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Abstract. In this paper we address the node localization problem in large-scale 
wireless sensor networks (WSNs) by using the received signal strength (RSS) 
measurements. According to the conventional path loss model, we first pose the 
maximum likelihood (ML) problem. The ML-based solutions are of particular 
importance due to their asymptotically optimal performance (for large enough 
data records). However, the ML problem is highly non-linear and non-convex, 
which makes the search for the globally optimal solution difficult. To overcome 
the non-linearity and the non-convexity of the objective function, we propose 
an efficient second-order cone programming (SOCP) relaxation, which solves 
the node localization problem in a completely distributed manner. We 
investigate both synchronous and asynchronous node communication cases. 
Computer simulations show that the proposed approach works well in various 
scenarios, and efficiently solves the localization problem. Moreover, simulation 
results show that the performance of the proposed approach does not deteriorate 
when synchronous node communication is not feasible. 

Keywords: Wireless localization, wireless sensor network (WSN), received 
signal strength (RSS), second-order cone programming problem (SOCP), 
cooperative localization, distributed localization. 

1 Introduction 

Wireless sensor network (WSN) consists of a large number of low-power sensor 
nodes that have some sensing, processing and communication capabilities. WSNs find 
application in various areas, and the capability to accurately locate all sensor nodes in 
the network is essential for many of them (e.g. monitoring, military operations, rescue 
missions, etc.). In general, sensor nodes can be classified as anchor and target (source) 
nodes [1]. The positions of anchor nodes are known a priori (usually measured by 
global positioning system (GPS) or manually), while the positions of target nodes are 
yet to be determined. For economic or other practical reasons, only a small fraction of 
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nodes are set to be anchor nodes, hence, an efficient algorithm for node localization is 
necessary for WSNs. 

Instead of the use of GPS system, which is very expensive and limited to outdoor 
environments, algorithms that rely on distance measurements between neighboring 
nodes are emerging recently [2], [3], [4], [5], [6]. Depending on the available 
hardware, current distance-based algorithms extract the distance information from 
time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA) or 
received signal strength (RSS) measurements [7]. Localization based on RSS 
measurements requires the least processing and communication (the least energy), and 
no specialized hardware [8], which makes it an attractive low-cost solution for the 
localization problem. 

Localization algorithms can be executed in a centralized or a distributed fashion. 
The former approach assumes the existence of a fusion center which coordinates the 
network and performs all computational processing. This approach leads to large 
energy and bandwidth consumption, with a bottleneck around the fusion center and 
the computational complexity of such an approach grows with the increase of a 
number of nodes in the network. In many practical scenarios, it is not efficient or not 
possible for the nodes to share their private objective functions with a central 
processor or with each other [9], which makes the distributed localization a more 
preferable solution. Even though it is sensitive to error propagation, distributed 
concept is energy-efficient, has low-computational complexity and high-scalability 
[1]. In such an approach, the communication is possible only between the neighboring 
nodes, and the data associated with each node is always processed locally. 

Recent RSS-based localization algorithms use a centralized concept to solve the 
sensor nodes localization problem [2], [3], [4], [5], [6]. A distributed approach for 
solving the RSS localization problem with synchronized node communication was 
introduced in [10], [11]. However, synchronized node communication requires the use 
of more sophisticated hardware in the network, which raises the cost of the network 
implementation. 

In this work, we consider a large-scale RSS-based target localization problem, and 
we provide a solution that is completely based on a distributed approach. We 
investigate both the synchronous and asynchronous node communication scenarios, 
and propose a novel algorithm based on second-order cone programming (SOCP) 
relaxation. We first formulate the maximum likelihood (ML) optimization problem, 
which is highly non-linear and non-convex. To overcome these difficulties, we 
propose a SOCP relaxation approach to transform the original ML problem into a 
convex one, which can then be efficiently solved by interior-point algorithms [12]. 

2 Relationship to Collective Awareness Systems 

Sensor nodes in WSNs are deployed over a monitored area in order to acquire the 
desired information (such as temperature, wind speed, pressure, etc.). Nowadays, the 
basic concept of WSNs is used for the Internet-of-Things (IoT) in which all devices, 
objects and environments are connected through Internet to form the so-called smart 
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environments [13]. Such systems are capable of harnessing collective intelligence for 
promoting innovation and taking better-informed and sustainability-aware decisions. 

Being able to accurately estimate object’s position is a key factor in a number of 
sensor network applications (such as energy-efficient routing, target tracking and 
detection). Combining the location information with other information collected 
inside the network enables us to link objects, people and knowledge and develop 
intelligent systems (collective awareness systems). Such systems may improve safety 
and efficiency in everyday life, since each individual device can make better-informed 
and substantially-aware decisions to respond faster and better to the changes in 
dynamical environments (search and rescue missions, logistics in warehouses, etc.). 
Furthermore, such systems enhance sustainable growth, since they support new forms 
of social and business innovation. 

3 Problem Formulation 

We consider a p-dimensional (p≥ 2) WSN with M + N nodes, where M and N are the 
number of target and anchor nodes, respectively. The locations of the nodes are 
denoted as ࢞૚, … , ,ࡹ࢞ ,ା૚ࡹ࢞ … ,  The considered WSN can also be seen as a .ࡺାࡹ࢞
connected graph, ܩ = ሺܸ,  ሻ, where V and E represent the set of nodes (vertices) andܧ
the set of node connections (edges) in the graph, respectively. Due to lifetime of  
the network or other physical limitations, each node has a limited communication 
range, ܴ. An edge exists between two nodes, i and j, if and only if they are within  
the communication range of each other, i.e. ܧ = ൛ሺ݅, ݆ሻ ׷  ฮ࢞௜ −  ௝࢞ฮ  ൑ ܴൟ. The set  
of neighbors of a target node i is defined as ߗ௜ = ሼ݆ ׷  ሺ݅, ݆ሻ א   ሽ, and eachܧ
neighboring node j is seen as an anchor node in the localization process by the i-th 
target node. 

We assume that each target node i is given an initial estimation of its position, ࢞௜ሺ଴ሻ. 
For ease of expression, we define ࢄ =  ሾ࢞ଵ, ࢞ଶ, … , ࢞Mሿ as the 2 ൈ M matrix of all 
target positions in the WSN; hence, ࢄሺ଴ሻ contains all initial estimations of the target 
positions. 

Node i measures the received power from the signal transmitted by its neighboring 
node j, ௜ܲ௝ , which, under the log-normal shadowing, can be modeled as (in dBm) [14], 
[15] 

௜ܲ௝ = ଴ܲ − ߛ10  logଵ଴ ฮ࢞௜ − ௝࢞ฮ݀଴ + ,௜௝ݒ ,ሺ݅׊ ݆ሻ א  (1) ,ܧ

where ଴ܲ is the power measured at a short reference distance ݀଴൫ฮ࢞௜ − ௝࢞ฮ  ൒ ݀଴൯, γ 
is the path loss exponent, and ݒ௜௝  is the log-normal shadowing term between the i-th 
target node and its neighbor node j, modeled as a zero-mean Gaussian random 
variable with variance ߪ௜௝ଶ , i.e. ݒ௜௝ ~ ࣨ൫0, ௜௝ଶߪ ൯. 
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Based on the measurements from (1), we derive the maximum likelihood (ML) 
estimator as ࢄ෡ = argminࢄ ෍ ாא௜௝ଶሺ௜,௝ሻߪ1 ቈ ௜ܲ௝ − ଴ܲ + ߛ10 logଵ଴ ฮ࢞௜ − ௝࢞ฮ݀଴ ቉ଶ. (2) 

The least squares (LS) problem defined in (2) is non-linear and non-convex, hence, 
finding the globally optimal solution is difficult, since there may exist multiple local 
optima. Following [5], we show that the RSS measurement model in (1) can be 
approximated into a convex optimization problem, which can be solved by interior 
point algorithm [12], and obtain the global solution. 

For the sake of simplicity, in the further text we assume that ߪ௜௝ଶ = ,ଶߪ  ,ሺ݅׊ ݆ሻ א  .ܧ
Furthermore, we assume that the transmit power, ்ܲ , of each node in the network is 
equal, i.e. all nodes have identical ଴ܲ and ܴ. 

4 Distributed Localization Using SOCP Relaxation 

Note that the objective function in (2) depends only on the positions and pairwise 
measurements between the neighboring nodes. This means that we can portion the 
objective function in (2) and perform the minimization independently by each target 
node, using only local information gathered from its neighbors. Instead of having a 
sink, which collects and processes the information from all nodes in WSN, we can 
divide the optimization problem into smaller sub-problems which can be carried out 
locally by each target node. This kind of problem execution is particularly suitable for 
large scale networks, since the number of nodes inside the network has no major 
impact on the neighborhood fragments, and hence, the computational complexity 
remains the same (no significant changes) as more nodes are added in the network [1]. 
The price to pay for using this kind of approach is the increased energy consumption 
due to higher node communication, since distributive localization algorithms require 
repetition of the following phases: 

• Communication phase: nodes in the network transmit their estimated 
position to their neighboring nodes. 

• Computation phase: each target node computes its position estimation 
based on the information gathered in the communication phase. 

If the information exchange between nodes is always performed at the beginning of 
each iteration, we say that the node communication is synchronous [16]. However, 
due to some physical imperfections (e.g. internal clock of the nodes), synchronous 
node communication may not be feasible in practice. This is the reason why we also 
investigate asynchronous node communication. In such communication, a randomly 
chosen target node performs an update of its position estimation based on the 
available information from its neighbors at that particular moment (computation 
phase) and transmits the updated information to its neighbors thereupon 
(communication phase). This process is then repeated until each node reaches the 
maximum number of iterations, ܭ௠௔௫. 
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In the k-th iteration of the computation phase of our algorithm, each target node i 
solves a SOCP relaxation of the following problem: 

ෝ࢞௜ሺ௞ሻ = argmin࢞౟ ෍ ଶߪ1 ൥ ௜ܲ௝ − ଴ܲ + ߛ10 logଵ଴ ฮ࢞௜ − ෝ࢞௝ሺ௞ିଵሻฮ݀଴ ൩ሺ௜,௝ሻאா
ଶ, (3) 

where ෝ࢞௝ሺ௞ିଵሻ denotes the estimated position of the neighboring node j in the (k−1)-

the iteration. In the following text we will describe a SOCP relaxation method which 
approximates the problem in (3) into a convex one. 

4.1 SOCP Relaxation 

Approximating (1) as ௜ܲ௝ ൎ ଴ܲ − ߛ10  logଵ଴ ቛ࢞೔ି ࢞ೕሺೖషభሻቛௗబ ,ሺ݅׊ , ݆ሻ ܧ א, we get 

௜௝ฮ࢞௜ߙ − ௝࢞ሺ௞ିଵሻฮଶ ൎ ݀଴ଶ, (4) 

where ߙ௜௝ =  10ು೔ೕ –ುబఱം . According to (4), the following LS estimation problem can be 
formulated1: ࢞௜ሺ௞ሻ =  argmin࢞೔ ෍ ቀߙ௜௝ฮ࢞௜ − ௝࢞ሺ௞ିଵሻฮଶ − ݀଴ଶቁଶ .ሺ௜,௝ሻאா  (5) 

Define auxiliary variables ߣ௜௝ = 10ು೔ೕఱം , ߩ = 10ುబఱം, ௜ݕ = ԡݔ௜ԡଶ, and  ࢠ = ௜௝ݖ ௜௝൧, whereݖൣ = ௜௝ฮ࢞௜ߣ − ௝࢞ሺ௞ିଵሻฮଶ − ,଴ଶ݀ߩ  ,ሺ݅׊ ݆ሻ א  and ,ݐ Introduce an epigraph variable .ܧ

apply second-order cone constraint (SOCC) to obtain a convex optimization problem: minimize࢞೔,௬೔,ࢠ,௧  ݐ 

subject to ݖ௜௝ = ௜௝ߣ ቀݕ௜ − 2 ௝࢞ሺ௞ିଵሻ்࢞௜ + ฮ ௝࢞ሺ௞ିଵሻฮଶቁ − ,଴ଶ݀ߩ ,ሺ݅׊ ݆ሻ א ;ࢠԡ2 ,ܧ ݐ  −  1ԡ ൑ ݐ  + 1, ԡ2࢞௜; ௜ݕ − 1ԡ ൑ ௜ݕ + 1. (6) 

                                                           

1 We can rewrite (1) as 
௉೔ೕି ௉బହఊ + logଵ଴ ቛ࢞೔ି ࢞ೕሺೖషభሻቛమௗబమ = ௩೔ೕହఊ, which corresponds to ߙ௜௝ ቛ࢞௜  For sufficiently small noise, we can apply the first-order Taylor .ߛ5݆݅ݒ0210݀=12−݆݇࢞ −

series expansion to the right-hand side of the previous expression to obtain ߙ௜௝ ቛ࢞௜ − ݆࢞݇−12=݀021+ ln105݆݅ݒߛ, i.e. ݅ߝ +02݀=12−݆݇࢞ −݆݅࢞݅ߙ, where 02݀=݅ߝln105݆݅ݒߛ is a 

zero-mean Gaussian random variable with variance 
ሺ୪୬ ଵ଴ሻమௗబరఙమଶହఊమ , i.e., ߝ௜ ~ ࣨ ቀ0, ሺ୪୬ ଵ଴ሻమௗబరఙమଶହఊమ ቁ. 

Clearly, the corresponding LS estimator is given by (5). 
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Problem in (6) is a SOCP problem, which can efficiently be solved by the CVX 
package [16] for specifying and solving convex programs. We will refer to (6) as 
“SOCP” in the further text. 

5 Complexity Analysis 

The trade-off between the computational complexity and the estimation accuracy is 
the most important feature of any localization algorithm, since it determines its 
applicability potential. Here, we consider only the worst case asymptotic complexity 
of an algorithm. 

According to [18], the worst case complexity of the proposed “SOCP” approach is ܯ · ௠௔௫ܭ · ࣩሺሺmaxሼ|ߗ௜|ሽሻଷሻ, where |ߗ௜| represents the cardinality of the set Ω௜ , for ݅ = 1, … ,  .ܯ
As we can see from the above result, the worst case complexity of a distributive 

localization algorithm mainly depends on the neighborhood fragments (the biggest 
one). If the number of nodes in WSNs is increased, it will not significantly affect the 
size of the neighborhood fragments, which makes the distributed algorithms a 
desirable solution in highly-dense or large-scale networks. 

6 Simulation Results 

In this section, we present the computer simulation results in order to evaluate the 
performance of the proposed approach. The considered algorithms were solved by 
using the MATLAB package CVX [17], where the solver is SeDuMi [19]. 

Nowadays, flexibility and adaptability of a network are very important features in 
practical applications; hence we consider a random deployment of the nodes. All 
nodes were randomly deployed inside a square region of length ܤ = 30 m in each 
Monte Carlo (ܯ௖) run. In order to make the comparison fair, we first obtained ܯ௖ = 500 nodes positions, and we applied the proposed approaches for those 
scenarios. In each ܯ௖ run, we made sure that the network graph is connected. The 
path loss exponent is ߛ =  3, the reference distance ݀଴ =  1 m, the reference power ଴ܲ  =  −10 dBm, and the communication range of a node ܴ = ܤ  5⁄  m. We assumed 
that the initial estimation of the target positions, ࢄሺ଴ሻ, is in the intersection of the 
diagonals of the square area, and that ܭ௠௔௫ = 200. We assume that one iteration step 
is completed after ܯ nodes compute and transmit their position estimations, for both 
synchronous and asynchronous node communication. As the performance metric we 
used the normalized root mean square error (NRMSE), defined as 

NRMSE =ට ଵெ ெ೎ ∑ ∑ ฮ࢞௜௝ − ෝ࢞௜௝ฮଶெ௝ୀଵெ೎௜ୀଵ ,   (6) 

where ෝ࢞௜௝ denotes the estimate of the true location of the j-th target in the i-th Monte 
Carlo run, ࢞௜௝. 
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The NRMSE performance of the proposed method versus number of iterations for 
synchronous and asynchronous node communication, and variable ܰ is depicted in 
Fig. 1. From Fig. 1 we can see improvement of NRMSE performance as the number 
of iterations is increased, as expected. Further, we can see that NRMSE performance 
improves as ܰ is increased, as expected. Lower estimation accuracy is achieved with 
asynchronous than with synchronous node communication in the early phase of the 
algorithm. However, we can see that the asymptotical performance of the proposed 
approach is the same for both asynchronous and synchronous node communication. 
Furthermore, Fig. 1 exhibits that all major improvements in the performance occur 
until approximately 80 iterations, and we can conclude that our algorithm converges 
after this number of iterations, for the considered scenarios. 

 

Fig. 1. Comparison of the performance of the proposed method for synchronous and 
asynchronous node communication: NRMSE versus number of iterations for variable ܰ 

The NRMSE performance of the proposed method versus number of iterations for 
synchronous and asynchronous node communication, and variable ܯ is depicted in 
Fig. 2. We can see from Fig. 2 that NRMSE performance of the proposed approach 
does not degrade as more target nodes are added in the network. As it was anticipated, 
estimation accuracy is weaker in the early phase of the algorithm for higher ܯ, and 
the proposed algorithm converges slower for this setting. Fig. 2 exhibits better 
NRMSE performance of the proposed approach with synchronized than with 
asynchronous node communication after the first few iterations. However, 
asymptotical performance is the same for both types of node communication. 
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(a) 

 

 
(b) 

Fig. 2. Comparison of the performance of the proposed method for synchronous and 
asynchronous node communication: NRMSE versus number of iterations: (a) ܯ = 40, (b) ܯ = 60 

7 Conclusions 

In this work, we investigated the RSS-based sensor localization problem in large-
scale WSNs, which we solved in a completely distributed fashion. We considered 
both synchronous and asynchronous node communication scenarios, and we proposed 
a distributed algorithm that is based on SOCP relaxation technique. Due to practical 
demands, such as flexibility and adaptability of the network, randomly generated 
WSN were taken into consideration. Simulation results show that the proposed 
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approach efficiently solves the sensor localization problem for different settings. 
Moreover, simulation results show that, even though synchronous node 
communication is preferred over asynchronous when only few iteration steps are 
allowed, the asymptotical performance of the proposed approach does not suggest any 
preference between the mentioned types of node communication. 
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