile the experimental results with the mathematical models.



232 J. Sifakis

Proceduralization. Proceduralization is a synthesis problem: find a proce-
dure that builds functionality meeting given requirements from a set of pre-
defined atomic components of known functional characteristics. Unfortunately,
most non-trivial instances of this problem are computationally intractable for
example, program synthesis from logical specifications.

A pragmatic approach for tackling this problem is to strive to bridge the gap
between declarative and procedural languages by working in two directions.

One direction is to raise the abstraction of languages to get them as close as
possible to the declarative style. This would simplify reasoning and relegate pro-
cedure generation to tools. Many approaches for enhanced abstraction propos-
ing logical, constraint-based, and functional description languages already exist.
They are equipped with interpreters or compilers that allow automatic synthesis
of procedural descriptions.

The other direction is to develop adequate domain-specific languages allow-
ing ease of description as well as enhanced safety and productivity. Examples
include Matlab/Simulink, HTML, Logo, SQL, BPEL and hardware description
languages.

Materialization. Materialization consists in exploring cost-performance trade-
offs among all the possible physical implementations of the desired functionality.
It involves extensive empirical evaluation and hypotheses testing to determine
designs better fitting cost-performance requirements. The exploration can be
performed on an adequate model obtained from the procedural description by
assigning to its elements models of functionally equivalent physical components.
In addition to their functionality, this transformation should take into account
physical characteristics, such as execution times, latency, and power consump-
tion. The obtained model should faithfully describe the dynamic behavior of the
artifact, including both the provided functionality and its global physical prop-
erties. A key issue to consider when building such models is their predictability
that is the degree to which their quantitative properties can be asserted. For
example, the materials laid down in layers during a 3-D print may not satisfy
the continuity assumptions of a mathematical model; experimental validation
of stress-bearing properties of those materials is essential. Building predictable
models raises deep theoretical problems [10] and requires a marriage of formal
methods and scientific validation methods.

Design space exploration techniques are intended to determine an optimal
assignment of physical components that fits the user-defined cost-performance
requirements. Currently, they are mostly ad hoc and consist in evaluating the
impact of design parameters on the requirements. The challenge for designs sci-
ence is to make the formal and experimental sides of design mutually compatible
and reinforcing.

Design space exploration allows estimating combinations of parameters that
better fit the requirements. The main challenge is the complexity of exploring
the design space. State-of-the-art techniques for overcoming complexity combine
symbolic representation of the design space and theoretical results for accelerat-
ing the exploration process [11].



Toward a System Design Science 233

4 Toward a Design Science

Even though forty years have passed since the first seminal ideas about design
science, very little progress has been made toward defining its technical goals and
clarifying its scope and limits. It is time to develop technical work contributing
to the advancement of our knowledge about design as a universal paradigm
amenable to both scientific analysis and rigorous practice. In this essay we have
argued that design is a rigorous process involving the successive solution of three
types of problems. We proposed principles and associated scientific challenges
for putting design into practice.

We believe that achieving this goal is not only a matter of writing down
a theory of design, it will require hard work with semantic models, empirical
methods for dealing with uncertainty in requirements, flexibility for dealing with
changing environments, testing, automated materialization, and the maturing of
correct-by-construction principles. This vision is both intellectually challenging
and culturally enlightening. It is at least of equal importance as the quest for
scientific discovery in natural sciences.

Endowing design with scientific foundations is a huge intellectual challenge
that would meet an urgent demand for cost-effectively building complex, trust-
worthy artifacts. Failure in this endeavor, would seriously limit our capability to
master the techno-structure and its further development intended to address ur-
gent global challenges for optimal resource management and enhanced services.
It would also mean that designing is a definitely a-scientific activity [12] driven
by predominant subjective factors that make for ineffectual rational treatment.

Meeting this challenge would significantly enhance our capability to build
trustworthy artifacts, and would confirm that design is definitely a scientific
activity.

Acknowledgments. Peter Denning and Richard Snodgrass contributed to sig-
nificantly improving the paper through constructive comments and criticism.

References

1. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
2. Alexander, C.: Notes on the synthesis of form. Harvard University Press, Cam-

bridge (1964); Autres tirages: 1968, 1971
3. Cross, N.: Designerly ways of knowing: Design discipline versus design science.

Design Issues 17(3), 49–55 (2001)
4. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 28(1), 75–105 (2004)
5. Winter, R., Zhao, J.L., Aier, S. (eds.): DESRIST 2010. LNCS, vol. 6105. Springer,

Heidelberg (2010)
6. Peffers, K., Rothenberger, M., Kuechler, B. (eds.): DESRIST 2012. LNCS,

vol. 7286. Springer, Heidelberg (2012)
7. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Com-

puter 40(10), 32–40 (2007)



234 J. Sifakis

8. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol. 17(2), 7:1–7:52 (2008)

10. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Syst. 28(2-3),
157–177 (2004)

11. Mohanty, S., Prasanna, V.K., Neema, S., Davis, J.: Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular sim-
ulation. In: Proceedings of the Joint Conference on Languages, Compilers and
Tools for Embedded Systems: Software and Compilers for Embedded Systems,
LCTES/SCOPES 2002, pp. 18–27. ACM, New York (2002)

12. Grant, D.: Design methodology and design methods. Design Methods and Theo-
ries 13(1) (1979)


	Toward a System Design Science
	1 AboutDesign
	2 Bringing Science to Design
	3 Principles and Problems
	3.1 Four Driving Principles
	3.2 Three Basic Problems

	4 Toward a Design Science
	References




