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Abstract. In cyber-physical systems (CPS) computing, networking and
control (typically regarded as the “cyber” part of the system) are tightly
intertwined with mechanical, electrical, thermal, chemical or biological
processes (the “physical” part). The increasing sophistication and het-
erogeneity of these systems requires radical changes in the way sense-
and-control platforms are designed to regulate them. In this paper, we
highlight some of the design challenges due to the complexity and het-
erogeneity of CPS. We argue that such challenges can be addressed by
leveraging concepts that have been instrumental in fostering electronic
design automation while dealing with complexity in VLSI system design.
Based on these concepts, we introduce a design methodology whereby
platform-based design is combined with assume-guarantee contracts to
formalize the design process and enable realization of CPS architectures
and control software in a hierarchical and compositional manner. We
demonstrate our approach on a prototype design of an aircraft electric
power system.

Keywords: Cyber-physical systems, embedded systems, VLSI systems,
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1 Emerging Information Technology Trends

The emerging information technology scenario features a large number of new
applications which go beyond the traditional “compute” or “communicate” func-
tions. The majority of these applications build on distributed sense and control
systems destined to run on highly heterogeneous platforms, combining large,
high-performance compute clusters (the infrastructure core or “cloud”) with
broad classes of mobiles, in turn surrounded by even larger swarms of micro-
scopic sensors [16]. Such cyber-physical systems (CPS) [19,8,6] are characterized
by the tight integration of computation with mechanical, electrical, and chemi-
cal processes: networks monitor and control the physical processes, usually with
feedback loops where physics affects computation and vice versa.

CPS have the potential to radically influence how we deal with a broad range
of crucial problems facing our society today, from national security and safety, to
energy management, efficient transportation, and affordable health care. How-
ever, CPS complexity and heterogeneity, originating from combining what in
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the past have been separate worlds, tend to substantially increase system design
and verification challenges. The cost of being late to market or of product mal-
functioning is staggering as witnessed by the recent recalls and delivery delays
that system industries had to bear. Toyota’s infamous recall of approximately
9 million vehicles due to the sticky accelerator problem, Boeing’s Airbus delay
bringing an approximate toll of $6.6 billion are examples of devastating effects
that design problems may cause. If this is the present situation, the problem
of designing planetary-scale swarm systems appears insurmountable unless bold
steps are taken to advance significantly the science of design.

While in traditional embedded system design the physical system is regarded
as a given, the emphasis of CPS design is instead on managing dynamics,
time, and concurrency by orchestrating networked, distributed computational
resources together with the physical systems. Functionality in CPS is provided
by an ensemble of sensing, actuation, connectivity, computation, storage and
energy. Therefore, CPS design entails the convergence of several sub-disciplines,
ranging from computer science, which mostly deal with computational aspects
and carefully abstracts the physical world, to automatic control, electrical and
mechanical engineering, which directly deals with the physical quantities in-
volved in the design process. The inability to rigorously model the interactions
among heterogeneous components and between the “physical” and the “cyber”
sides is a serious obstacle to the efficient realization of CPS. Moreover, a severe
limitation in common design practice is the lack of formal specifications. Require-
ments are written in languages that are not suitable for mathematical analysis
and verification. Assessing system correctness is then left for simulation and,
later in the design process, prototyping. Thus, the traditional heuristic design
process based on informal requirement capture and designers’ experience can
lead to implementations that are inefficient and sometimes do not even satisfy
the requirements, yielding long re-design cycles, cost overruns and unacceptable
delays.

In this paper, we highlight the main design challenges for the realization of
embedded systems caused by the complexity and heterogeneity of CPS. Rest-
ing on the successful achievements of electronic design automation (EDA) in
taming design complexity of VLSI systems [15], we argue that such challenges
can only be addressed by employing structured and formal design methodologies
that seamlessly and coherently combine the various dimensions of the multi-scale
design space and provide the appropriate abstractions. We then introduce and
demonstrate a CPS design methodology by combining the platform-based design
[17] and contract-based design [16] paradigms.

2 Cyber-Physical System Design Challenges

In this section we highlight the main CPS design challenges, based on the elab-
orations in [6] and [16]. In particular, we categorize them in terms of modeling,
integration and specification challenges.
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2.1 Modeling Challenges

Model-based design (MBD) [20,18] is today generally accepted as a key enabler
for the design and integration of complex systems. However, CPS tend to stress
all existing modeling languages and frameworks. While in computer science logic
is emphasized rather than dynamics, and processes follow a sequential seman-
tics, physical processes are generally represented using continuous-time dynam-
ical models, expressed as differential equations, which are acausal, concurrent
models. Therefore, most of the modeling challenges stem by the difficulty in
accurately capturing the interactions between these two worlds.

Challenge 1—Modeling Timing and Concurrency. A first set of technical chal-
lenges in analysis and design of real-time embedded software stems from the
need to bridge its inherently sequential semantics with the intrinsically con-
current physical world. All the general-purpose computation and networking
abstractions are built on the premise that execution time is just an issue of
performance, not correctness. Therefore, timing of programs is not repeatable,
except at very coarse granularity, and programmers have hard time to specify
timing behaviors within the current programming abstractions. Moreover, con-
currency is often poorly modelled. Concurrent software is today dominated by
threads, performing sequential computations with shared memory. Incomprehen-
sible interactions between threads can be the sources of many problems, ranging
from deadlock and scheduling anomalies, to timing variability, nondeterminism,
buffer overruns, and system crashes. Finally, modeling distributed systems adds
to the complexity of CPS modeling by introducing issues such as disparities in
measurements of time, network delays, imperfect communication, consistency of
views of system state, and distributed consensus [6].

Challenge 2—Modeling Interactions of Functionality and Implementation. To
evaluate a CPS model, it is necessary to model the dynamics of software and
networks. In fact, computation and communication do take time. However, pure
functional models implicitly assume that data are computed and transmitted
in zero time, so that the dynamics of the software and networks have no effect
on system behavior. It is then essential to provide a mechanism to capture the
interactions of functionality and implementation. Implementation is largely or-
thogonal to functionality and should therefore not be an integral part of a model
of functionality. Instead, it should be possible to conjoin a functional model with
an implementation model. The latter allows for design space exploration, while
the former supports the design of control strategies. The conjoined models enable
evaluation of interactions across these domains.

2.2 Integration Challenges

CPS integrate diverse subsystems, by often composing pieces that have been
pre-designed or designed independently by different groups or companies. This
is done routinely, for example, in the avionics and automotive sectors, albeit in a
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heuristic and ad hoc way. Yet, integrating component models to develop holistic
views of the system becomes very challenging, as summarized below.

Challenge 3—Keeping Model Components Consistent. Inconsistency may arise
when a simpler (more abstract) model evolves into a more complex (refined) one,
where a single component in the simple model becomes multiple components in
the complex one. Moreover, non-functional aspects such as performance, timing,
power or safety analysis are typically addressed in dedicated tools using specific
models, which are often evolved independently of the functional ones (captur-
ing the component dynamics), thus also increasing the risk of inconsistency. In
a modeling environment, a mechanism for maintaining model consistency al-
lows components to be copied and reused in various parts of the model while
guaranteeing that, if later a change in one instance of the component becomes
necessary, the same change is applied to all other instances that were used in
the design. Additionally, such a mechanism is instrumental in maintaining con-
sistency between the results of specialized analysis and synthesis tools using
different representations of the same component.

Challenge 4—Preventing Misconnected Model Components. The bigger a model
becomes, the harder it is to check for correctness of connections between compo-
nents. Typically model components are highly interconnected and the possibility
of errors increases. Errors may be due to different units between a transmitting
and a receiving port (unit errors), different interpretation of the exchanged data
(semantic errors), or just reversed connections among ports (transposition er-
rors). Since none of these errors would be detected by a type system, specific
measures should be enabled to automatically check for them [6].

Challenge 5—Improving Scalability and Accuracy of Model Analysis Techniques.
Conventional verification and validation techniques do not scale to highly com-
plex or adaptable systems (i.e., those with large or infinite numbers of possible
states or configurations). Simulation techniques may also be affected by model-
ing artifacts, such as solver-dependent, nondeterminate, or Zeno behaviors [6]. In
fact, CPS may be modeled as hybrid systems integrating solvers that numerically
approximate the solutions to differential equations with discrete models, such as
state machines, dataflow models, synchronous-reactive models, or discrete event
models. Then, when a threshold must be detected, the behavior defined by a
model may depend on the selected step size, which is dynamically adjusted by
the numerical solver to increment time.

2.3 Specification Challenges

Depending on application domains, up to 50% of all errors result from imprecise,
incomplete, or inconsistent and thus unfeasible requirements. The overall system
product specification is somewhat of an art today, since to verify its completeness
and its correctness there is little that it can be used to compare with.
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Challenge 6—Capturing System Requirements. Among the many approaches
taken in industry for getting requirements right, some of them are meant for ini-
tial system requirements, mostly relying on ISO 26262 compliant approaches. To
cope with the inherently unstructured problem of (in)completeness of require-
ments, industry has set up domain- and application-class specific methodologies.
As particular examples, we mention learning processes, such as the one employed
by Airbus to incorporate the knowledge base of external hazards from flight inci-
dents, and the Code of Practice proposed by the Prevent Project, using guiding
questions to assess the completeness of requirements in the concept phase of the
development of advanced driver assistance systems. Use-case analysis methods
as advocated for UML based development processes follow the same objective. A
common theme of these approaches is the intent to systematically identify those
aspects of the environment of the system under development whose observability
is necessary and sufficient to achieve the system requirements. However, the most
efficient way of assessing completeness of a set of requirements is by executing it,
which is only possible if semi-formal or formal specification languages are used,
where the particular shape of such formalizations is domain dependent.

Challenge 7—Managing Requirements. Design specifications tend to move from
one company (or one division) to the next in non-executable and often unsta-
ble and imprecise forms, thus yielding misinterpretations and consequent de-
sign errors. In addition, errors are often caught only at the final integration
step as the specifications were incomplete and imprecise; further, nonfunctional
specifications (e.g., timing, power consumption, size) are difficult to trace. It is
common practice to structure system level requirements into several “chapters”,
“aspects”, or “viewpoints”, quite often developed by different teams using differ-
ent skills, frameworks, and tools. Without a clean approach to handle multiple
viewpoints, the common practice today is to discard some of the viewpoints in a
first stage, e.g., by considering only functions and safety. Designs are then devel-
oped based on these only viewpoints. Other viewpoints are subsequently taken
into account (e.g., timing, energy), thus resulting in late and costly modifications
and re-designs.

3 Coping with Complexity in VLSI Design: Lessons
Learned

Over the past decades, a major driver for silicon microelectronics research has
been Moore’s law, which conjectures the continued shrinkage of critical chip di-
mensions (see Fig. 1 (a)). Microelectronic progress became so predictable that
the Semiconductor Industry Association (SIA) developed a road-map to help
defining critical steps and sustaining progress; the material science and material
processing research community has successfully met the challenges, maintain-
ing a steady stream of results supporting continued scaling of CMOS devices
to smaller dimensions. By taking full advantage of the availability of billion-
transistor chips, increasingly higher performance Systems-on-Chip (SoC) are
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Fig. 1. (a) Reduction of minimum feature size with time in VLSI systems and (b)
Levels of abstraction in VLSI design (Figure from [15])

being fabricated today, thus enabling new architectural approaches to informa-
tion processing and communication. The appearance of new nano-scale devices
is expected to revolutionize the way information is processed on chip, and per-
haps more significantly, have a major impact on emerging applications at the
intersection of the biological, information and micro-electro-mechanical worlds.

3.1 Dealing with Moore’s Law

Dealing with steady increase in complexity over the decades has been made possi-
ble only because of the continuous increase of productivity brought by electronic
design automation.

By looking back at the history of design methods, we can infer how the changes
in design productivity have always been associated with a rise in the level of ab-
straction of design capture. As can be seen in Fig. 1 (b), in 1971, the highest
level of abstraction for digital integrated circuits was the schematic of a tran-
sistor; ten years later, it became the digital gate; by 1990, the use of hardware
description languages (HDL) was pervasive, and design capture was done at the
register transfer level (RTL). Dealing with blocks of much coarser granularity
than in the past has become essential in order to cope with the productivity
increase the industry is asked to provide. The recent emphasis on SoC, bringing
system-level issues into chip design, is a witness to this trend.

One of these issues relates to the concept of system decomposition and inte-
gration out of pre-designed intellectual property (IP) blocks. Although top-down
decomposition has been customarily adopted by the semiconductor industry for
years, it presents some limitations as a designer or a group of designers has to fully
comprehend the entire system and to partition appropriately its various parts, a
difficult task given the enormous complexity of today’s systems. As mentioned in
Section 2.2, an alternative is to develop systems by composing pre-designed pieces,
whereby preserving compositionality is essential: the building blocks should be de-
signed so that their properties are maintained when connected together to allow
reuse without the need for expensive verification steps.



Let’s Get Physical: Computer Science Meets Systems 199

Decomposition and abstraction have been two basic approaches traditionally
used to manage design complexity. However, complexity has been also man-
aged by “construction”, i.e. by “artificially” constraining the space to regular, or
modular design styles that can ease design verification (e.g. by enforcing regular
layout and synchronous design), and by structured methodologies, which start
high in the abstraction layers and define a number of refinement steps that go
from the initial description to the final implementation.

The design problems faced in SoC design are very similar to the ones discussed
in Section 2, the main difference between them being the importance given to
time-to-market and to the customer appeal of the products versus safety and
hard-time constraints. Several languages and design tools have been proposed
over the years to enable checking system level properties or explore alternative
architectural solutions for the same set of requirements. Among others, we recall
generic modeling frameworks, such as Matlab/Simulink1 or Ptolemy II2, hard-
ware description languages, such as Verilog3 or VHDL4, transaction-level model-
ing tools, such as SystemC5, together with their respective analog-mixed-signal
extensions6, modeling languages for architecture modeling, such as SysML7 and
AADL8. Some of these tools focus on simulation while others are geared towards
performance modeling, analysis and verification. However, the design technol-
ogy challenge is to address the entire system design process and not to consider
only point solutions of methodology, tools, and models that ease part of the
design. This calls for new modeling approaches that can mix different physical
systems, control logic, and implementation architectures. In doing so, existing
approaches, models, and tools should be subsumed and not eliminated in order
to be smoothly incorporated in current design flows. A design platform should
then be developed to host the new techniques and to integrate a set of today’s
poorly interconnected tools.

3.2 System Design Methodology

The considerations above motivate the view that a unified methodology and
framework could be used across several different industrial domains. Among the
lines of attack developed by research institutions and industry to cope with the
exponential complexity growth, a design paradigm of particular interest to the
development of embedded systems is the V-model, a widely accepted scheme in
the defense and transportation domains.

1 http://www.mathworks.com/products/simulink
2 http://ptolemy.eecs.berkeley.edu
3 http://www.verilog.com/
4 http://www.vhdl.org
5 http://www.accellera.org/downloads/standards/systemc
6 http://www.eda.org/verilog-ams/

http://www.eda.org/vhdl-ams/

http://www.accellera.org/downloads/standards/systemc/ams
7 http://www.omg.org/spec/SysML
8 http://www.aadl.info/aadl/currentsite
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Fig. 2. The V-Model

The V-model was originally developed for defense applications by the German
DoD.9 It structures the product development processes into a design and an in-
tegration phase along variations of the V diagram shown in Fig. 2. Specifically,
following product level requirement analysis, subsequent steps would first evolve
a functional architecture supporting product level requirements. Sub-functions
are then re-grouped taking into account re-use and product line requirements
into a logical architecture, whose modules can be developed independently, e.g.,
by different subsystem suppliers. The realization of such modules often involves
mechatronic design. The top-level of the technology-oriented architecture would
then show the mechatronic architecture of the module, defining interfaces be-
tween the different domains of mechanical, hydraulic, electrical, and electronic
system design. Subsequent phases would then unfold the detailed design for each
of these domains, such as the design of the electronic subsystem involving among
others the design of electronic control units (ECU). These design phases are par-
alleled by integration phases along the right-hand part of the V, such as integrat-
ing basic and application software on the ECU hardware to actually construct
the electronic control unit, integrating the complete electronic subsystems, inte-
grating the mechatronic subsystem to build the module, and integrating multiple
modules to build the complete product. An integral part of V-based development
processes are testing activities, where at each integration level test-suites devel-
oped during the design phases are used to verify compliance of the integrated
entity to their specification. Since system integration and validation may often be
performed too late in the design flow, there is limited ability to predict, early in
the design process, the consequences of a design decision on system performance
and the cost of radical departures from known designs. Therefore, design-space
exploration is rarely performed adequately, yielding suboptimal designs where
the architecture selection phase does not consider extensibility, re-usability, and
fault tolerance to the extent that is needed to reduce cost, failure rates, and
time-to-market.

9 http://www.v-model-xt.de
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Fig. 3. Platform-based design and the role of contracts

Platform-based design (PBD) was introduced in the late 1980s to capture
a design process that could encompass horizontal and vertical decompositions,
and multiple viewpoints and in doing so, support the supply chain as well as
multi-layer optimization [17].

Platform-based design addresses already many of the challenges outlined in
Section 2. Its concepts have been applied to a variety of very different domains:
from automotive, to System-on-Chip, from analog circuit design, to building
automation, to synthetic biology. By limiting the design space to the platform
library, it allows efficient design exploration and optimization, aiming to correct-
by-construction solutions (Challenge 5). Moreover, the meet-in-the-middle ap-
proach, where functional models are combined with non-functional models, and
successive top-down refinements of high-level specifications across design lay-
ers are mapped onto bottom-up abstractions and characterizations of potential
implementations, allows effectively coupling system functionality and architec-
ture (Challenge 1, 2 and 5), as represented in Fig. 3. However, to successfully
deploy such a methodology, we need rigorous mechanisms for (i) determining
valid compositions of compatible components so that when the design space is
explored, only legal compositions are taken into consideration; (ii) guaranteeing
that a component at a higher level of abstraction is an accurate representation
of a lower level component (or aggregation of components); (iii) checking that an
architecture platform is indeed a correct refinement of a specification platform,
and (iv) formalizing top-level system requirements. In the following section, we
show how such goals can be achieved by combining platform-based design with
the concept of contracts.

4 Platform-Based Design with Contracts

The notion of contracts originates in the context of assume-guarantee reasoning.
Informally, a contract is a pair C = (A,G) of properties, assumptions and guar-
antees, respectively representing the assumptions on the environment and the
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promises of the system under these assumptions. The essence of contracts is a
compositional approach, where design and verification complexity is reduced by
decomposing system-level tasks into more manageable subproblems at the com-
ponent level, under a set of assumptions. System properties can then be inferred
or proved based on component properties.

Compositional reasoning has been known for a long time, but it has mostly
been used as a verification mean for the design of software. Rigorous contract
theories have then been developed over the years, including assume-guarantee
(A/G) contracts [4] and interface theories [1]. However, their concrete adoption
in CPS design is still at its infancy. Examples of application of A/G contracts
have only been recently demonstrated in the automotive [5] and consumer elec-
tronics [12] domains. The use of A/G contracts for control design in combination
with PBD has been advocated in [16], while in [13,11], a PBD methodology is
first introduced that uses contracts to integrate heterogeneous modeling and
analysis frameworks for synthesis and optimization of CPS architectures and
control protocols. The design flow is demonstrated on a real-life example of in-
dustrial interest, namely the design of system topology and supervisory control
for aircraft electric power systems (EPS).

4.1 Contracts

We summarize the main concepts behind our methodology by presenting a sim-
ple generic contract model centered around the notion of platform component. A
platform component M can be seen as an abstraction representing an element of
a design, characterized by a set of attributes, including: variables (input, output
and internal), configuration parameters, and ports (input, output and bidirec-
tional); a behavioral model, uniquely determining the values of the output and
internal variables given the values of the input variables and configuration pa-
rameters, and a set of non-functional models, i.e. maps that allow computing
non-functional attributes of a component, corresponding to particular valua-
tions of its input variables and configuration parameters. Components can be
connected together by sharing certain ports under constraints on the values of
certain variables. In what follows, we use variables to denote both component
variables and ports. A component may be associated with both implementations
and contracts. An implementation M is an instantiation of a component M for a
given set of configuration parameters. In the following, we also use M to denote
the set of behaviors of an implementation, which assign a history of “values” to
ports. Behaviors are generic and abstract. For instance, they could be continuous
functions that result from solving differential equations, or sequences of values
or events recognized by an automata model.

A contract C for a component M is a pair of assertions (A,G), called the
assumptions and the guarantees, each representing a specific set of behaviors
over the component variables [4]. An implementation M satisfies an assertion
B whenever M and B are defined over the same set of variables and all the
behaviors of M satisfy the assertion, i.e. when M ⊆ B. An implementation of
a component satisfies a contract whenever it satisfies its guarantee, subject to
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the assumption. Formally, M ∩A ⊆ G, where M and C have the same variables.
We denote such a satisfaction relation by writing M |= C. An implementation
E is a legal environment for C, i.e. E |=E C, whenever E ⊆ A. Two contracts
C and C′ with identical variables, identical assumptions, and such that G′ ∪
¬A = G ∪ ¬A, where ¬A is the complement of A, possess identical sets of
environments and implementations. Such two contracts are then equivalent. In
particular, any contract C = (A,G) is equivalent to a contract in saturated
form (A,G′), obtained by taking G′ = G ∪ ¬A. Therefore, in what follows, we
assume that all contracts are in saturated form. A contract is consistent when
the set of implementations satisfying it is not empty, i.e. it is feasible to develop
implementations for it. For contracts in saturated form, this amounts to verify
that G �= ∅. Let M be any implementation, i.e. M |= C, then C is compatible, if
there exists a legal environment E for M , i.e. if and only if A �= ∅. The intent
is that a component satisfying contract C can only be used in the context of a
compatible environment.

Contracts associated to different components can be combined according to
different rules. Similar to parallel composition of components, parallel composi-
tion (⊗) of contracts can be used to construct composite contracts out of simpler
ones. Let M1 and M2 two components that are composable to obtain M1 ×M2

and satisfy, respectively, contracts C1 and C2. Then, M1 ×M2 is a valid compo-
sition if M1 and M2 are compatible. This can be checked by first computing the
contract composition C12 = C1 ⊗ C2 and then checking whether C12 is compati-
ble. To compose multiple views of the same component that need to be satisfied
simultaneously, the conjunction (∧) of contracts can also be defined so that if
M |= C1∧C2, then M |= C1 and M |= C2. Contract conjunction can be computed
by defining a preorder on contracts, which formalizes a notion of refinement. We
say that C refines C′, written C 	 C′ if and only if A ⊇ A′ and G ⊆ G′. Re-
finement amounts to relaxing assumptions and reinforcing guarantees, therefore
strengthening the contract. Clearly, if M |= C and C 	 C′, then M |= C′. On the
other hand, if E |=E C′, then E |=E C. Mathematical expressions for computing
contract composition and conjunction can be found in [4].

Horizontal and Vertical Contracts. Since compatibility is assessed among com-
ponents at the same abstraction layer, the first category of contracts presented
above can be denoted as horizontal contracts. On the other hand, vertical con-
tracts can also be used to verify whether the system obtained by composing the
library elements according to the horizontal contracts satisfies the requirements
posed at the higher level of abstraction. If these sets of contracts are satisfied,
the mapping mechanism of PBD can be used to produce design refinements that
are correct by construction. Vertical contracts are tightly linked to the notions
of mapping of an application onto an implementation platform [12]. However,
compositional techniques that check correct refinement on each subsystem in-
dependently are not effective, in general, since the specification architecture at
level l+1 may be defined in an independent way, and does not generally match
the implementation architecture at level l. Let S = ⊗i∈ISi and A = ⊗j∈JAj

be the two contracts describing the specification and implementation platforms,
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Fig. 4. Single-line diagram of an aircraft electric power system (Figure from [13])

respectively. Therefore, verification of vertical contracts can be performed
through mapping of the application to the implementation platform as follows.
In this example, the specification and implementation contracts are composition-
ally defined out of I and J components, which may not directly match. Then,
the mapping of the specification over the implementation can be modelled by
the composition S ⊗ A, and checking vertical contracts becomes equivalent to
checking that S ⊗A refines S, which can be performed compositionally.

4.2 A Contract-Based Design Flow for CPS

We now show how the challenges discussed in Section 2 can effectively be ad-
dressed by a platform-based design methodology using contracts. As an example,
we consider the embedded control design problem in [13]. Fig. 4 shows a sample
structure of an aircraft EPS in the form of a single-line diagram, a simplified no-
tation for three-phase power systems. Generators deliver power to the loads via
buses. Essential loads cannot be unpowered for more than a predefined period
tmax, i.e. a typical specification would require that the failure probability for
an essential load (i.e., the probability of being unpowered for longer than tmax)
be smaller than 10−9 per flight hour. Contactors are electromechanical switches
that are opened or closed to determine the power flow from sources to loads.
The goal is to design the system topology (e.g. number and interconnection of
components) and the controller to accommodate all changes in system condi-
tions or failures, and reroute power by appropriately actuating the contactors,
so that essential buses are adequately powered.

In our design flow, pictorially represented in Fig. 5, platform component design
and characterization is completely orthogonalized from system specification and
algorithm design.

Platform Library Generation. In the bottom-up phase of the design process, a
library of components (and contracts) is generated to model (or specify) both
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Fig. 5. Contract-based CPS design flow and its demonstration to an aircraft electrical
power system [13]

the plant architecture (e.g. the power system topology in Fig. 5) and the con-
troller. Components can be hierarchically organized to represent the system at
different levels of abstraction, e.g. steady-state (static), discrete-event (DE), and
hybrid levels. At each level of abstraction, components are also capable of ex-
posing multiple, complementary views, associated with different design concerns
(e.g. safety, performance, reliability) and with models that can be expressed
via different formalisms (e.g. graphs, linear temporal logic, differential equations
in Fig. 5), and analyzed by different tools. Such models include non-functional
(performance) metrics, such as timing, energy and cost. Contracts allow checking
consistency among models as the library evolves, which addresses Challenge 3.

Requirement Formalization. In the top-down phase of the design process, top-
level system requirements are formalized as contracts. Responsibilities of achiev-
ing requirements are split into those to be established by the system (guarantees)
and those characterizing admissible environments (assumptions). As an example,
controller requirements can be expressed as a contract CC = (AC , GC), where
AC encodes the allowable behaviors of the environment (physical plant) and GC

encodes the top-level system requirements. To define CC , formal specification
languages can be used, e.g. linear temporal logic (LTL) [14] and signal temporal
logic (STL) [9] in Fig. 5, to allow reasoning about temporal aspects of systems at
different levels of abstraction. Using contracts resting on logic-based formalisms
comes with the advantage that “spurious” unwanted behaviors can be excluded
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by “throwing in” additional contracts, or strengthening assumptions, or by con-
sidering additional cases for guarantees, thus addressing Challenge 6. A second
advantage rests in the capability of checking for consistency by providing effec-
tive tests, whether a set of contracts is realizable, or whether, in contrast, facets
of these are inherently conflicting, and thus no implementation is feasible, which
addresses Challenge 7. By reflecting the model library, the particular shape of
requirement formalizations is also viewpoint and domain dependent. To address
Challenge 1, such system-level models should still come with a rigorous tempo-
ral semantics that allows specifying the interaction between the control program
and the physical dynamics so as to model timing and concurrency at a higher
abstraction level in a way that is largely independent of underlying hardware
details. For instance, LTL allows reasoning about the temporal behaviors of sys-
tems characterized by Boolean, discrete-time signals or sequences of events (DE
abstraction). On the other hand, STL deals with dense-time real signals and
hybrid dynamical models that mix the discrete dynamics of the controller with
the continuous dynamics of the plant (hybrid abstraction).

Mapping Functions to Implementations. By leveraging models expressed in dif-
ferent formalisms, the design is cast as a set of problems mapping functions over
implementations. The mapping problem is a synthesis problem that can be solved
by either leveraging pre-existing synthesis tools, or by casting an optimization
problem that uses information from both the system and the component levels
to evaluate global tradeoffs among components.

In the example of Fig. 5, contract CT is first used together with steady-state
models of the plant components and a template of the EPS topology (repre-
sented as a graph) to synthesize a final topology that minimize component cost
subject to connectivity, power flow and reliability constraints, all expressed as
mixed integer-linear constraints. CC,LTL is then used together with DE models
of the plant components (also described by LTL formulas) and the EPS topol-
ogy, to synthesize a reactive control protocol in the form of one (or more) state
machines. Reactive synthesis tools [10,7] can be used to generate control logic
from LTL A/G contracts. The resulting controller will then satisfy CC,LTL by
construction. Satisfaction of CC,STL is then assessed on a hybrid model, includ-
ing both the controller and an acausal, equation-based representation of the
plant, by monitoring simulation traces while optimizing a set of system parame-
ters. Contracts are captured as optimization constraints. The resulting optimal
controller configuration is returned as the final design.

Horizontal contracts allow checking or enforcing compatibility and correct
connections among components, thus addressing Challenge 4. Vertical contracts
allow checking or enforcing correct abstraction and refinement relations, thus
maintaining consistency among platform instances, models and requirements at
different abstraction levels (Challenge 4 and 7). Moreover, in control design,
vertical contracts define relations between the properties of the controller and
the ones of its execution platform, which helps address Challenge 2. Typically,
the controller defines requirements in terms of several aspects that include the
timing behavior of the control tasks and of the communication between tasks,
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their jitter, the accuracy and resolution of the computation, and, more generally,
requirements on power and resource consumption. These requirements are taken
as assumptions by the controller, which in turn provides guarantees in terms of
the amount of requested computation, activation times and data dependencies.

The association of functionality to architectural services to evaluate the char-
acteristics (such as latency, throughput, power, and energy) of a particular im-
plementation by simulation (Challenge 2) can be supported by frameworks such
as Metropolis [2,3], which is founded on design representation mechanisms that
can be shared across different models of computation and different layers of
abstraction. A typical design scenario would then entail a front-end orchestra-
tor routine responsible for coordinating a set of back-end specialized synthesis
and optimization frameworks, each dealing with a different representation of
the platform, and consistently processing their results. To maintain such consis-
tency and improve on the scalability of the specific synthesis and optimization
algorithms (Challenge 5), such an orchestrator should maximally leverage the
modularity offered by contracts, by directly working on their representations to
perform compatibility, consistency and refinement checks on system portions of
manageable size and complexity.

5 Conclusions

Dealing with the heterogeneity and complexity of cyber-physical systems requires
innovations in design technologies and tools. In this paper, we have advocated
the need for a design and integration platform that can operate at different levels
of abstraction, orchestrate hardware and software, digital and analog, cyber and
physical subsystem design, as well as facilitate the integration of IP blocks and
tools. Then, we have introduced a platform-based design methodology enriched
with contracts and demonstrated its potential to provide the foundations for
such a framework.
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