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Abstract. Lossy trapdoor functions, introduced by Peikert and Waters
(STOC’08), have received a lot of attention in the last years,
because of their wide range of applications. The notion has been recently
extended to the identity-based setting by Bellare et al. (Eurocrypt’12).
An identity-based trapdoor function (IB-TDF) satisfying the lossy prop-
erty introduced by Bellare et al. can be used to construct other cryp-
tographic primitives in the identity-based setting: encryption schemes
with semantic security under chosen-plaintext attacks, deterministic en-
cryption schemes, and hedged encryption schemes that maintain some
security when messages are encrypted using randomness of poor quality.
However, the constructed primitives can be proved secure only against
selective adversaries who select the target identity upfront.

Our first contribution is an alternative definition for the lossiness
of an identity-based trapdoor function. We prove that an IB-TDF
satisfying the new property can be used to construct all the aforemen-
tioned primitives, in the identity-based setting, with security against
adaptive adversaries. We further consider the new definition and its im-
plications in the more general scenario of hierarchical identity-based
cryptography, which has proved very useful both for practical appli-
cations and to establish theoretical relations with other cryptographic
primitives (including encryption with chosen-ciphertext security or with
forward-security).

As a second contribution, we describe a pairing-based hierarchical
IB-TDF satisfying the new definition of lossiness against either selec-
tive or, for hierarchies of constant depth, adaptive adversaries. This is
also the first example of hierarchical trapdoor functions based on tra-
ditional (i.e., non-lattice-related) number theoretic assumptions. As a
direct consequence of our two contributions, we obtain a hierarchical
identity-based (HIB) encryption scheme with chosen-plaintext security,
a HIB deterministic encryption scheme and a HIB hedged encryption
scheme, all of them with security against adaptive adversaries.
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1 Introduction

1.1 (Identity-Based) Lossy Trapdoor Functions

Lossy trapdoor functions, as introduced by Peikert and Waters in [25], have been
proved very powerful in theoretical cryptography and received a lot of attention
in the recent years (see, e.g., [17,21,10,22,30]). Lossy trapdoor functions are
function families that can be instantiated in two different modes. In the injective
mode, the function is injective and can be inverted using a trapdoor. In lossy
mode, the function is (highly) non-injective since its image size is much smaller
than the size of the domain. The key point is that lossy instantiations of the
function must be indistinguishable from injective instantiations.

In their seminal paper [25], Peikert and Waters showed that lossy trapdoor
functions provide black-box constructions of chosen-ciphertext secure (IND-
CCA) public-key encryption schemes as well as universal one-way and collision-
resistant hash functions. Later on, other applications of lossy trapdoor functions
were discovered: they gave rise to deterministic encryption schemes [2] in the
standard model [6], public-key hedged encryption schemes maintaining some
security in the absence of reliable encryption coins [3] and even public-key en-
cryption with selective-opening security [4] (i.e., which offer certain security
guarantees in case of sender corruption).

Recently, Bellare, Kiltz, Peikert and Waters [5] introduced the notion of
identity-based (lossy) trapdoor function (IB-TDF), which is the analogue of
lossy trapdoor functions in the setting of identity-based cryptography [28]. In
the identity-based scenario, users’ public keys are directly derived from their
identities, whereas secret keys are delivered by a trusted master entity. In this
way, the need for digital certificates, which usually bind public keys to users in
traditional public-key cryptography, is drastically reduced. Throughout the last
decade, several generalizations of identity-based cryptography were put forth,
including hierarchical identity-based encryption [18], attribute-based encryption
[26,19] or predicate encryption [8,23]. In the setting of hierarchical identity-based
cryptography, identities are organized in a hierarchical way, so that a user who
holds the secret key of an identity id can generate, use and distribute valid se-
cret keys for any identity that is a descendant of id in the hierarchy. Hierarchical
identity-based encryption (HIBE) is of great interest due to both practical and
theoretical reasons. On the practical side, many organizations and systems that
may need (identity-based) cryptographic solutions are organized in a hierarchical
way. On the theoretical side, generic constructions [11,12] are known to trans-
form a weakly secure HIBE scheme (i.e., IND-CPA security against selective
adversaries) into (public-key) encryption schemes with strong security proper-
ties, like chosen-ciphertext security [12] or forward-security [1,11], where private
keys are updated in such a way that past encryptions remain safe after a key
exposure.

Bellare et al. [5] proposed instantiations of identity-based lossy trapdoor func-
tions based on bilinear maps and on lattices (as noted in [5], almost all IBE
schemes belong to these families). Moreover, they show that their definition of
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partial-lossiness for identity-based trapdoor functions leads to the same crypto-
graphic results as lossy trapdoor functions, but in the selective identity-based
setting only, where the attacker must choose the target identity upfront in the
attack game. Namely, in the case of selective adversaries, IB-TDFs satisfying
their definition imply identity-based encryption with semantic security, identity-
based deterministic encryption and identity-based hedged encryption. In [5], it
was left as an open problem to prove that the same results hold in the case of
adaptive adversaries.

1.2 Our Two Main Contributions

New Definition of Partial Lossiness and Its Applications. From a theo-
retical standpoint, we first define a new security property for hierarchical identity-
based trapdoor functions (HIB-TDFs). For the particular (non-hierarchical) case
of IB-TDFs, the new security property is different to the property of partial lossi-
ness defined by Bellare et al. [5]. We show that a HIB-TDF which satisfies this
new property can be used to obtain the same kind of results that are derived
from standard lossy trapdoor functions [25]. Namely, they lead to standard en-
cryption schemes, to deterministic encryption schemes for block sources, and to
non-adaptive hedged encryption schemes (also for block sources), which are secure
in the hierarchical identity-based setting, against adaptive-id adversaries. Since
IB-TDFs are a particular case of HIB-TDFs, our results for adaptive adversaries
solve the abovementioned open problem in [5]. Interestingly, the pairing-based IB-
TDF of Bellare et al. [5] can be proved to also satisfy the new security property.
See the full version of the paper [16] for more details on this. As a consequence, it
provides adaptive-id secure deterministic and hedged IBE schemes, and not only
selectively secure ones as initially believed.

Construction of a Pairing-Based Hierarchical Trapdoor Function.

On the constructive side, we focus on pairing-based hierarchical systems and
leave possible constructions based on lattices as an open line for future work.
Our intuition, however, is that pairing-based HIB-TDFs seem harder to construct
than their lattice-based counterpart. Indeed, no hierarchical trapdoor function
is currently known to rely on traditional number theoretic assumptions whereas,
in the lattice world, constructions have been known since the results of Cash,
Hofheinz, Kiltz and Peikert [13].

Using bilinear maps, we build a HIB-TDF and prove that it satisfies our new
definition of partial lossiness under mild assumptions in prime order groups. As
an intermediate step, we design a hierarchical predicate encryption (HPE) sys-
tem [27,24] with suitable anonymity properties. Perhaps surprisingly, although
this scheme is proved secure only against weak selective adversaries (who select
their target attribute set before seeing the public parameters), we are able to
turn it into a HIB-TDF providing security (namely, our new version of partial
lossiness) against adaptive adversaries for hierarchies of constant depth. To the
best of our knowledge, our HIB-TDF gives rise to the first hierarchy of trapdoor
functions which does not rely on lattices: realizing such a hierarchy using number
theoretic techniques was identified as an open problem in [13].
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Beyond its hierarchical nature, our construction brings out an alternative
design principle for (H)IB-TDFs. The idea is to rely on hierarchical predicate
encryption (HPE) to deal with hierarchies. Namely, public parameters consist
of a matrix of HPE encryptions and, when the function has to be evaluated, the
latter matrix is turned into a matrix of (anonymous) HIBE ciphertexts. The ho-
momorphic properties of the underlying HIBE then make it possible to evaluate
the function while guaranteeing a sufficient amount of lossiness in lossy mode.
It seems possible to abstract away the properties of the underlying HPE sys-
tem in order to obtain a HIB-TDF via a semi-generic transformation. However,
the HPE scheme we describe seems to be the only candidate with the required
algebraic structure.

While the pairing-based IB-TDF construction of Bellare et al. [5] builds on
an adaptively secure anonymous IBE, our HIB-TDF is obtained from a selec-
tive weakly attribute-hiding HPE system. This result is somewhat incomparable
with [5]: on the one hand, we start from a more powerful primitive – because
predicate encryption implies anonymous IBE – but, on the other hand, we need
a weaker security level to begin with. Both (H)IB-TDF constructions rely on
specific algebraic properties in the underlying IBE/HPE and neither is generic.

1.3 Implications

Combining our HIB-TDF with the theoretical implications of our new security
property, we obtain: (1) a modular way to build adaptive-id secure HIBE schemes
from HIB-LTDFs, (2) the first secure deterministic HIBE scheme for block
sources1, (3) the first HIBE scheme, for block sources, that (non-adaptively)
hedges against bad randomness, as advocated by Bellare et al. [3]. All these
schemes are secure against both selective and adaptive-id adversaries.

In the case of adaptive adversaries, these results only hold for hierarchies of
constant depth (said otherwise, we do not provide full security). However, using
our definition of partial lossiness or that of Bellare et al. [5], this appears very dif-
ficult to avoid. The reason is that both definitions seem inherently bound to the
partitioning paradigm. Namely, they assume the existence of alternative public
parameters, called lossy parameters, where the identity space is partitioned into
subsets of injective and lossy identities (this is, identities which lead to injec-
tive and lossy functions respectively). The definition of [5] intuitively captures
that a fraction δ of identities are lossy in the case of lossy parameters. In the
hierarchical setting, the analogy with HIBE schemes suggests that all ancestors
of a lossy identity be lossy themselves. Hence, unless one can make sure that
certain lossy identities only have lossy descendants, the fraction δ seems doomed
to exponentially decline with the depth of the hierarchy.

Finally, due to the results of Canetti, Halevi and Katz [11], our construction
also implies the first forward-secure deterministic and hedged public-key encryp-
tion schemes (note that, as pointed out in [11], selective security suffices to give

1 See [31] for a recent and independent construction, in the (non-hierarchical) IBE
case.
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forward-secure cryptosystems). Although our scheme is not practical due to large
ciphertexts and keys, it provides the first feasibility results in these directions.

2 Background

2.1 Some Complexity Assumptions

We will consider groups (G, Ĝ,GT ) of prime order p for which an asymmetric

bilinear map e : G× Ĝ → GT is efficiently computable. We will assume that the
DDH assumption holds in both G and Ĝ, which implies that no isomorphism
is efficiently computable between G and Ĝ. The assumptions that we need are
sometimes somewhat stronger than DDH. However, they have constant size (i.e.
we de not rely on q-type assumptions) and were previously used in [15].

The Bilinear Diffie Hellman Assumption (BDH): in asymmetric bilinear

groups (G, Ĝ,GT ) of prime order p, no PPT adversary can distinguish the
distribution D1 = {(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)abc) | a, b, c R← Zp}, from
D2 = {(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)z) | a, b, c, z R← Zp}.

The P-BDH1 Assumption: in asymmetric bilinear groups (G, Ĝ,GT ) of prime
order p, the distribution D1 = {(g, gb, gab, gc, ĝ, ĝa, ĝb, gabc) | a, b, c R← Zp} is

indistinguishable from D2 = {(g, gb, gab, gc, ĝ, ĝa, ĝb, gz) | a, b, c, z R← Zp} for
any PPT algorithm.

The DDH2 Assumption: in asymmetric bilinear groups (G, Ĝ,GT ) of prime
order p, the distribution D1 = {(g, ĝ, ĝa, ĝb, ĝab) | a, b R← Zp} is computa-

tionally indistinguishable from D2 = {(g, ĝ, ĝa, ĝb, ĝz) | a, b, z R← Zp}.

2.2 Hierarchical Identity-Based (Lossy) Trapdoor Functions

This section recalls formal definitions of (hierarchical) identity-based lossy trap-
door function.

Syntax. A hierarchical identity-based trapdoor function (HIB-TDF) is a tuple
of efficient algorithmsHF = (HF.Setup,HF.MKg,HF.Kg,HF.Del,HF.Eval,HF.Inv).
The setup algorithm HF.Setup takes as input a security parameter � ∈ N, the
(constant) number of levels in the hierarchy d ∈ N, the length of the identities
μ ∈ poly(�) and the length of the function inputs n ∈ poly(�), and outputs a set
of global public parameters pms, which specifies an input space InpSp, an iden-
tity space IdSp and the necessary mathematical objects and hash functions. The
master key generation algorithm HF.MKg takes as input pms and outputs a mas-
ter public key mpk and a master secret key msk. The key generation algorithm
HF.Kg takes as input pms, msk and a hierarchical identity (id1, . . . , id�) ∈ IdSp,
for some � ≥ 1 and outputs a secret key SK(id1,...,id�). The delegation algo-
rithm HF.Del takes as input pms, mpk, a hierarchical identity (id1, . . . , id�), a
secret key SK(id1,...,id�) for it, and an additional identity id�+1; the output is
a secret key SK(id1,...,id�,id�+1) for the hierarchical identity (id1, . . . , id�, id�+1) iff
(id1, . . . , id�, id�+1) ∈ IdSp. The evaluation algorithm HF.Eval takes as input pms,
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mpk, an identity id = (id1, . . . , id�) and a value X ∈ InpSp; the result of the eval-
uation is denoted as C. Finally, the inversion algorithm HF.Inv takes as input
pms, mpk, a hierarchical identity id = (id1, . . . , id�), a secret key SKid for it and
an evaluation C, and outputs a value X̃ ∈ InpSp.

A HIB-TDF satisfies the property of correctness if we have the equaltity
HF.Inv

(
pms,mpk, id,SKid,HF.Eval

(
pms,mpk, id = (id1, . . . , id�), X

))
= X, for

any X ∈ InpSp, any pms, (mpk,msk) generated by HF.Setup and HF.MKg, any
hierarchical identity (id1, . . . , id�) ∈ IdSp and any key SK(id1,...,id�) generated

either by running HF.Kg
(
pms,msk, (id1, . . . , id�)

)
or by applying the delegation

algorithm HF.Del to secret keys of shorter hierarchical identities.
Before formalizing the new definition of partial lossiness for a HIB-TDF, let

us recall the notion of lossiness : if f is a function with domain Dom(f) and
image Im(f) = {f(x) : x ∈ Dom(f)}, we say that f is ω-lossy if λ(f) ≥ ω,

where λ(f) = log |Dom(f)|
|Im(f)| .

To define lossiness for HIB-TDFs, it is useful to consider extended HIB-
TDFs, which differ from standard HIB-TDFs in that, in the latter, the algorithm
HF.Setup specifies in pms an auxiliary input space AuxSp, and HF.MKg admits
an auxiliary input aux ∈ AuxSp. Given a HIB-TDF HF = (HF.Setup,HF.MKg,
HF.Kg,HF.Del,HF.Eval,HF.Inv), a sibling for HF is an extended HIB-TDF LHF =
(HF.Setup, LHF.MKg, LHF.Kg, HF.Del,HF.Eval, HF.Inv) whose delegation, evalu-
ation and inversion algorithms are those of HF, and where an auxiliary space
AuxSp is contained in pms ← HF.Setup(�), so that IdSp ⊂ AuxSp.

Looking ahead, we will define, as in [5], two different experiments: one corre-
sponding to the standard setup and one corresponding to the lossy setup, in one
of them the experiment will interact with a standard HIB-TDF, in the other one
with a sibling in which some identities lead to lossy evaluation functions. The
notion of extended HIB-TDF will serve to construct both of these functions as
an extended HIB-TDF but with different auxiliary inputs y(0),y(1).

3 A New Security Definition for (H)IB-TDFs

The basic security property of a trapdoor function is one-wayness, which means
that the function is hard to invert without the suitable secret key. In the identity-
based setting, one-wayness is required to hold even when the adversary has
access to secret keys for some identities. Partial lossiness for identity-based trap-
door functions was introduced in [5], where it was proved to imply one-wayness.
Roughly speaking, partial lossiness requires that the weighted difference of the
probability that any adversary outputs 1 in the lossy or in the real experiment is
negligible. These weights account for the fact that, in the lossy experiment in the
adaptive case, some identities may lead to lossy functions, which can be detected
by any adversary A that queries the secret key for such an identity. As a result,
there is an asymmetry when comparing the real and the lossy experiments which
is compensated by the weights.

For the selective case, the weights can simply be set to 1 and it can be
proved that an IB-TDF satisfying their notion of partial lossiness in the selective
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scenario can be used to build: (1) identity-based encryption (IBE) schemes with
selective IND-CPA security, (2) selectively secure deterministic IBE schemes, (3)
selectively secure hedged IBE schemes. However, these results are not known to
be true in the adaptive setting. In fact, the definition is not known to imply the
IND-ID-CPA security of the resulting IBE scheme in the adaptive-id scenario.

To address this question, we propose an alternative definition for the partial
lossiness of (hierarchical) identity-based trapdoor functions — in particular, the
definition is also different from the one of Bellare et al. when the hierarchy depth
is equal to 1, the case considered in [5]. We will show that a HIB-TDF satisfying
this new definition gives, in the adaptive-id case, a secure construction of the
same primitives we mentioned for the selective-id case.

3.1 The Formal Definition

As in [5], we define two different experiments, a lossy experiment and a real
experiment. For any adversary A against a HIB-TDF, the REALAHF,LHF,P,ω,ζ ex-

periment and the LOSSYA
HF,LHF,P,ω,ζ experiment are parameterized by the se-

curity parameter � (which is usually omitted in the notation) and some values
ζ(�), ω(�). The experiment also takes as input the specification of some algorithm
P which takes as input ζ, pms,mpk1,msk1, IS, id

�, and outputs a bit d2. This al-
gorithm must be efficient for any non-negligible ζ. To simplify notations, we write
REAL instead of REALAHF,LHF,P,ω,ζ and LOSSY instead of LOSSYA

HF,LHF,P,ω,ζ.
We present the two experiments as a single experiment depending on a bit β:

the challenger C, who interacts with the adversaryA, runs either REAL if β = 0 or
LOSSY if β = 1. Also, some instructions of both experiments depend on whether
selective or adaptive security is being considered. We say that a hierarchical
identity id = (id1, . . . , id�) is a prefix of another one id� = (id�1, . . . , id

�
��) if � ≤ ��

and idi = id�i for every i = 1, . . . , �. We denote this fact by id ≤ id�.

0. First, C chooses global parameters pms by running HF.Setup. The parameters
pms are given to the adversary A, who replies by choosing a hierarchical
identity id† = (id†1, . . . , id

†
�†), for some �† ≤ d.

1. The challenger C runs (mpk0,msk0) ← HF.MKg(pms) and (mpk1,msk1) ←
LHF.MKg(pms, aux = id†). The adversary A receives mpkβ and lists IS ←
∅, QS ← ∅ are initialized.

2. A can make adaptive queries for hierarchical identities id = (id1, . . . , id�).
- Create-key: A chooses an identity id and C creates a private key SKid.
If β = 0, SKid is created by running HF.Kg(pms,msk0, id). If β = 1, it
is created by running LHF.Kg(pms,msk1, id). The list QS is updated as
QS = QS ∪ {id}.

- Create-delegated-key: A provides a tuple id = (id1, . . . , id�) and id�+1

such that id ∈ QS. The challenger C then computes a delegated key
SKid′ for id′ = (id1, . . . , id�+1) by running the delegation algorithm
HF.Del

(
pms,mpkβ , SKid, id�+1

)
before setting QS = QS ∪ {id′}.
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- Reveal-key: A provides id with the restriction that if A is selective,
then id 
≤ id†. C returns ⊥ if id 
∈ QS. Otherwise, SKid is returned to A
and the list IS is updated as IS = IS ∪ {id}.

3. A outputs a hierarchical identity id� = (id�1, . . . , id
�
��). If A is selective, then

id� = id†. In the adaptive case, no element of IS can be a prefix of id�.
4. The adversary can make adaptive queries such as the ones described in step

2, with the restriction that for Reveal-key queries the id provided by A
must satisfy id 
≤ id�.

5. The adversary outputs a bit dA ∈ {0, 1}. Let d1 be the bit d1 :=
(∀ id ∈

IS, λ (HF.Eval(pms,mpk1, id, ·)) = 0
) ∧ (

λ (HF.Eval(pms,mpk1, id
�, ·)) ≥ ω

)
.

6. The challenger C sets d2 to be the output of the pre-output stage P with
input ζ, pms,mpk1,msk1, IS, id

�.
7. The final output of the experiment consists of the bits {dA, dA¬abort}, where

dA¬abort = d1 ∧ d2 ∈ {0, 1}.

For notational convenience, from now on, let us define dAexp = dA ∧ dA¬abort.

Definition 1. A HIB-TDF is (ω, δ)-partially lossy if it admits a sibling and
an efficient pre-output stage P such that for all PPT adversaries A and for all
non-negligible ζ, there exist two non-negligible values ε1, ε2 such that δ = ε1ε2 is
non-negligible and the following three conditions hold:

(i) the following advantage function is negligible in the security parameter �:

Advlossy
HF,LHF,P,ω,ζ(A) = |Pr[dAexp = 1| REAL] − Pr[dAexp = 1| LOSSY]| (1)

(ii) Pr[dA¬abort = 1 | REAL] ≥ ε1.

(iii) if A is such that Pr[dA = 1 | REAL] − 1
2 > ζ, then

Pr[dA = 1 | REAL ∧ dA¬abort = 1]− 1

2
> ε2 · ζ, (2)

where δ may be a function of q the maximal number of key queries of A.

Some Intuition. As we mentioned, to account for the asymmetry between
the real and the lossy experiment, Bellare et al. defined the advantage of a
distinguisher among the lossy and real experiments as the weighted difference
of the probability of outputting 1 in the real case minus the same probability
in the lossy case. Our solution is different. We always execute in parallel two
instances of the master key generation protocol, one in the real and one in the
lossy mode (the adversary does not notice this). The experiments output a bit
d1 which is computed in the same way in both the real and lossy settings and
which depends on the secret key queries and the challenge identity chosen by
the adversary: for example, if a query would force the LOSSY experiment to
output d1 = 0 indicating that the adversary queried for a secret key of a lossy
identity, then it also forces the REAL experiment to output d1 = 0. For the
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sake of intuition, let us think of dA¬abort as the bit d1 and temporarily ignore d2,
whose purpose is explained later. By defining the output of the experiment as
the logical AND between the output dA of the adversary and a bit dA¬abort, we
just avoid having to introduce weights in condition (i) in Definition 1. This is a
difference with [5] which is crucial to prove that lossy identity-based trapdoor
functions imply other primitives in the adaptive-id case.

Condition (i) can be seen as the natural (non-weighted) analogue of the se-
curity definition of [5], while the other conditions might look more artificial. We
provide some more intuition on why condition (i) alone is not useful to guarantee
that security reductions can be done from a scheme Π built from an HIB-TDF
to the HIB-TDF itself in the adaptive setting. First, we add condition (ii) to rule
out some cases in which the condition (i) would be trivial to satisfy, like the case
where the procedure P aborts with overwhelming probability or the case where
the sibling admits only lossy identities: in any of these scenarios, we would have
dA¬abort = 1 with negligible probability, which would render the scheme useless.

A more serious problem, which motivates condition (iii), is that, in the reduc-
tion, the output of a potential adversary A with meaningful advantage ε against
Π does not necessarily help to contradict condition (i) because the output of A
needs to be conditioned to dA¬abort = 1 and the output of A may not be indepen-
dent of dA¬abort = 1. To solve that, the reduction might try to abort after certain
events, for example after some secret key queries have been done. However, such
events could be related to the underlying HIB-TDF scheme, so the reduction
would not be black-box. Condition (iii) guarantees that, if an adversary has
some meaningful advantage against the scheme built from the HIB-TDF, it will
also have meaningful advantage when d¬abort = 1, this is, when all the secret
key queries correspond to injective identities and the challenge identity is lossy.
Roughly said, this condition ensures that the probability of aborting is somewhat
independent of the behavior of any computationally bounded adversary.

We have not discussed the role of d2 yet. If d¬abort was just defined as d1,
condition (iii) would be quite hard to satisfy: intuitively we would not be allowing
the security reduction to make extra aborts related to events which depend on
the HIB-TDF, which is unnecessarily restrictive. To handle this problem, we
allow the experiment to consider an efficient algorithm P , which depends on
the HIB-TDF and outputs a bit d2, and we define d¬abort = d1 ∧ d2. Finally,
we stress that the incorporation of algorithm P results in a more general and
flexible security definition: although one could define the security of HIB-TDF
without taking into account the existence of such an algorithm P , it would make
it more difficult for a HIB-TDF to satisfy it. On the other hand, if P is the
trivial algorithm which always outputs d2 = 1, this is equivalent to considering
the security definition without the algorithm P , which is enough to prove the
security of our HIB-TDF against selective adversaries, indeed. To prove the
security of our HIB-TDF against adaptive adversaries, we will define P as the
artificial abort stage in the security proof of Waters’ IBE scheme [29].
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3.2 Implications of Lossy (H)IB-TDFs: The Example of (H)IBE

Using the same argument as in [5], it is quite easy to prove that a HIB-TDF
which enjoys the new version of the partial lossiness property is already one-
way, in both the selective and adaptive settings. In this section we prove that a
HIB-TDF which satisfies our new security definition can be used to build other
primitives in the hierarchical identity-based scenario, with security against adap-
tive adversaries. We detail the example of hierarchical identity-based encryption
(HIBE) with IND-CPA security2. The construction is the direct adaptation of
the Peikert-Waters construction [25] in the public-key setting.

Let HF be a HIB-TDF with message space {0, 1}n and (ω, δ) partial lossiness,
and H a family of pairwise independent hash functions from {0, 1}n to {0, 1}l
where l ≤ ω − 2 lg(1/εLHL) for some negligible εLHL. The HIBE scheme has
message space {0, 1}l. Its setup, key generation and key delegation algorithms
are basically the same ones as those for HF, the rest are as follows:

MKGen(pms) Enc(pms,mpk,m, id) Dec(pms,mpk,SKid, C, id)
(mpk′,msk) ← x ← {0, 1}n x = HF.Inv(pms,

HF.MKg(1k) c1 = HF.Eval(pms,mpk′, id, x) mpk′,SKid, c1, id)
h ← H c2 = h(x) ⊕m m = c2 ⊕ h(x)
mpk = (mpk′, h) Return C = (c1, c2) Return m
Return mpk

We prove the following theorem.

Theorem 1. If HF is (ω, δ)-partially lossy for some non-negligible value of δ,
then the HIBE scheme Π described is IND-ID-CPA secure. In particular, for ev-
ery IND-ID-CPA adversary B against Π there exists a PPT adversary A against
HF such that Advlossy

HF,LHF,P,ω,ζ(A) ≥ 2
3 ·δ ·Advind−id−cpa(B)−ν(�), for some neg-

ligible function ν. Both adversaries A and B run in comparable times; whenever
B is selective, so is A (for their respective experiments).

Proof. Let us assume that an adversary B has advantage at least ζ in breaking
the IND-ID-CPA security of the HIBE scheme Π , for some non-negligible ζ.
We build an adversary A that breaks the condition (i) of Definition 1 assuming
that conditions (ii) and (iii) are satisfied. Our adversary A, who interacts with
a challenger that runs either the experiment REAL or the experiment LOSSY,
proceeds to simulate the challenger in the IND-ID-CPA game with B as follows.

Our adversaryA forwards an identity id† to its challenger, which is an arbitrary
identity in the adaptive case or corresponds to the challenge identity chosen by
B in the selective case. When the challenger runs the setup and gives the output
to A, A forwards this information to B together with a hash function h ← H.
When B asks for a secret key for a hierarchical identity id, A forwards the query
to the experiment and relays the latter’s reply to B. At some point, B outputs
(m0,m1, id

�), with id† = id� in the selective case. Adversary A then forwards

2 The cases of deterministic HIBE and hedged HIBE are discussed in the full version
of this paper [16].



Identity-Based Lossy Trapdoor Functions 249

id� to its challenger, chooses γ ← {0, 1} at random and encrypts mγ under the
identity id�. After some more secret key queries, B outputs a guess γ′ and A
outputs dA = 1 if γ = γ′ and dA = 0 otherwise.

In the REAL setting, we have Pr[γ′ = γ| REAL]− 1
2 = Pr[dA = 1| REAL]− 1

2 ≥
ζ, since A perfectly simulated the IND-ID-CPA game with B. This inequality
can be combined with conditions (ii) and (iii) of the definition of (ω, δ)-partial
lossiness (which we assume to be satisfied by HF), and we obtain

Pr[dA¬abort=1 | REAL] ·
(

Pr[dA=1 | REAL ∧ dA¬abort = 1]− 1

2

)
> ε1ε2ζ. (3)

On the other hand, in the LOSSY setting when id� is lossy, the advantage of
B in guessing γ is negligible. Indeed, since h is a pairwise independent hash
function, the Leftover Hash Lemma [20] (more precisely, its variant proved in
[14]) implies that the distribution of c2 given c1 is statistically uniform. We thus
have Pr[dA = 1| LOSSY∧dA¬abort = 1] ≤ 1/2+εLHL, for some negligible function
εLHL. Since dAexp = dA¬abort ∧ dA, we can express Pr[dAexp = 1 | LOSSY] as

Pr[dA = 1 | LOSSY ∧ dA¬abort = 1]Pr[dA¬abort = 1 | LOSSY]
≤ (1

2
+ εLHL

) · Pr[dA¬abort = 1 | LOSSY]

≤ 1

2
· (Pr[dA¬abort = 1 | REAL] +Advlossy

HF,LHF,P,ω,ζ(A)
)
+ ν, (4)

for some negligible function ν ∈ negl(�). The last equality follows from the fact

that Pr[dA¬abort = 1| LOSSY]−Pr[dA¬abort = 1| REAL] ≤ Advlossy
HF,LHF,P,ω,ζ(A): oth-

erwise, we can build a distinguisher3 against condition (i) of the partial lossiness

definition. If we plug (4) into the definition of Advlossy
HF,LHF,P,ω,ζ(A), we find

Advlossy
HF,LHF,P,ω,ζ(A) =

∣
∣Pr[dAexp = 1 | REAL]− Pr[dAexp = 1 | LOSSY]∣∣

≥
∣
∣
∣
∣Pr[d

A
¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1]− 1

2

)∣∣
∣
∣

−1

2
·Advlossy

HF,LHF,P,ω,ζ(A)− ν,

so that there exists ν̃ ∈ negl(�) such that Advlossy
HF,LHF,P,ω,ζ(A) is at least

2

3
·
∣
∣
∣
∣Pr[d

A
¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1]− 1

2

)∣∣
∣
∣− ν̃.

Using (3) and δ = ε1ε2, we have that the right-hand-side member of the above

expression is at least (2/3) ·δ ·ζ−ν. This means that Advlossy
HF,LHF,P,ω,ζ(A) is non-

negligible, which contradicts condition (i). ��
3 This distinguisher A1 is obtained from A by ignoring dA ∈ {0, 1} and replacing it
by a 1, so that dA¬abort = dAexp.
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4 A Hierarchical Identity-Based (Lossy) Trapdoor
Function

The design of our new HIB-TDF and its security analysis use as a key ingredient
an HPE scheme which is described in the full version of the paper [16]. Let us
first provide some intuition on the reason why a HPE scheme simplifies our task.

The pairing-based IB-TDF of Bellare et al. [5] uses an anonymous IBE scheme
as a building block. To construct a HIB-TDF, a natural idea is thus to use an
anonymous HIBE system. One difficulty is that, at least in the world of pair-
ings, anonymous IBE schemes are usually harder to extend to a hierarchy than
non-anonymous ones. Indeed, private keys have to contain extra randomization
components because, if the randomization material were included in the public
parameters, ciphertexts would betray the identity of receivers. Moreover, as al-
ready mentioned in [5], anonymity is not sufficient by itself: what we need is a
way to propertly embed an auxiliary input in the public parameters without the
adversary noticing the difference between two distinct auxiliary inputs. Adapting
the Boyen-Waters anonymous HIBE [9] to achieve this is not straightforward.
On the other hand, HPE schemes make it possible to naturally embed auxiliary
inputs in the attribute vectors of HPE ciphertexts, which are included in the
public parameters of the function. When the function has to be evaluated for
a specific identity, our construction uses a mechanism to turn HPE ciphertexts
into a matrix of HIBE ciphertexts and this is where the interaction between aux-
iliary inputs and hierarchical identities leads to functions that can be injective
or lossy. From the resulting matrix of HIBE ciphertexts, the function evalua-
tion proceeds by computing a matrix-vector product in the exponent, as done
in many lossy TDF construcitons (see, e.g., [25,17,21,30]), and takes advantage
of homomorphic properties in the underlying HIBE system.

More precisely, our lossy function is obtained by including a n× n matrix of
HPE ciphertexts in the master public parameters. As in the DDH-based function
of [25], each row of the matrix is associated with an encryption exponent, which
is re-used throughout the entire row. Each column corresponds to a different set
of public parameters in the HPE system.

The HIB-TDF that we construct is actually an extended HIB-TDF, and so
the master key generation protocol takes an auxiliary input. Depending on the
value of this auxiliary input, we obtain the trapdoor (injective) function or a
partially lossy function, used in the security proofs. Actually, all HPE cipher-
texts in the above-mentioned matrix correspond to different hierarchical vec-
tors (y1, . . . ,yd) ∈ Z

d·μ
p , depending on the auxiliary input. The selective weak

attribute-hiding property of the HPE scheme guarantees that the two setups are
computationally indistinguishable.

In order to evaluate a function for some hierarchical identity id = (id1, . . . , id�),
the first step of the evaluation algorithm computes a transformation on HPE
ciphertexts so as to obtain a matrix of Boneh-Boyen HIBE ciphertexts [7] in
their anonymized variant suggested by Ducas [15]. During this transformation,
a set of inner products {〈yi1 , idi1〉}�i1=1 is calculated in the exponent in the
diagonal entries of the matrix. The transformation provides a n× n matrix (7)
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of anonymous HIBE ciphertexts that are always well-formed in non-diagonal
entries. As for diagonal entries, they contain “perturbed” HIBE ciphertexts: at
each level, one ciphertext component contains a perturbation factor of the form
〈yi1 , idi1〉. In this matrix of HIBE ciphertexts, random encryption exponents are
again re-used in all positions at each row.

The function evaluation is carried out as in [25], by computing a matrix-vector
product in the exponent and taking advantage of homomorphic properties of the
HIBE scheme over the randomness space. The function output can be seen as a
set of n anonymous HIBE ciphertexts – one for each input bit – which are well-
formed ciphertexts if and only if the corresponding input bit is 0 (i.e., if and
only if the perturbation factors {〈yi1 , idi1〉}�i1=1 are left out when computing the
matrix-vector product in the exponent). The function is thus inverted by testing
the well-formedness of each HIBE ciphertext using the private key.

4.1 Description

HF.Setup(�, d, n, μ): given a security parameter � ∈ N, the (constant) desired
number of levels in the hierarchy d ∈ N and integers μ, n ∈ poly(�) specify-
ing the length of identities and that of function inputs, respectively, choose
asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2�. Define InpSp =

{0, 1}n, ΣID = {(1,x) : x ∈ Zμ−1
p }, IdSp = Σ

(≤d)
ID and AuxSp = Zd·μ

p . The

public parameters are pms =
(
p, (G, Ĝ,GT ), d, n, μ, InpSp, IdSp,AuxSp

)
.

Since HF is an extended HIB-TDF, the master key generation algorithm of our
HIB-TDF receives an auxiliary input y ∈ AuxSp. Here, it is seen as a concatena-
tion of d row vectors y1, . . . ,yd ∈ Zμ

p . NotationΔ(i, j) is used for the Kronecker’s
delta function (that is, Δ(i, j) = 1 if i = j, and is equal to 0 otherwise).

HF.MKg(pms,y): parse the auxiliary input as y = [y1| . . . |yd] ∈ Zd·μ
p , and

proceed as follows.

1. Choose αv
R← Z∗

p, αw
R← (Z∗

p)
n, and αh

R← (Z∗
p)

d×(μ+1)×n. Define v =

gαv , v̂ = ĝαv , w = gαw ∈ Gn and ŵ = ĝαw ∈ Ĝn. Likewise, set up
vectors h = gαh ∈ Gd×(μ+1)×n and ĥ = ĝαh ∈ Ĝd×(μ+1)×n. Define

PPcore :=
(
v, {w[l1]}nl1=1, {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}, l1∈{1,...,n}

)

2. For i1 = 1 to d, parse yi1 as (yi1 [1], . . . ,yi1 [μ]) ∈ Zμ
p . For l2 = 1 to n,

do the following.

a. Choose s[l2]
R← Z∗

p and compute J[l2] = vs[l2] as well as

Cw[l2, l1] = w[l1]
s[l2],

C[i1, i2, l2, l1] =
(
h[i1, 0, l1]

yi1 [i2]·Δ(l2,l1) · h[i1, i2, l1]
)s[l2]

for each i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , μ}, l1 ∈ {1, . . . , n}.
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b. Define a n× n matrix {CT[l2, l1]}l2,l1∈{1,...,n} of HPE ciphertexts

CT[l2, l1] =
(
J[l2],Cw[l2, l1], {C[i1, i2, l2, l1]}i1∈{1,...,d}, i2∈{1,...,μ}

)
. (5)

Themaster public key consists ofmpk:=
(
PPcore, {CT[l2, l1]}l2,l1∈{1,...,n}

)

while the master secret key is msk :=
(
v̂, ŵ, ĥ

)
. For each l1 ∈ {1, . . . , n},

it will be convenient to view (PPcore,msk) as a vector of HPE master key
pairs (mpk[l1],msk[l1]), with

mpk[l1] =
(
v,w[l1], {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}

)

msk[l1] =
(
v̂, ŵ[l1], {ĥ[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}

)
.

HF.Kg
(
pms,msk, (id1, . . . , id�)

)
: to generate a key for an identity (id1, . . . , id�) ∈

IdSp, parse msk as
(
v̂, ŵ, ĥ

)
and idi1 as idi1 [1] . . . idi1 [μ] for i1 = 1 to �.

Choose rw, r1, . . . , r�
R← (Z∗

p)
n, choose s R← (Z∗

p)
d×μ×�×n, s′ R← (Z∗

p)
d×n,

and sw
R← (Z∗

p)
d×μ×n. For each l1 ∈ {1, . . . , n}, compute the decryption

component SKD = (D,Dw , {Di1}�i1=1) of the key as Di1 [l1] = v̂ri1 [l1] and

D[l1] =

�∏

i1=1

( μ∏

i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)ri1 [l1] · ŵ[l1]
rw[l1], Dw[l1] = v̂rw [l1], (6)

while the delegation component SKDL consists of

({K[j, k, l1]}j,k,l1 , {L[j, l1]}j,l1 , {L[j, k, i1, l1]}j,k,i1,l1 , {Lw[j, k, l1]}j,k,l1
)
,

with j ∈ {�+1, . . . , d}, k ∈ {1, . . . , μ}, i1 ∈ {1, . . . , �} and l1 ∈ {1, . . . , n}, as

K[j, k, l1]=

�∏

i1=1

( μ∏

i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)s[j,k,i1,l1]·ĥ[j, k, l1]s′[j,l1]·ŵ[l1]
sw[j,k,l1],

L[j, l1] = v̂s
′[j,l1], L[j, k, i1, l1] = v̂s[j,k,i1,l1] and Lw[j, k, l1] = v̂sw[j,k,l1].

Output SK(id1,...,id�) =
(
SKD,SKDL

)
.

HF.Del
(
pms,mpk, (id1, . . . , id�),SK(id1,...,id�), id�+1

)
: parse SK(id1,...,id�) as a HF

private key of the form (SKD,SKDL), and the identifier id�+1 as a string
id�+1[1] . . . id�+1[μ] ∈ ΣID. The idea is to run, for l1 = 1 to n, the key
derivation algorithm Delegate(mpk[l1], (id1, . . . , id�),SK(id1,...,id�)[l1], id�+1)
of the HPE scheme, as specified in the full version of the paper, where
SK(id1,...,id�)[l1] = (SKD[l1],SKDL[l1]) is defined by

SKD[l1]=(D[l1],Dw[l1], {Di1 [l1]}�i1=1)

SKDL[l1]=
({K[j, k, l1]}j,k, {L[j, l1]}j , {L[j, k, i1, l1]}j,k,i1 , {Lw[j, k, l1]}j,k

)
.
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Specifically, for l1 = 1 to n, do the following.

1. Randomize SKDL[l1] by raising all its component to some z R← Z∗
p.

Call this new key ŜKDL[l1] and write its elements with a hat (e.g.,

K̂[j, k, l1] = K[j, k, l1]
z).

2. Compute a partial decryption key

˜K[�+ 1, l1] =

μ
∏

k=1

̂K[�+ 1, k, l1]
id�+1[k] =

�
∏

i1=1

(

μ
∏

i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)s̃[�+1,i1,l1]

·(
μ
∏

k=1

ĥ[�+ 1, k, l1]
id�+1[k]

)s′[�+1,l1] · ŵ[l1]
s̃w [�+1,l1],

˜L[�+ 1, �+ 1, l1]= ̂L[�+ 1, l1],

˜L[�+ 1, i1, l1]=

μ
∏

k=1

̂L[�+ 1, k, i1, l1]
id�+1[k]= v̂s̃[�+1,i1,l1] for i1 ∈ {1, . . . , �},

˜Lw[�+ 1, l1]=

μ
∏

k=1

̂Lw[�+ 1, k, l1]
id�+1[k] = v̂s̃w [�+1,l1]

where we define s̃[�+1, i1, l1] = z · (∑μ
k=1 s[�+ 1, k, i1, l1] · id�+1[k]), for

i1 ∈ {1, . . . , �}, and s̃w[�+ 1, l1] = z · (∑μ
k=1 s[�+ 1, k, l1] · id�+1[k]).

3. For all j ∈ {�+2, . . . , d}, k ∈ {1, . . . , μ}, compute re-randomized versions
of the partial decryption key by raising the partial decryption key to
random powers τj,k

R← Z∗
p.

K[�+ 1, l1]
(j,k) = K̃[�+ 1, l1]

τj,k , Lw[�+1, l1]
(j,k) = L̃w[�+ 1, l1]

τj,k ,

{L[�+ 1, i1, l1]
(j,k) = L̃[�+ 1, i1, l1]

τj,k}�+1
i1=1.

These values will be used to compute the delegation component of the
new key at step 5.

4. Compute adecryption componentSK′
D[l1]=(D

′[l1],D′
w[l1], {D′

i1
[l1]}�+1

i1=1)

for the delegated key by setting D′[l1] = D[l1] · K̃[� + 1, l1] as well as

D′
w[l1] = Dw[l1] · L̃w[� + 1, l1]. Then, define D

′
�+1[l1] = L̃[� + 1, � + 1, l1]

and, for each i1 ∈ {1, . . . , �}, setD′
i1 [l1] = Di1 [l1] · L̃[�+ 1, i1, l1].

5. Finally, compute a delegation component for the delegated key. For each
j ∈ {� + 2, . . . , d}, set L′[j, l1] = L̂[j, l1]. Then, for each k ∈ {1, . . . , μ},
i1 ∈ {1, . . . , �+ 1}, set K′[j, k, l1] = K̂[j, k, l1] ·K[�+ 1, l1]

(j,k) and

L′
w[j, k, l1] = L̂w [j, k, l1] · Lw[�+ 1, l1]

(j,k)

L′[j, k, i1, l1] = L̂[j, k, i1, l1] · L[�+ 1, i1, l1]
(j,k),

with L̂[j, k, �+1, l1] = 1 for all j, k. The delegation component SK′
DL is

SK′
DL[l1]=

({K′[j, k, l1]}j,k, {L′[j, l1]}j , {L′[j, k, i1, l1]}j,k,i1 , {L′
w[j, k, l1]}j,k

)

,
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with j ∈ {� + 2, . . . , d}, k ∈ {1, . . . , μ}, i1 ∈ {1, . . . , � + 1}. Return the
delegated private key SK(id1,...,id�,id�+1)[l1] = (SK′

D[l1],SK
′
DL[l1]).

Return {SK(id1,...,id�,id�+1)[l1]}nl1=1.

HF.Eval
(
pms,mpk, (id1, . . . , id�), X

)
: Given an-bit inputX=x1 . . . xn ∈ {0, 1}n,

for i1 = 1 to �, parse idi1 as idi1 [1] . . . idi1 [μ]. For l1 = 1 to n, do the following.
1. Compute modified HPE ciphertexts by defining

Cid[i1, l2, l1] =

μ∏

i2=1

C[i1, i2, l2, l1]
idi1 [i2]

=
(
h[i1, 0, l1]

〈yi1 ,idi1 〉·Δ(l2,l1) ·
μ∏

i2=1

h[i1, i2, l1]
idi1 [i2]

)s[l2]

for each i1 ∈ {1, . . . , �}, l1, l2 ∈ {1, . . . , n}. The modified ciphertexts are

Cid[l2, l1] =
(
J[l2], {Cid[i1, l2, l1]}�i1=1

) ∈ G
�+1. (7)

The resulting {Cid[l2, l1]}l2,l1∈{1,...,n} thus form a n×n matrix of anony-
mous HIBE ciphertexts for the identity id = (id1, . . . , id�).

2. Using the vector X ∈ {0, 1}n, compute Cid,v =
∏n

l2=1 J[l2]
xl2 = v〈s,X〉,

CTid,w[l1] =
∏n

l2=1 Cw[l2, l1]
xl2 = w[l1]

〈s,X〉 and

CTid[i1, l1] =

n∏

l2=1

Cid[i1, l2, l1]
xl2 (8)

= h[i1, 0, l1]
s[l1]·xl1

·〈yi1 ,idi1 〉 ·
( μ∏

i2=1

h[i1, i2, l1]
idi1 [i2]

)〈s,X〉

Output

C =
(
Cid,v, {CTid,w[l1]}nl1=1, {CTid[i1, l1]}i1∈{1,...,�},l1∈{1,...,n}

) ∈ G
n+1+n×�.

(9)

HF.Inv
(
pms,mpk, (id1, . . . , id�),SK(id1,...,id�), C

)
: parse the decryption compo-

nent SKD of the private key as a tuple of the form (D,Dw,Dw̄, {Di1}�i1=1)
and the output C as per (9). Then, for l1 = 1 to n, set xl1 = 0 if

e(Cid,v,D[l1]) · e(CTid,w[l1],Dw[l1])
−1 ·

�∏

i1=1

e(CTid[i1, l1],Di1 [l1])
−1 = 1GT .

(10)Otherwise, set xl1 = 1. Eventually, return X = x1 . . . xn ∈ {0, 1}n.
From (8), we see that, with overwhelming probability, if there exists i1 ∈

{1, . . . , d} such that 〈yi1 , idi1〉 
= 0, relation (10) is satisfied if and only if xl1 = 0.
Indeed, in this case, the output (9) is distributed as a vector of n Boneh-Boyen
anonymous HIBE ciphertexts. These ciphertexts correspond to the same en-
cryption exponent 〈s, X〉 and are generated under n distinct master public keys
sharing the same component v ∈ G.

When the function is prepared for the injective mode, the auxiliary input
consists of a vector y(0) = [(1, 0, . . . , 0)| . . . |(1, 0, . . . , 0)] ∈ Z

d·μ
p . Since idi1 [1] = 1
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for each i1, this implies injectivity since 〈y(0)
i1

, idi1〉 
= 0 for each i1 ∈ {1, . . . , �}.
In the partially lossy mode, a suitable choice of y(1) ensures that 〈yi1 , idi1〉 = 0
for each i1 ∈ {1, . . . , �} with non-negligible probability, which leads to high non-
injectivity: from (8), we see that (9) only consists of valid HIBE ciphertexts, so
that the inversion algorithm always outputs 0n.

In the full version of the paper [16], we prove that, under the P-BDH1 and
DDH2 assumptions, the scheme provides selective security and adaptive security
(for a constant number of levels) for appropriate choices of the auxiliary input.
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