
L.M. Camarinha-Matos et al. (Eds.): DoCEIS 2014, IFIP AICT 423, pp. 227–236, 2014.
© IFIP International Federation for Information Processing 2014

From SysML State Machines to Petri Nets
Using ATL Transformations

Rui Pais1,2, 3, João Paulo Barros2, 3, and Luís Gomes1, 2

1 Universidade Nova de Lisboa, Faculty of Sciences and Technology, Portugal
ruipais@uninova.pt

2 UNINOVA, Center of Technologies and Systems, Portugal
lugo@fct.unl.pt

3 Instituto Politécnico de Beja, Escola de Superior Tecnologia e Gestão, Portugal
jpb@uninova.pt

Abstract. The ATLAS Transformation Language (ATL) is a well-known
hybrid model transformation language that allows both declarative and
imperative constructs to be used in the definition of model transformations. In
this paper, we present ATL transformations providing an integrated structural
description of the source and target metamodels and the transformation between
them. More specifically, the paper presents translation rules of Systems
Modeling Language (SysML) state machines models into a class of non-
autonomous Petri net models using ATL. The target formalism for the
translation is the class of Input-Output Place Transition Nets (IOPT), which
extends the well-known low-level Petri net class of Place/Transition Petri nets
with input and output signals and events dependencies. Based on this Petri net
class, a set of tools have been developed and integrated on a framework for the
project of embedded systems using co-design techniques. The main goal is to
benefit from the model-based attitude while allowing the integration of
development flows based on SysML state machines with the ones based on
Petri nets.

Keywords: ATL, Transformation Models, SysML, UML, State Machines, Petri
Nets, PNML, MDE, MDA, IOPT.

1 Introduction

The increasing complexity of new-generation systems raises major concerns in
various critical application domains, in particular with respect to the validation and
analysis of performance, timing, and dependability-related requirements. Model-
driven engineering (MDE) [1] approaches aimed at mastering this complexity during
the development process have emerged and are being increasingly used in industry.
They address the problem of complexity by promoting reuse and partial or total
automation of specific phases of the development process.

By taking advantage of Petri nets visual representation and precise semantics, this
paper contributes to their use as an intermediate formalism between SysML behavior
models and code generation. More specifically, it presents a tool that transforms a

228 R. Pais, J.P. Barros, and L. Gomes

Systems Modeling Language (SysML) state machine, to an Input-Output Place
Transition Net (IOPT) [2] target model. The process of transformation ⎯ the
production of an XMI [3] file ⎯ is realized using the Atlas Transformation Language
(ATL) [4]. The XMI file will be subsequently used as an entry to a Model Driven
Architecture (MDA) [5, 20] process.

Present work benefits from the results of previous projects where a set of tools was
created. These tools allow creation of IOPT net models, as well as many others
operations. Ultimately, they also permit code generation for different platforms.
Those tools rely on an Ecore metamodel for the IOPT class, already presented in [2].

Translation techniques to convert state machines elements into correspondent Input
Output Place Transition Nets items were already presented elsewhere [7]. Later, these
translations were extended to include other state machines elements and several
strategies to translate state machines with pseudostate history attribute were also
presented [8].

This research extends previous works [7, 8] with the implementation of translation
techniques, using ATL, to transform SysML state machine models to IOPT net
models. The integration of these translations on a Petri net-based framework for the
development of embedded systems using co-design techniques permits the use of
SysML state machines as an additional modeling language.

The paper is structured as follows: Section 2 presents motivation, innovations and
its relation to Collective Awareness Systems, while Section 3 describes some
important concepts of Model to Model transformations. The implemented
transformations rules using ATL are presented in Section 4. Finally, Section 5
presents topics for discussion and Section 6 concludes.

2 Relation to Collective Awareness Systems

An awareness system can be defined as a system intended to help people construct
and maintain awareness of each other activities, context or status, even when the
participants are not co-located [9].

As testified in [10], "Internet has changed the way we develop, perform and
understand business", hence it is urgent to innovate and exploit the full potential of
the Future Internet. To achieve this goal, a set of recommendations is provided and an
analysis of important areas to consider is presented. More specifically, the analysis of
Collective Awareness Platforms for Sustainability and Social Innovation (CAPS),
points out that its basic layer includes (smart) objects that capture the environment
reality. Many of these (smart) objects are embedded systems, which are frequently
specified using Petri Nets. These are used for modeling and analyzing complex
systems that exhibit characteristics of concurrency, synchronization, simultaneous,
distributed, resource sharing, etc., taking advantage of tools that permit modeling
visualization, simulation, property verification (e.g. deadlock, starvation, bottlenecks,
and execution time), and code generation.

With this research, we contribute to the development of embedded systems
allowing system specification using a well-known modeling formalism: SysML state
machines. With better specification we are promoting better embedded systems, the
core of smart objects.

 From SysML State Machines to Petri Nets Using ATL Transformations 229

3 Model to Model Transformations

Software development is becoming more and more complex with the increasing
complexity of system requirements, necessity to integrate frameworks, libraries,
communication platforms, etc.

Maintenance, changing requirements, production cost, specification reusability,
and a lot of other factors contribute to a demand to improve software specification.
One way to reduce technical complexity is the use of the Model-Driven Software
Development paradigm, as it facilitates a more abstract specification of software
based on modeling languages [11].

In the context of model-driven engineering, models are the main development
artifacts and model transformations are among the most important operations applied
to models. Model-to-model transformations constitute an important ingredient in
model-driven engineering.

The following sections present the main concepts used in this context.

3.1 Ecore

The model used to represent models in the Eclipse Modeling Framework (EMF) is
called Ecore. Ecore is itself an EMF model, and thus is its own metamodel [12].

Ecore is a modeling language (in fact a meta-meta-modeling language) to describe
domain specific meta-models. It is used to define all entities that will exist on the
domain specific models of interest, define the characteristics of these entities, as well
as their relationships.

3.2 ATL Language

The ATLAS Transformation Language is a model to model transformation language
originally developed as a response to the Object Management Group (OMG) Request
for Proposals for the Query/View/Transformation (QVT) standard [13], implemented
in the Eclipse modeling tools.

ATL is a well-known hybrid model transformation language that allows fully
declarative, hybrid, or fully imperative constructs to be used in transformation
definitions.

An ATL transformation is unidirectional and operates on read-only source models
to produce write only target models. This way, source model can be navigated during
transformation, but it is neither possible to write on the source model, nor to navigate
target model. Yet, ATL provides automatic traceability links between target and
source elements.

ATL model transformation process is illustrated on Figure 1. This provides an
overview of the transformation process used for the generation of an IOPT model
(IOPTnet.xmi) from a SysML state machine model (StateMachine.xmi) through a
transformation model (SM2IOPT.atl). In this diagram, the dotted line specifies model
to model transformation; the normal arrows specify conformance between source
state machine model (StateMachine.xmi) and its metamodel (StateMachine.ecore), as

230 R. Pais, J.P. Barros, and L. Gomes

well as between this metamodel and the Eclipse Modeling Framework (EMF)
metametamodel. On the same way, the generated model (IOPTnet.xmi) conforms to
its metamodel (IOPT.ecore), and the latter conforms to the EMF metametamodel.

Fig. 1. ATL Model Transformation (adapted from [21])

3.3 SysML State Machines

The Systems Modeling Language (SysML) is a general-purpose modeling language
that supports the specification, analysis, design, verification, and validation of a broad
range of complex systems, which may include hardware, software, information,
processes, personnel, and facilities [14]. The respective State Machine package
defines a set of concepts that can be used for modeling discrete behavior through
finite state transition systems [14].

3.4 Input-Output Place Transition Nets

Petri nets have been successfully used for concurrent systems specification [15] for
the analysis of behavioral properties and performance evaluation, as well as for
systematic construction of discrete event simulators and controllers [16].

The Input-Output Place Transition class (IOPT) extends place-transition nets with
non-autonomous constructs, allowing explicit modeling of input and output events
and signals [2]. The Ecore metamodel for the IOPT net class was already presented in
[2, 17].

4 Transformations Rules Using ATL

In this section, we present a set of transformation rules and helpers that allow the
generation of IOPT models from SysML state machines models. The result of each
transformation is an XMI file on PNML format.

Some translation techniques to convert state machines elements into correspondent
Input Output Place Transition Nets items were already presented elsewhere [7, 8].

Ma Mb

MMa MMb

Metametamodel
Eclipse Modeling

Framework

Transformation
Language

conformsTo conformsTo

conformsTo conformsTo

conformsTo

StateMachine.ecore IOPT.ecoreATL

StateMachine.xmi IOPTnet.xmi

transformation

Transformation
Model

SM2IOPT.atl

conformsTo

conformsTo

 From SysML State Machines to Petri Nets Using ATL Transformations 231

The respective implementations are here presented. Yet, as the transformation
application is extensive, we only show some code blocks, representative of interesting
transformation aspects.

Transformation rules are the core of a model transformation. A transformation

rule can be implemented with declarative, fully imperative, or hybrid constructs.
The declarative style of specifying transformations are encouraged as best practice

[18], letting imperative features of the language to the most complex transformations
when declarative constructs are not sufficient.

Declarative transformations rules use pattern matching to match the source model
elements by type. A rule guard permits an additional filtering on pattern matching.
For each matched element one or more target model elements are created.

Transformations traceability is an important language feature that offers trace links
between source and target models, and between rule applications. This is important,
as it allows one rule to reference elements created in other rules.

The matching rule ‘package2PetriNetDoc’ is one of simplest transformation rule.

rule package2PetriNetDoc {

 from

 inn : SysML!Package(inn.isPackage())

 using {

 ruleName:String= 'package2PetriNetDoc'.debug('!Starting);

 }

 to

 petriNetDoc : PNML!PetriNetDoc(

 nets <- thisModule.allStateMachines->collect (p |

 thisModule.resolveTemp (p, 'net'))

)

 do {

 ruleName.debug('!Ending rule');

 }

}

For each source model element of type ‘Package’ it collects the traceability links
generated by target pattern ‘net’; it uses the imperative parts ‘using’ and ‘do’ for
debug proposes. For each source model element of type ‘Package’, this rule creates a
target ‘PetriNetDoc’. This rule uses the ‘allStateMachines’ helper that is presented
later in this paper.

To illustrate and exemplify the implemented translations, we present the translation
of state machine choice pseudo-state.

A choice pseudo-state has one incoming and several outgoing edges, and it is used
as a switch of control flow based on zero or more guard condition. Depending on the
guards’ conditions, the control flow is redirect from one incoming edge to exactly one
outgoing edge. Figure 2 presents a simple state machine with a choice pseudo-state,
and Figure 3 presents its translation to an IOPT net.

232 R. Pais, J.P. Barros, and L. Gomes

 This translation was implemented by three main rules:

1. One rule that translates state machine states to IOPT places;
2. One rule to translate state machine choice guards;
3. One rule to translate state machine choice state to a set of IOPT

transitions and arcs. This last transformation rule is presented next.
Matching rule ‘choicePseudostate’ transforms a source ‘choice pseudo state’ into a

set of target model transitions, a set of input arcs, and a set of output arcs. This rule
calls various ‘unique lazy rules’ to generate arcs on target models. The ‘using’
declarative part allows the declaration of variables that increase code legibility by
giving names to different elements used in transformations.

--- join vertices serve to merge several transitions emanating
--- from source vertices in different orthogonal regions.
rule choicePseudostate {
 from
 inn: SysML!Pseudostate(inn.isChoicePseudostate())
 using
 {
 sourceTransition : SysML!Transition = inn.incoming.first();
 targetTransitions : Sequence(SysML!Transition) = inn.outgoing;
 sourceState : SysML!State = sourceTransition.target;
 targetStates : Sequence(SysML!State) = targetTransitions->
 collect(tr | tr.target);
 }
 to
 trans:distinct PNML!Transition foreach(tr in targetTransitions)(
 name <- thisModule.createTransitionName(sourceTransition,
 sourceVertex, inn),
 priority <- thisModule.iopt_createPriority(1)
),
 inArc: distinct PNML!Arc foreach(tr in targetTransitions)(
 id <- thisModule.createInArcName(tr, sourceState),
 source <- thisModule.createIoptInRefPlace(sourceState),
 target <- thisModule.createIoptInRefTransition(tr)
),
 outArc: distinct PNML!Arc foreach(tr in targetTransitions)(
 id <- thisModule.createOutArcName(tr, tr.target),
 source <- thisModule.createIoptOutRefTransition(tr),
 target <- thisModule.createIoptOutRefPlace(sourceState)
)
}

id
C

D

num==1

num>5

A

B

else

D

A

B
[not(num==1) and not(num>5)]

[num>5]

C[num==1]

Fig. 2. State machine with choice
pseudo-state

Fig. 3. Translated IOPT net

 From SysML State Machines to Petri Nets Using ATL Transformations 233

Helpers can be used to define attributes, constants, and methods like functions.
They can be reused throughout several transformations and in different contexts as
utility functions, rule guards, and model properties analysis, as well as to navigate the
source model. A task that is common to many transformation examples is the
definition of helpers to get all elements of a specific type. Next, we present some of
these helpers.

(1) Helper ‘allStatesMachines’ gets all state machines from a source model.

--- helper to get all statemachines
helper def: allStateMachines: Set(SysML!StateMachine) =
 SysML!StateMachine -> allInstances();

(2) The matching between source models elements and transformation rules is

defined by conditions guards defined on rules level. As these conditions are normally
extensive, we have created guard helpers to increase overall legibility. Helper
‘isJoinPseudostate’ is a simple guard helper that verifies if vertex element is a
pseudostate of the 'join pseudo state' kind. In a complete state machine, a join vertex
must have at least two incoming transitions and exactly one outgoing transition [19].

--- Verify if pseudostate is of kind 'join pseudo state'

helper context SysML!Vertex def: isJoinPseudostate(): Boolean =
 self.oclIsTypeOf(SysML!Pseudostate)
 and self.kind = #join
 and self.incoming->size() >= 2
 and self.outgoing->size() = 1;

(3) Transforming elements from source model to target model, normally, doesn’t

depend only on the kind of source item, but also on the context where it is inserted
and/or on the context of interconnected elements. It was necessary to create a vast
number of functional helpers to navigate interconnected elements and to obtain the
necessary collections or properties. Functional helper ‘getOwners’ gets all owners of
context element, which can be of any type, and returns a sequence of all owners from
context element to root item.

--- Get all owners of a given element
helper context OclAny def: getOwners(): Sequence(SysML!Element)=
 let itemOwner : SysML!Element = self.owner in
 if self.oclIsUndefined() then
 Sequence {}
 else
 if(itemOwner.oclIsKindOf(SysML!Element)) then
 Sequence {self}->union(itemOwner.getOwners())
 else
 Sequence {}
 endif
 endif;

234 R. Pais, J.P. Barros, and L. Gomes

Previous helper ‘getOwners’ is used by various helpers to determine its relation of
inclusion with other types of items. Helper ‘isInsideCompositeState()’ is one of these
examples: it verifies if a transition is inside a composite state, which means that it
must be inside of a composite state with or without a region inside it. This helper calls
helper ‘isCompositeState()’ to determine if SysML element is of the composite state
kind.

--- Verify if a transition is inside a composite state
helper context SysML!Transition def : isInsideCompositeState():
Boolean =
 let elements : Sequence(SysML!Element) = self.getOwners() in
 if(elements.size() >= 2) then
 elements.at(1).isCompositeState() or
 elements.at(2).isCompositeState()
 else
 elements.at(1).isCompositeState()
 endif;

5 Discussion

When implementing a translation from a source model to a target model, it is
necessary to create rules that match source elements and generate target elements.
When there is no clear relation between them, it is not easy to identify which elements
from source should be used, and which matched element should be generated.

Currently ATL has four compilers: 2004, 2006, 2010, and EMF Transformation
Virtual Machine (EMFTVM). Present research was implemented with compiler
version 2010, which has important limitations on traceability (tracing mechanism),
not permitting the use of all types of rules as they lack the tracing mechanism.
Moving to EMFTVM, which has advanced language features, will allow some code
improvements. ATL documentation is spread along Eclipse ATL site, wikis, papers,
and forums. A book or some other documentation explaining "How to do
transformation" and not "How to use methods/functions" is missing. Even so, using
ATL as a model to model transformation language simplified all the translation
process, allowing an emphasis on translation technics in opposition to programming
languages issues. Preliminary results, allow us to conclude that the strategy to convert
Behavior Models to Petri Nets is possible and of great interest to strengthening the
assertion of Petri Nets as a formalism suitable for integration of models.

6 Conclusions and Future Work

The implementation of all transformations between SysML state machines and IOPT
nets is a significant contribution to be added to the framework for the project of
embedded systems using co-design techniques. It is now possible to go from SysML
state machines to IOPT nets, verify their properties, optimize the model, generate
code, visualize, and execute. As an overall view of the implementation, it is

 From SysML State Machines to Petri Nets Using ATL Transformations 235

interesting to note that 80% of all transformation rules were implemented using the
declarative language style, recommended as best practice [18]. The use of variables
on the imperative ‘using’ rules part, rule guard helpers, and called rules, allowed an
overall good code readability. As near future work, it is necessary to enhance
understandability of transformations and improve their correctness, which will lead to
the identification and analysis of the used modeling patterns, as well as refactoring
and abstraction mechanisms on model to model transformations. Finally, formal
techniques for checking semantics equivalence of MDA transformations [20] can be
used to validate implemented transformations.

References

1. Gasevic, D., Djuric, D.: Devedzic, V., Selic, B.V., Bézivin, J.: Model Driven Engineering
and Ontology Development. Springer (2009) ISBN-13: 978-3642101342

2. Moutinho, F., Gomes, L., Ramalho, F., Figueiredo, J., Barros, J.P., Barbosa, P., Pais, R.,
Costa, A.: Ecore Representation for Extending PNML for Input-Output Place-Transition
Nets. In: IECON 2010 - 36th Annual Conference of the IEEE Industrial Electronics
Society, Phoenix, AZ, USA, pp. 2010–2036 (2010)

3. OMG: OMG MOF 2 XMI Mapping Specification. v2.4.1. (2013),
http://www.omg.org/spec/XMI/

4. ATL - A Model Transformation Technology,
http://projects.eclipse.org/projects/modeling.mmt.atl (accessed
on December 30, 2013)

5. OMG: MDA - The Architecture of Choice For A Changing World (2013) ,
http://www.omg.org/mda/

6. Gomes, L., Barros, J.P., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net
Class and Associated Tools. In: INDIN 2007 - 5th IEEE International Conference on
Industrial Informatics, Vienna, Austria, Julho 23-26 (2007)

7. Pais, R., Gomes, L., Barros, J.P.: Towards Statecharts to Input-Output Place Transition
Nets Transformations. In: Camarinha-Matos, L.M. (ed.) Technological Innovation for
Sustainability. IFIP AICT, vol. 349, pp. 227–236. Springer, Heidelberg (2011)

8. Pais, R., Gomes, L., Barros, J.P.: From UML State Machines to Petri nets – History
Attribute Translation Strategies. In: 37th Annual Conference on IECON 2011. IEEE
Computer Society (2011)

9. Markopoulos, P., Mackay, W.: Awareness Systems - Advances in Theory, Methodology,
and Design. Springer (2009) ISBN 978-1-84882-476-8

10. Future Internet Enterprise Systems (FInES): Embarking on New Orientations Towards
Horizon 2020 (2013)

11. Lochmann, H.: HybridMDSD: Multi Domain Engineering with Model Driven Software
Development Using Ontological Foundations, PhD Dissertation (2010)

12. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2008) ISBN-13: 978-0-321-33188-5

13. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
Version 1.1 (2011)

14. OMG: OMG Systems Modeling Language, v 1.3 (2012),
http://www.omg.org/spec/SysML/

236 R. Pais, J.P. Barros, and L. Gomes

15. Choppy, C., Petrucci, L., Reggio, G.: A Modelling Approach with Coloured Petri Nets. In:
Kordon, F., Vardanega, T. (eds.) Ada-Europe 2008. LNCS, vol. 5026, pp. 73–86. Springer,
Heidelberg (2008)

16. Zurawski, R., Zhou, M.C.: Petri Nets and Industrial Applications: A Tutorial. IEEE
Transactions on Industrial Electronics 41(6) (1994)

17. Ribeiro, J., Moutinho, F., Pereira, F., Barros, J.P., Gomes, L.: An Ecorebased Petri Net
Type Definition for PNML IOPT Models. In: INDIN 2011 - 9th IEEE International
Conference on Industrial Informatics, Caparica, Lisbon, Portugal, pp. 777–782 (2011),
doi:10.1109/INDIN.2011.6034992 ISBN 978-1-4577-0434-5

18. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL - Eclipse Support for Model
Transformation. In: Proc. of the Eclipse Technology Exchange Eorkshop (ETX) at
ECOOP (2006)

19. OMG: Unified Modeling LanguageTM (OMG UML), Superstructure. v2.4.1,
http://www.omg.org/spec/UML/

20. Barbosa, P., Ramalho, F., Figueiredo, J., Junior, A., Costa, A., Gomes, L.: Checking
Semantics Equivalence of MDA Transformations in Concurrent Systems. Journal of
Universal Computer Science 15(11), 2196–2224 (2009), doi:10.3217/jucs-015-11-2196

21. Jiang, M., Ding, Z.: From Textual Use Cases to Message Sequence Charts. In: Information
Engineering and Applications. Lecture Notes in Electrical Engineering, vol. 154, pp. 732–739.
Springer (2012)

	From SysML State Machines to Petri Nets Using ATL Transformations
	1 Introduction
	2 Relation to Collective Awareness Systems
	3 Model to Model Transformations
	3.1 Ecore
	3.2 ATL Language
	3.3 SysML State Machines
	3.4 Input-Output Place Transition Nets

	4 Transformations Rules Using ATL
	5 Discussion
	6 Conclusions and Future Work
	References

