A First Step towards a
Compiler for Business Processes

Thomas M. Prinz, Norbert Spie}, and Wolfram Amme

Friedrich Schiller University Jena
07743 Jena, Germany
{Thomas.Prinz,Norbert.Spiess,Wolfram.Amme}@uni-jena.de

Abstract. The verification of business processes is crucial since an er-
roneous execution causes high costs and damages the reputation of the
providing company. The first step towards correct business processes is
the verification of structural correctness, i.e., the absence of deadlocks
and lack of synchronization.

In this demonstration paper, we present a system which was integrated
into the Activiti BPMN 2.0 designer for Eclipse, allowing an immediate
user support during the development of business processes. Therefore,
an entire business process is transformed into semantically equivalent
workflow graphs on which a new structural correctness verification is
performed directly. This is done for each modification and the determined
failures are visualized directly in the business process. The system can
be seen as first step towards a compiler for business processes.

1 Introduction

Business processes are well-established in business management, in the context
of service-oriented architectures, and cloud computing. Since business processes
are described by graphical specification languages like BPMN 2.0 [1], there is a
need for transformations into more technical representations to allow and out-
perform analyses and verifications, i.e., a compiler. The verification of business
processes becomes crucial as business processes are frequently used and could
have runtimes over months, whereby an erroneous execution causes high costs
and could lasting damage the reputation of the providing company. Therefore,
support for the development of correct business processes is essential for all
business process development tools.

Structural correctness, which focuses only on the structure of business pro-
cesses without consideration of data aspects, builds the first step towards correct
business processes. Business processes can have two kinds of structural errors:
deadlocks and lack of synchronization [2]. Deadlocks are situations in which the
execution within business processes blocks partly or completely, and lack of syn-
chronization are situations in which parts of business processes are executed
twice unintentionally because of unsuccessfully joined parallel control flows. The

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 238-243, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A First Step towards a Compiler for Business Processes 239

absence of deadlocks and lack of synchronization in business processes is called
soundness in the literature [3,4]. However, we prefer to call it structural correct-
ness like Sadiq and Orlowska [2], since soundness describes the overall correct-
ness.

In our previous work [5,6], we have introduced new compiler-based techniques
to find structural errors within workflow graphs. Workflow graphs are a more
formal representation of business processes containing exactly one start and one
end node, activities, forks, joins, splits, and merges. Since the algorithm works
only on simple workflow graphs, i.e., on workflow graphs in which each edge
contains an activity, and business processes can have more than one start and
end node, the transformation of the business process model into the workflow
graph representation is not a trivial one-to-one transformation.

In this demonstration paper, we present our analysis tool mojo which was inte-
grated into the Activiti BPMN 2.0 designer (http://activiti.org), a tool for
creating BPMN 2.0 business processes. The resulting system allows immediate
and serious support during the development of business processes by visualizing
structural errors directly in the graphical model and providing a failure analysis
mode, which highlights a selected error. The rest of the paper is structured as
follows: Section 2 introduces structural correctness to the reader, Section 3 gives
an overview of the implemented system and transformations, whereas Section 4
evaluates their robustness. Eventually, the paper is concluded in Section 5.

2 Informal Description

A formal representation of business processes are workflow graphs. A workflow
graph is a directed graph WFG = (N, E) such that N consists of activities, forks,
joins, splits, merges, and one start as well as one end node. Each activity, split,
fork, and the end node have exactly one incoming edge; whereas each activity,
merge, join, and the start node have exactly one outgoing edge. Merges and joins
have at least two incoming edges, and splits and forks have at least two outgoing
edges. Concluding, each node lies on a path from the start to the end node. A
workflow graph is called simple if for each edge e = (n1,n2) € E the source n4
or the target no is an activity.

Figure 1 shows a workflow graph
with annotated node types. After the
instantiation of a workflow graph, a
control flow starts at the start node
and follows the flow given by the ° e
graph. Each node, except a join, i.e., W
activities, splits, merges, forks, and
the end node, can be executed if a con-
trol flow reaches one of its incoming
edges. However, joins can only fire if Fig.1. A workflow graph
all incoming edges are reached by a
control flow. Since data aspects are out of the scope of structural correctness, a

http://activiti.org

240 T.M. Prinz, N. Spief}, and W. Amme

Fig. 2. A workflow graph containing two structural errors

split decides nondeterministically which of its outgoing edges will be followed by
the control flow. A fork produces a control flow for each of its outgoing edges,
i.e., parallelism.

Without loss of generality, each workflow graph is simple for the remainder of
this paper, since there is a fast transformation from common to simple workflow
graphs,; e.g., by placing a new activitiy on each edge. It simplifies analyses and
algorithms.

Structural correctness describes the absence of deadlocks and lack of synchro-
nization. A deadlock appears for a join, if the join was not executed as often
as each of its direct predecessor nodes and cannot be executed in future. An
executable fork causes a lack of synchronization if it may result in simultaneous
executions of the same node.

Structural correctness is a standard problem of business processes and has
been solved efficiently and with detailed failure information in our previous work
[5,6]. The basic idea is to start the analysis for structural correctness at different
points (nodes) of a workflow graph, which we call entrypoints. It is comparable
to a compiler trying to find the next safe program point in order to find further
errors after a previous failure. Take the workflow graph of Fig. 2 as example. It
contains a deadlock in join J1 as well as a lack of synchronization caused by
fork F'1. Starting an analysis in the start node would detect only the lack of
synchronization, whereas restarting the analysis at split S1 identifies also the
deadlock.

We have found out, that activation points are good entrypoints for the de-
tection of deadlocks. An activation point pnt belongs always to another node n
whereas the execution of pnt guarantees the future execution of n. Each activa-
tion point of a join has to be also an activation point of all of its predecessor
nodes, and each closest activation point of a join, i.e., there is at least one path
to the join without another activation point, has to be a fork. As a result, a
join in a workflow graph without lack of synchronization has a deadlock if on
at least one path, from the start node to itself or from itself to itself, lies none
of its activation points. In other words, before any control flow ever reaches a
join within a workflow graph, being free of lack of synchronization, one of its
activation point must be executed.

The identification of lack of synchronization starts in forks, since only forks
build more than one control flow causing simultaneous executions of the same
node. Generally, two control flows have to be joined before the end node. These

A First Step towards a Compiler for Business Processes 241

joining nodes are called intersection points. It is valid, that there are two disjoint
paths from the fork to each of its intersection points. If a lack of synchronization
occurs at runtime, there is an intersection point of a fork which is not a join, or
there is a path from a fork to itself and a path from this fork to the end node,
such that both paths are disjoint.

The conditions of deadlocks as well as of lack of synchronization describe
supersets of them, since parts of it never occur at runtime, because forgoing
deadlocks prevent their execution. Such failures within these supersets are called
potential. We have proven, that the absence of deadlocks and lack of synchro-
nization corresponds to the absence of potential deadlocks and potential lack of
synchronization.

The detection of potential deadlocks can be efficiently implemented via data-
flow analyses, being realized in the presented system, whereas the detection of
potential lack of synchronization can be done with the help of dominators, post-
dominators, loop detection, and decomposition. In summary, compiler-based
techniques can be successfully applied to the analysis of workflow graphs.

3 System Overview

The Activiti BPMN 2.0 Designer is an Eclipse plugin which allows for the de-
velopment of business processes with a subset of BPMN 2.0 model elements.
Developed business processes are held as graphical models which can be ac-
cessed over an extension point for adding business process verifications. We have
created own extensions of this extension point which will be executed for ev-
ery modification of the business process. These extensions are called mojo - our
open source business process analysis tool (http://www.bpmn-compiler.org,
https://sourceforge.net/projects/bpmojo). Figure 3 visualizes our system.
The transformation and structural correctness verification can be used as an
extension of Activiti. The following steps are performed by our tool.

At first, the entire business process is transformed into at least one semanti-
cally equivalent workflow graph. Therefore, all end events of a BPMN business
process are mapped to a single one using the algorithm of Kiepuszewski et al.
[7], which was extended for working on workflow graphs instead of Petri nets.
The start events of a BPMN business process are merged into a single one using

Graphical Workflow mojo |
- model graphs Structural 1
BPMN 2.0 —| Activiti ?PMN » Transformation »| correctness 1
2.0 Designer - |
verification i
A I i
L ———————— Failures—- — — — — — — — — — — !

Fig. 3. The verification system

http://www.bpmn-compiler.org
https://sourceforge.net/projects/bpmojo

242 T.M. Prinz, N. Spief}, and W. Amme

the rules of the BPMN 2.0 specification [1], e.g., tasks without an incoming edge
are combined by a fork and start events are combined by a split.

If the business process is not connected, it is translated into different workflow
graphs, whereas each workflow graph will be verified for structural correctness
in isolation. Gateways with multiple incoming and multiple outgoing edges are
disassembled into two gateways, so that the first gateway has all incoming edges
and the second all outgoing edges. XOR gateways are transformed to splits and
merges, and AND gateways to forks and joins in conclusion. Finally, each task
becomes an activity.

In general, the resulting workflow graphs are not simple regarding to its defini-
tion in Section 2. Thus, each edge having no activity as source or sink is replaced
by two edges, the first connecting the source with a new activity, whereas the
second connects the new activity with the sink. The dependencies between the
workflow graph and the graphical model of the business process are built up in
each step of the transformation algorithm.

In the second step, our algorithm for structural correctness verification [5,6]
is performed directly on each workflow graph. The algorithm finds all potential
deadlocks and lack of synchronization, and localizes them precisely. The results
of the structural correctness verification are visualized in the graphical model
of Activiti: (1) directly in the business process with marks on failure producing
nodes, (2) as an error list in the error view of Eclipse, and (3) as a detailed failure
highlighting for the failure analysis mode. The failure analysis mode is one of the
features of our system (see Fig. 4). It allows for the selection of an error within
the error view of Eclipse, which then will be highlighted in the business process
in isolation. Therefore, the developer of the business process can find the reasons
of these errors.

4 Evaluation

The system was evaluated, using benchmarks of real world business pro-
cesses, with regard to robustness and performance. On the one hand,
the transformation process was tested with the BPMN 2.0 bench-
mark of IBM http://www.zurich.ibm.com/csc/bit/downloads.html,
and, on the other hand, the structural correctness verification was
validated and evaluated with the Dbusiness process benchmark of
http://www.service-technology.org/soundness. Both algorithms run
stable and take less than one millisecond in the average case (see our previous
work [5] for more details). Therefore, the analysis can be done for every
modification of the business process, instead only by saving or on demand.

5 Conclusion

In this demonstration paper, we presented a system which allows direct user
support during the development of business processes. It is based on the Ac-
tiviti BPMN 2.0 Designer and our analysis tool mojo, transforming an entire

http://www.zurich.ibm.com/csc/bit/downloads.html
http://www.service-technology.org/soundness

A First Step towards a Compiler for Business Processes 243

File Edit View Navigate Search Project Run Window Help

v s D =i s S e
; | | Bp oo | TRl | 2| > Quick Access . B | B Resource
O < Paper 3 =g

BE

1 Properties | [£ Problems 52 @ T =0

3 errors, 0 warnings, 0 others

Description

4 @ Enors (3 items)
@ Deadlock [NUQINg)L {0,1,2,3,4,5,6,7,§,9,11,12, 13,14, 15}
@ Lack of Sync on [N(FORK,6), N(MERGE4)], 1, 2,3, 4, 5,6, 7, 8, 14, 15}
© Lack of Synchronization [N(FORK]L, 1, 2.3,6,7, 8, 14}
i

9],

Fig. 4. Visualizing an error in failure analysis mode

business process into semantically equivalent workflow graphs, on which a struc-
tural correctness verification is performed. The determined structural errors are
directly visualized in the business process, which supports an immediate correc-
tion. Furthermore, the system is fast enough to perform the verification for each
modification of the business process.

In the future, the system will be extended by analyses considering data aspects,
extensive failure explanations, and an automatically correction of structural er-
rors. Furthermore, a coding into a mobile format with a virtual machine is in
the scope of our work.

References

1. OMG: Business process model and notation. Specification (2.0) (March 2011)

2. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117-134 (2000)

3. van der Aalst, W.M.P., Hirnschall, A., Verbeek, HM.W.: An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAISE 2002. LNCS, vol. 2348, pp. 535-552. Springer, Heidelberg (2002)

4. Fahland, D., Favre, C., Koehler, J., Lohmann, N.; Volzer, H., Wolf, K.: Analysis
on demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448-466 (2011)

5. Prinz, T.M., Amme, W.: Practical compiler-based user support during the develop-
ment of business processes. In: Service-Oriented Computing - ICSOC 2013 Work-
shops. Springer, December 2013 (to be published)

6. Prinz, T.M., Amme, W.: Practical compiler-based user support during the devel-
opment of business processes. Technical Report Math/Inf/02/13, Friedrich Schiller
University Jena, 07743 Jena, Thuringia, Germany (June 2013)

7. Kiepuszewski, B., Hofstede, A.H.M.T., van der Aalst, W.: Fundamentals of control
flow in workflows. Acta Informatica 39, 143-209 (2002)

	A First Step towards a Compiler for Business Processes
	1 Introduction
	2 Informal Description
	3 SystemOverview
	4 Evaluation
	5 Conclusion
	References

