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Abstract. In a seminal work at EUROCRYPT ’96, Coppersmith showed how to
find all small roots of a univariate polynomial congruence in polynomial time:
this has found many applications in public-key cryptanalysis and in a few security
proofs. However, the running time of the algorithm is a high-degree
polynomial, which limits experiments: the bottleneck is an LLL reduction of a
high-dimensional matrix with extra-large coefficients. We present in this paper the
first significant speedups over Coppersmith’s algorithm. The first speedup is based
on a special property of the matrices used by Coppersmith’s algorithm, which al-
lows us to provably speed up the LLL reduction by rounding, and which can also
be used to improve the complexity analysis of Coppersmith’s original algorithm.
The exact speedup depends on the LLL algorithm used: for instance, the speedup
is asymptotically quadratic in the bit-size of the small-root bound if one uses the
Nguyen-Stehlé L2 algorithm. The second speedup is heuristic and applies when-
ever one wants to enlarge the root size of Coppersmith’s algorithm by exhaustive
search. Instead of performing several LLL reductions independently, we exploit
hidden relationships between these matrices so that the LLL reductions can be
somewhat chained to decrease the global running time. When both speedups are
combined, the new algorithm is in practice hundreds of times faster for typical
parameters.
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1 Introduction

At EUROCRYPT ’96, Coppersmith [7,6,8] showed how to find efficiently all small
roots of polynomial equations (modulo an integer, or over the integers). The simplest
(and perhaps most popular) result is the following: Given an integer N of unknown
factorization and a monic polynomial f (x) ∈ Z[x] of degree δ , Coppersmith’s lattice-
based algorithm finds all integers x0 ∈Z such that f (x0)≡ 0(modN) and |x0| ≤N1/δ in
time polynomial in logN and δ . This has many applications in public-key cryptanalysis
(e.g. attacking special cases of RSA and factoring with a hint), but also in a few security
proofs (such as in RSA-OAEP [22]). Accordingly, Coppersmith’s seminal work has
been followed up by dozens of articles (see May’s survey [14] for references), which
introduced new variants, generalizations, simplifications and applications.

All these small-root algorithms are based on the same idea of finding new polyno-
mial equations using lattice basis reduction: it reduces the problem of finding small
roots to finding LLL-short vectors in a lattice. This can theoretically be done in poly-
nomial time using the LLL algorithm [13], but is by no means trivial in practice: the
asymptotic running time is a high-degree polynomial, because the lattice is huge. More
precisely, May’s recent survey [14] gives for Coppersmith’s lattice-based algorithm the
complexity upper bound O(δ 5 log9 N) using the Nguyen-Stehlé L2 algorithm [18] as the
reduction algorithm. A careful look gives a slightly better upper bound: asymptotically,
one may take a matrix of dimension O(logN), and bit-size O((log2 N)/δ ), resulting in
a complexity upper bound O((log9 N)/δ 2) using L2. In typical applications, δ is small
≤ 9 but logN is the bit-size of an RSA modulus, i.e. at least 1024 bits, which makes
the theoretical running time daunting: log9 N is already at least 290. For more powerful
variants of Coppersmith’s algorithm, the running time is even worse, because the lattice
dimension and/or the bit-size increase: for instance, Coron [9] gives the upper bound
O(log11 W ) for finding small roots over bivariate equations over the integers (W plays
a role similar to N in the univariate congruence case), using L2.

The bottleneck of all Coppersmith-type small-root algorithms is the LLL reduction.
Despite considerable attention, no significant improvement on the running time has
been found, except that LLL algorithms have improved since [8], with the appearance
of L2 [18] and L̃1 [20]. And this issue is reflected in experiments (see [10]): in practice,
one settles for sub-optimal parameters, which means that one can only find small roots
up to a bound lower than the asymptotic bound. To illustrate this point, the celebrated
Boneh-Durfee attack [1] on RSA with short secret exponent has the theoretical bound
d ≤ N1−1/

√
2 ≈ N0.292, but the largest d in the Boneh-Durfee experiments is only d ≈

N0.280 with a 1000-bit N, and much less for larger N, e.g. d ≈ N0.265 for 4000-bit N.

OUR RESULTS. We present two speedups over Coppersmith’s algorithm for finding
small roots of univariate polynomial congruences, which can be combined in practice.

The first speedup is provable and depends on the LLL algorithm used: if one uses
L2 [18], the total bit-complexity is upper bounded by O(log7 N), which gives a speedup
Θ((log2 N)/δ 2) quadratic in the bit-size of the small-root bound N1/δ ; and if one uses
L̃1, the total complexity is upper bounded by O(log6+ε N) for any ε > 0 using fast inte-
ger arithmetic, which gives a speedup O((logN)/δ ) linear in the bit-size of the small-
root bound N1/δ . This speedup comes from combining LLL reduction with rounding:
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instead of LLL-reducing directly a matrix with huge entries, we suitably round the coef-
ficients before LLL reduction to make them much smaller, and show that the LLL output
allows to derive sufficiently short vectors in the original lattice. In practice, this means
that for any instantiation of Coppersmith’s algorithm achieving a small-root bound X ,
we can drastically reduce the size of the coefficients of the matrix to be LLL-reduced
and achieve essentially the same small-root bound: asymptotically, the bit-size is re-
duced by a factor (logN)/δ , which implies that the speedup is quadratic when using
the popular L2 algorithm, or quasi-linear using the more theoretical L̃1 algorithm. This
rounding strategy is very natural, but it is folklore that it fails in the worst case: when an
arbitrary non-singular matrix is rounded, it may even become singular, and the situation
is worse for LLL reduction. However, we show that a well-chosen rounding strategy
surprisingly works for the special matrices used by Coppersmith’s algorithm: this is
because the matrices to be reduced are triangular matrices whose diagonal entries are
reasonably balanced, which can be exploited. Interestingly, this peculiar property can
also be used to improve the complexity upper bound of Coppersmith’s original algo-
rithm, without changing the algorithm: if one uses L̃1 [20], one can obtain the same
complexity upper bound as in our rounding-based algorithm, up to constants.

Our second speedup is heuristic and applies whenever one wants to enlarge the root
size X of Coppersmith’s algorithm by exhaustive search: it is well-known that any root
size X can be extended to mX by applying m times the algorithm on “shifted” polynomi-
als. This enlargement is necessary when one wants to go beyond Coppersmith’s bound
N1/δ , but it is also useful to optimize the running time below N1/δ : beyond a certain
root size below N1/δ , it is folklore that it is faster to use exhaustive search than Cop-
persmith’s algorithm with larger parameters. In this setting, one applies Coppersmith’s
algorithm with the same modulus N but different polynomials which are all “shifts” of
the initial polynomial f (x): ft(x) = f (X · t + x) for varying t, where 0 � t < N1/δ/X .
We show that this creates hidden relationships between the matrices to be LLL reduced,
which can be exploited in practice: instead of performing LLL reductions independently
of say, matrices B1 and B2, we chain the LLL reductions. More precisely, after LLL re-
ducing B1 into a reduced basis C1, we reduce a matrix of the form C1 ×P for some
well-chosen matrix P, instead of the matrix B2. And this process can be iterated to
drastically reduce the global running time.

When both speedups are combined, the new algorithm is in practice hundreds of
times faster for typical parameters. Finally, our work helps to clarify the asymptotic
complexity of Coppersmith’s algorithm for univariate polynomial congruences. Despite
the importance of the algorithm, it seems that the dependence on the polynomial degree
δ was not well-understood: as previously mentioned, May’s survey [14] gave an upper
bound including a factor δ 5, and Coppersmith’s journal article [8] gave an upper bound
growing exponentially in δ . Our final complexity upper bound is independent of δ : it
only depends on the bit-size of the modulus N.

Surprisingly, our improvements only apply for now to Coppersmith’s algorithm for
finding all small roots of univariate polynomial equations, and not to more sophis-
ticated variants such as the gcd generalization used for factoring with a hint. This
seems to be the first significant difference between Coppersmith’s algorithm and its
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gcd generalization. It is an interesting open problem to obtain significant speedup for
other small-root algorithms.

RELATED WORK. Our first speedup is based on rounding. Rounding has been used
in lattice reduction before: for instance, Buchmann [2] used rounding to rigorously
estimate when a computation with real lattices can be alternatively performed using
integer bases; and the L̃1 [20] algorithm is also based on rounding. However, it seems
that none of the previous work identified the special structure of matrices which we
exploit. Our second speedup is based on chaining. Chaining has also been used in lattice
reduction before, e.g. in the MIMO context [15], but our technique and analysis seem
to be a bit different. Thus, both rounding and chaining are folklore strategies, but our
work seems to be their first application to Coppersmith’s algorithm.

ROADMAP. In Sect. 2, we recall background on lattices and Coppersmith’s small-root
algorithm. In Sect. 3, we present and analyze our first speedup of Coppersmith’s algo-
rithm: rounding LLL. In Sect. 4, we present and analyze our second speedup of Cop-
persmith’s algorithm: chaining LLL. In Sect. 5, we present experimental results with
both speedups. Finally, we discuss the case of other small-root algorithms in Sect. 6.

We refer the reader to the full Eprint version of this paper for further details, espe-
cially for all missing proofs.

2 Background and Notation

We use row representation for matrices: vectors are row vectors denoted by bold lower-
case letters, matrices are denoted by uppercase letters, and their coefficients are denoted
by lowercase letters. All logarithms are in base 2. Let ‖‖ and 〈,〉 be the Euclidean norm
and inner product of R

n. The Euclidean norm is naturally extended to polynomials
as follows: if f (x) = ∑n

i=0 fixi ∈ R[x], then ‖ f‖ = (∑0≤i≤n f 2
i )

1/2. We use the follow-

ing matrix norms: if M = (mi, j) is an n×m matrix, then ‖M‖2 = max‖x‖
=0
‖xM‖
‖x‖ , and

‖M‖∞ = max1≤ j≤m ∑n
i=1 |mi, j|. Then: ‖M‖2 ≤

√
n‖M‖∞. If x ∈ R, we denote by �x� a

closest integer to x.

2.1 Lattices

LATTICES. A lattice L is a discrete subgroup of Rm: there exist n(≤ m) linearly in-
dependent vectors b1, . . . ,bn ∈ R

m s.t. L is the set L (b1, . . . ,bn) of all integral linear
combinations of the bi’s. Here, we mostly consider full-rank lattices, i.e. n = m. The
(co-)volume of L is vol(L) =

√
det(BBt) for any basis B of L, where Bt denotes B’s

transpose. If B is square, then vol(L) = |detB|, and if B is further triangular, then vol(L)
is simply the product of the diagonal entries of B in absolute value.

GRAM-SCHMIDT ORTHOGONALIZATION. Let b1, · · · ,bn ∈R
m be linearly independent

vectors. The Gram-Schmidt orthogonalization is the family (b�
1, . . . ,b

�
n) defined recur-

sively as: b�
1 = b1 and for i ≥ 2, b�

i is the component of the vector bi which is or-
thogonal to the linear span of b1, · · · ,bi−1. Then b�

i = bi −∑i−1
j=1 μi, jb�

j , where μi, j =

〈bi,b�
j 〉/‖b�

j‖2 for 1 ≤ j < i ≤ n.
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SIZE-REDUCTION. A basis B = (b1, · · · ,bn) is size-reduced if its Gram-Schmidt or-
thogonalization satisfies |μi, j| ≤ 1/2, for all 1 ≤ j < i ≤ n. There is a classical (elemen-
tary) algorithm which size-reduces a basis (b1, . . . ,bn) of an integer lattice L ⊆ Z

m, in
polynomial time, without ever modifying the Gram-Schmidt vectors b�

i : this algorithm
is included in the original LLL algorithm [13] (e.g. it is the sub-algorithm RED in the
description of LLL in [4]). In the special case that the input basis is (square) lower-
triangular, the running-time of this size-reduction algorithm is O(n3b2) without fast in-
teger arithmetic, and n3Õ(b) using fast-integer arithmetic, where b=max1≤i≤n log‖bi‖.

LLL AND SHORT LATTICE VECTORS. Coppersmith’s small-root method requires the
ability to efficiently find reasonably short vectors in a lattice. This can be achieved by the
celebrated LLL algorithm [13] which outputs a non-zero v∈ L s.t. ‖v‖≤ 2

n−1
4 vol(L)1/n.

Nguyen and Stehlé [18] introduced the L2 algorithm, a faster variant of LLL which can
output similarly short vectors in time O(n4m(n+ b)b) without fast integer arithmetic.
The recent L̃1 algorithm by Novocin et al. [20] can output similarly short vectors for a
full-rank lattice in time O(n5+ε b+ nω+1+εb1+ε) for any ε > 0 using fast integer arith-
metic, where ω ≤ 2.376 is the matrix multiplication complexity constant. However, this
algorithm is considered to be mostly of theoretical interest for now: L̃1 is currently not
implemented anywhere, as opposed to L2. When assessing the complexity of LLL re-
duction, it is therefore meaningful to mention two complexities: one (closer to the real
world) using L2 without fast integer arithmetic, and another using L̃1 using fast integer
arithmetic and fast linear algebra.

The complexity upper bound of LLL reduction can sometimes be decreased by some
polynomial factor. In particular, when the Gram-Schmidt norms of the input basis are
balanced, the LLL algorithm requires fewer loop iterations than in the worst case. More
precisely, [11, Th. 1.1] showed that the classical upper bound O(n2b) on the number of

iterations can be replaced by O
(

n2 log max‖b�i ‖
min‖b�i ‖

)
.

2.2 Coppersmith’s Method for Finding Small Roots

At EUROCRYPT ’96, Coppersmith [7,6,8] showed how to find efficiently all small
roots of polynomial equations (modulo an integer, or multivariate over the integers),
which is surveyed in [14,16]. We now review the simplest result, following the classical
Howgrave-Graham approach [12]: In Sect. 6, we will discuss the main variants of this
result.

Theorem 1 (Coppersmith [7,8]). There is an algorithm which, given as input an inte-
ger N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of degree δ and
coefficients in {0, . . . ,N − 1}, outputs all integers x0 ∈ Z such that f (x0) ≡ 0 (mod N)
and |x0| ≤ N1/δ in time polynomial in logN and δ .

In all the paper, we consider polynomials verifying 2 < δ + 1 < (logN)/2 since other
cases are trivial. Furthermore, Coppersmith’s algorithm does not directly achieve the
bound N1/δ : indeed, it finds efficiently all roots up to some bound X (<N1/δ ) depending
on an integer parameter h ≥ 2, chosen asymptotically to be h = O((logN)/δ ). When
h is sufficiently large, then X becomes sufficiently close to N1/δ so that one can find
all roots up to N1/δ . However, it is well-known that the bound X = N1/δ should not be
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reached by taking such a large h. Instead, it is faster to use a smaller h, and perform
exhaustive search on the most significant bits of the solutions (see Section 4 for more
details).

We now explain Coppersmith’s algorithm. The core idea consists in reducing the
problem to solving univariate polynomial equations over the integers, by transforming
modular roots into integral roots. More precisely, it constructs a polynomial g(x)∈ Z[x]
such that: if x0 ∈ Z is such that f (x0)≡ 0 (modN) and |x0| ≤ X , then g(x0) = 0 and can
be solved easily over Z. To do so, it uses the following elementary criterion:

Lemma 1 (Howgrave-Graham [12]). Let g(x) ∈ Z[x] be a polynomial with at most n
non-zero coefficients. Let M be an integer ≥ 1. Assume that ‖g(xX)‖ < M√

n for some

X ∈ R. If x0 ∈ Z is such that g(x0)≡ 0 (mod M) and |x0| ≤ X, then g(x0) = 0.

Lemma 1 will be used with M = Nh−1 and g(x) found by lattice reduction. Let h ≥ 2 be
an integer and define the following family of n = hδ polynomials:

gi, j(x) = (x) jNh−1−i f i(x) 0 ≤ i < h,0 ≤ j < δ (1)

These n polynomials satisfy: if f (x0) ≡ 0 (mod N) for some x0 ∈ Z, then gi, j(x0) ≡
0 (mod Nh−1). In order to apply Lemma 1 for a bound X ≥ 1 to be determined later,
Coppersmith’s algorithm constructs the n-dimensional lattice L spanned by the rows of
the n×n matrix B formed by the n coefficient vectors of gi, j(xX), where the polynomi-
als are ordered by increasing degree (e.g. in the order (i, j) = (0,0),(0,1), · · · ,(0,δ −
1),(1,0), · · ·(h − 1,δ − 1)) and the coefficients are ordered by increasing monomial
degree: the first coefficient is thus the constant term of the polynomial. The matrix B is
lower triangular, and its n diagonal entries are:

(
Nh−1,Nh−1X , . . . ,Nh−1Xδ−1, . . . ,N0Xδh−δ , . . . ,N0Xδh−2,N0Xδh−1

)
, (2)

because f (x) is monic. In other words, the exponent of X increases by one at each row,
while the exponent of N decreases by one every δ rows. It follows that vol(L) = det(B)=

N
1
2 n(h−1)X

1
2 n(n−1). The LLL algorithm is applied to the matrix B, which provides a non-

zero polynomial v(x) ∈ Z[x] such that ‖v(xX)‖ ≤ 2
n−1

4 vol(L)
1
n = 2

n−1
4 N

h−1
2 X

n−1
2 . It fol-

lows that the polynomial v(x) satisfies Lemma 1 with M = Nh−1 and g(x) = v(x) if

X ≤ 1√
2
N

h−1
n−1 (n+1)−

1
n−1 . The dimension of B is n = hδ , and the entries of the matrix B

have bit-size O(h logN), therefore the running time of L2 without fast integer arithmetic
is O(δ 6h7 logN+δ 5h7 log2 N), which is O(δ 5h7 log2 N) because δ +1< (logN)/2, and
the running time of L̃1 is O(h6+ε δ 5+ε logN + hω+2+2εδ ω+1+ε log1+ε N) for any ε > 0
using fast integer arithmetic and L̃1, where ω ≤ 2.376 is the matrix multiplication com-
plexity constant. We obtain the following concrete version of Th. 1:

Corollary 2. Coppersmith’s algorithm of Th. 1 with h = �logN/δ� and X =

�2−1/2N
h−1
n−1 (n+ 1)−

1
n−1 � runs in time O((log9 N)/δ 2) without fast integer arithmetic

using L2, or O((log7+ε N)/δ ) for any ε > 0 using fast integer arithmetic and L̃1.

Sketch of Proof: One can show that the cost of the root computation step performed at
the end of Coppersmith’s algorithm is less than the one of the LLL reduction. More-
over the number of loop iterations performed by Coppersmith’s algorithm to find all
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solutions smaller than N1/δ by exhaustive search is at most O(N1/δ/X) which can
be shown to be O(1). Thus, from the analysis preceding Cor. 2, the asymptotic com-
plexity of Coppersmith’s algorithm is the one of one call to LLL (L2 or L̃1), with
h = �logN/δ�. ��

We will later see that the complexity upper bounds of Cor. 2 with L2and L̃1can ac-
tually be decreased. Indeed, we will uncover a special property of Coppersmith’s ma-

trix (see Lemma 2), which implies that O
(

max‖b�i ‖
min‖b�i ‖

)
= O(N), so that the number of

loop iterations O
(

n2 log
max‖b�i ‖
min‖b�i ‖

)
on the input basis used by Coppersmith’s algorithm

is O(n2 logN) instead of the all-purpose bound O(n2h logN) [11]. By taking this obser-
vation into account, the upper bounds O((log8 N)/δ ) and O(log6+ε N) are respectively
achieved for the L2and L̃1algorithms. In the sequel, we present another method improv-
ing Cor. 2, based on the same special property of Coppersmith’s matrix, and which can
be easily implemented.

3 Speeding Up Coppersmith’s Algorithm by Rounding

Our first main result is the following speedup over Coppersmith’s algorithm:

Theorem 3. There is an algorithm (namely, Alg. 1) which, given as input an integer
N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of degree δ and co-
efficients in {0, . . . ,N − 1}, outputs all integers x0 ∈ Z such that f (x0) ≡ 0 (mod N)
and |x0| ≤ N1/δ in time O(log7 N) without fast integer arithmetic using the L2 algo-
rithm [18], or O(log6+ε N) for any ε > 0 using fast integer arithmetic and the L̃1 algo-
rithm [20] in Step 7.

3.1 Rounding for Coppersmith’s Algorithm

The bottleneck of Coppersmith’s algorithm is the LLL reduction of the matrix B, whose
dimension is n = hδ , and whose entries have bit-size O(h logN). Asymptotically, we
have h = O(logN/δ ) so the dimension is O(logN) and the bit-size is O((log2 N)/δ ).
We will modify Coppersmith’s algorithm in such a way that we only need to LLL-
reduce a matrix of the same dimension but with much smaller entries, namely bit-length
O(logN).

To explain the intuition behind our method, let us first take a closer look at the matrix
B and uncover some of its special properties:

Lemma 2. Let X ≤ N1/δ . The maximal diagonal coefficient of Coppersmith’s matrix B

is Nh−1Xδ−1 < Nh, the minimal diagonal coefficient is Xhδ−δ ≤ Nh−1, and Nh−1Xδ−1

Xhδ−δ ≥
N1−1/δ if h≥ 2. Furthermore, if X ≥Ω(N

h−1
n−1 ), h≥ 2 and hδ =O(logN) then Xhδ−δ ≥

Nh−O(1).

Proof. The ratio Nh−1Xδ−1

Xhδ−δ is exactly Nh−1/Xhδ−2δ+1 which is clearly ≥ N1−1/δ if X ≤
N1/δ and h≥ 2. Now, let X0 =N

h−1
n−1 so that X =Ω(X0). We have N1/δ/N

h−1
n−1 ≤N1/(hδ−1),
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therefore X0 ≥ N1/δ−1/(hδ−1) = N(hδ−1−δ )/(δ (hδ−1)). Hence Xδ
0 ≥ N(hδ−1−δ )/(hδ−1) =

N1−δ/(hδ−1) and thus Xhδ−δ
0 > Nh−2. Since X = Ω(X0) and hδ = O(logN), we obtain

Xhδ−δ ≥ Nh−O(1) . ��
This implies that the diagonal coefficients of B are somewhat balanced: the matrix

B is not far from being reduced. In fact, the first row of B has norm Nh−1 which is
extremely close to the bound Nh−1/

√
n required by Lemma 1: intuitively, this means

that it should not be too difficult to find a lattice vector shorter than Nh−1/
√

n.
To take advantage of the structure of B, we first size-reduce B to make sure that

the subdiagonal coefficients are smaller than the diagonal coefficients. Then we round
the entries of B so that the smallest diagonal coefficient becomes �c� where c > 1 is a
parameter. More precisely, we create a new n× n triangular matrix B̃ = (b̃i, j) defined
by:

B̃ =
⌊

cB/Xhδ−δ
⌋

(3)

By Lemma 2, we have: bi,i ≥ Xhδ−δ and b̃i,i ≥ �c� . We LLL-reduce the rounded ma-
trix B̃ instead of B: let ṽ = xB̃ be the first vector of the reduced basis obtained. If we
applied to B the unimodular transformation that LLL-reduces B̃, we may not even ob-
tain an LLL-reduced basis in general. However, because of the special structure of B, it
turns out that v = xB is still a short non-zero vector of L, as shown below:

Lemma 3. Let B = (bi, j) be an n× n lower-triangular matrix over Z with strictly pos-
itive diagonal. Let c > 1. If B̃ = �cB/minn

i=1 bi,i� and xB̃ is the first vector of an LLL-

reduced basis of B̃, then 0 < ‖xB‖< (
n‖B̃−1‖2 + 1

)
2

n−1
4 det(B)

1
n .

Proof. Let α = minn
i=1 bi,i/c, so that B̃ = �B/α�. Define the matrix B̄ = αB̃ whose

entries are b̄i, j = α b̃i, j. Then 0 ≤ bi, j − b̄i. j < α , therefore ‖B− B̄‖2 < nα . We have:

‖xB‖ ≤ ‖x(B− B̄)‖+ ‖xB̄‖ ≤ ‖x‖×‖B− B̄‖2 +α‖xB̃‖< n‖x‖α +α‖xB̃‖.

Let ṽ = xB̃. Then ‖x‖ ≤ ‖ṽ‖‖B̃−1‖2, and we obtain ‖xB‖< (
n‖B̃−1‖2 + 1

)
α‖ṽ‖. The

matrix B̃ is lower-triangular with all diagonal coefficients strictly positive because c> 1.
Since ṽ = xB̃ is the first vector of an LLL-reduced basis of B̃, and B̃ is non-singular,
xB 
= 0 and we have:

α‖ṽ‖ ≤ α2
n−1

4 det(B̃)
1
n = 2

n−1
4 det(B̄)

1
n ≤ 2

n−1
4 det(B)

1
n ,

where we used the fact that matrices B̃, B̄ and B are lower-triangular. The result follows
by combining both inequalities. ��

If xB is sufficiently short, then it corresponds to a polynomial of the form v(xX)
for some v(x) ∈ Z[x] satisfying Lemma 1, and the rest proceeds as in Coppersmith’s
algorithm. The whole rounding algorithm is given in Alg. 1, which will be shown to
admit a lower complexity upper-bound than Coppersmith’s algorithm to compute all
roots up to N1/δ .
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Algorithm 1. Coppersmith’s Method with Rounding
Input: Two integers N ≥ 1 and h ≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N −1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0)≡ 0 mod N.
1: Let n = hδ , X the bound given in Th. 4, c = (3/2)n and t = 0.
2: while Xt < N1/δ do
3: ft(x) = f (Xt +x) ∈ Z[x].
4: Build the n×n matrix B whose rows are the gi, j(xX)’s defined by (1).
5: Size-reduce B without modifying its diagonal coefficients.
6: Compute the matrix B̃ = �cB/Xhδ−δ � obtained by rounding B.
7: Run the L2 algorithm [18] on the matrix B̃.
8: Let ṽ = xB̃ be the first vector of the reduced basis obtained.
9: The vector v = xB corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x].

10: Compute all the roots x′0 of the polynomial v(x) ∈ Z[x] over Z.
11: Output x0 = x′0 +Xt for each root x′0 which satisfies ft(x′0)≡ 0 (mod N) and |x′0| ≤ X .
12: t ← t +1.
13: end while

We now justify the bound X given in Alg. 1. In order for Lemma 3 to be useful, we
need to exhibit an upper bound for ‖B̃−1‖2 :

Lemma 4. Let B = (bi, j) be an n × n size-reduced lower-triangular matrix over Z

with strictly positive diagonal. Let c > 1. If B̃ = �cB/minn
i=1 bi,i�, then ‖B̃−1‖2 ≤√

n
( 3c−2

2c−2

)n−1
/�c�.

By combining Lemmas 3 and 4, we obtain the following small-root bound X for
Alg. 1:

Theorem 4. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > 1, and a
univariate degree-δ monic polynomial f (x) ∈ Z[x] with coefficients in {0, . . . ,N − 1},
one loop of Alg. 1, corresponding to t < N1/δ/X, outputs all x0 = Xt + x′0 ∈ Z s.t.
|x′0| ≤ X and f (x0) = 0 mod N, where n = hδ and

X =

⌊
N

h−1
n−1 κ−2/(n−1)

1√
2n1/(n−1)

⌋

with κ1 = n3/2
(

3c− 2
2c− 2

)n−1

�c�−1 + 1 .

Proof. Combining Lemma 4 with Lemma 3 where det(B)1/n = N
h−1

2 X
n−1

2 , we get 0 <

‖xB‖ < κ12
n−1

4 N
h−1

2 X
n−1

2 . It follows that Lemma 1 is satisfied with M = Nh−1 and
v(xX) corresponding to xB if ‖xB‖ ≤ Nh−1/

√
n. This gives the following condition on

the bound X : X ≤ N(h−1)/(n−1)2−1/2n−1/(n−1)κ−2/(n−1)
1 . ��

The bound X of Th. 4 is never larger than that of Cor. 2. However, if one selects
c ≥ (3/2)n, then the two bounds are asymptotically equivalent. This is why Alg. 1 uses
c = (3/2)n.

3.2 Running Time: Proof of Theorem 3

The original matrix B had entries whose bit-size was O(h logN). Let β = NhXδ−1

Xhδ−δ be the
ratio between the maximal diagonal coefficient and the minimal diagonal coefficient
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of B̃. If B is size-reduced, the entries of the new matrix B̃ =
⌊
cB/Xhδ−δ⌋ are upper

bounded by cβ .

By Lemma 2, we know that if h ≥ 2, then β ≥ N1−1/δ , and if further X ≥ Ω(N
h−1
n−1 )

and hδ = O(logN), then β = NO(1). Hence, the bit-size of B̃’s entries is ≤ logc +
O(logN). And the dimension of B̃ is the same as B, i.e. hδ . It follows that the run-
ning time of L2 in Step 7 is O(δ 6h6(logc+ logN)+ δ 5h5(logc+ logN)2) without fast
integer arithmetic, which is O(δ 5h5(logc+ logN)2 because δ < (logN)/2 − 1, and
is O((hδ )5+ε(logc+ logN) + (hδ )ω+1+ε(logc+ logN)1+ε) for any ε > 0 using fast
integer arithmetic and L̃1 in Step. 7, where ω ≤ 2.376 is the matrix multiplication com-
plexity constant.

This leads to our main result (Th. 3), a variant of Coppersmith’s algorithm with im-
proved complexity upper bound. More precisely, as in Coppersmith’s algorithm, one
can easily prove that the number of loops performed in Alg. 1 is at most constant. In-

deed, when c= (3/2)n, then κ
−2

n−1
1 converges to 1. This means that the bound X achieved

by Th. 4 is asymptotically equivalent to the one achieved by Cor. 2, which completes
the proof of Th. 3, because logc = O(logN) when c = (3/2)n.

Remark: Surprisingly, Lemma 2 also allows to prove that the L̃1algorithm, when care-
fully analyzed using the balancedness of the Gram-Schmidt norms, already achieves
the complexity bound O(log6+ε N) given in Th. 3. Indeed, using Th. 6 from [20] which
gives the L̃1complexity upper bound O(n3+ετ) = O(log3+ε Nτ) where τ is the to-
tal number of iterations, and combining it with [11] applied to Coppersmith’s matrix
(Lemma 2), which gives τ = O(n2 logN) = O(log3 N), allows to retrieve the above
complexity O(log6+ε N). However, we propose in this paper a direct improvement of
Coppersmith’s method based on elementary tools and which can therefore be easily
implemented on usual computer algebra systems (e.g. Sage, Magma, NTL) with imme-
diate practical impact on cryptanalyses. Furthermore, we are not aware of any imple-
mentation of the L̃1algorithm for the time being, which makes a practical comparison
tricky.

In the sequel, we present a method that allows to speed up the exhaustive search
which is performed to reach Coppersmith’s bound N1/δ .

4 Chaining LLL

As recalled in Section 2.2, in order to find all solutions which are close to the bound
N1/δ , one should not use a very large dimension (i.e. n = O(logN)). Instead, it is better
to use a lattice of reasonable dimension and to perform exhaustive search on the most
significant bits of x until finding all solutions. Namely, we consider polynomials ft(x) =

f (X ·t+x) where 0� t < N1/δ

X and X = �2
−1
2 N

h−1
n−1 (n+1)−

1
n−1 �. Thus, an initial solution

x0 that can be written x0 = X · t0 + x′0 is obtained by finding the solution x′0 of the
polynomial ft0 . In this case, this solution satisfies |x′0| < X and it has a correct size
for LLL to find it using a lattice of dimension n. For each polynomial ft , one runs
LLL on a certain matrix (Step 4 of Alg. 1). In Section 4.1, we describe a method that
allows to take advantage of the LLL performed for the case t = i to reduce (in practice)
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the complexity of the LLL performed for the case t = i+ 1. Thereafter, in Section 4.2
we combine this improvement with the rounding approach described in Section 3. The
proofs of the results presented in this section can be found in the full version of this
paper.

4.1 Exploiting Relations between Consecutive Lattices

The following proposition discloses a surprising connection between the lattice used
for the case t = i and the next lattice used for t = i+ 1. This connection is based on the
well-known Pascal matrix P = (ps,t) defined as the n×n lower-triangular matrix whose
non-zero coefficients are the binomials: ps,t =

(s
t

)
for 0 ≤ t ≤ s ≤ n− 1.

Proposition 1. Let B be a basis of the n-dimensional lattice used by Coppersmith’s
algorithm to find all small roots of the polynomial fi(x) = f (X · i+ x), where X is the
small-root bound. Then B ·P is a basis of the “next” lattice used for the polynomial
fi+1(x).

Proof. Because all lattice bases are related by some unimodular matrix, it suffices to
prove the statement for a special basis B. We thus only consider the special basis B = Bi

formed by the n shifted polynomials constructed from fi(x) and written in the basis
B =

(
1,xX−1,(xX−1)2, . . . ,(xX−1)n−1

)
. For the case t = i+ 1, one tries to solve the

polynomial

fi+1(x) = f (X · (i+ 1)+ x) = f (X · i+ x+X) = fi(x+X) .

Therefore, the shifted polynomials constructed from fi+1 are the same as for the case t =
i, but written in the different basis B′ = (1,xX−1 +1,(xX−1+1)2, . . . ,(xX−1 +1)n−1).
Yet, we need to return to the original representation of the polynomials, i.e. in the basis
B. To this end, we use the following property regarding the lower triangular Pascal
matrix P: B′T = P ·BT . As a consequence, left-multiplying each side of this equality
by the matrix Bi proves that the matrix Bi ·P is a basis of the lattice used for finding
small roots of the polynomial fi+1(x). ��

The proposition allows us to use different matrices to tackle the polynomial fi+1(x)
than the one initially used by Coppersmith’s method. In particular, we can use a matrix
of the form BR ·P where BR is an LLL-reduced basis of the previous lattice used to
solve fi(x): intuitively, it might be faster to LLL-reduce such matrices than the initial
Coppersmith’s matrix. Although we are unable to prove this, we can show that the
vectors of such a matrix are not much longer than that of B:

Corollary 5. Let BR
i be the LLL-reduced matrix used for solving ft for t = i and P be

the Pascal matrix. The matrix Bi+1 = BR
i ·P spans the same lattice used for solving the

case t = i+ 1. This matrix consists of vectors bi+1, j whose norms are close to vector
norms of the LLL-reduced matrix BR

i . Namely, for all 1 � j � n we have: ||bi+1, j|| <√
n · 2n−1 · ||bR

i , j||. In particular, for the case i = t0 the first vector of Bi+1 has a norm

bounded by 2n−1 ·Nh−1.
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Cor. 5 shows us that vectors of Bi+1 are relatively close to the ones in the LLL-
reduced matrix BR

i . Thus, we intuitively expect the LLL-reduction of Bi+1 to be less
costly than the one of the original Coppersmith’s matrix. However, our bounds are too
weak to rigorously prove this. Yet, one can use this property iteratively to elaborate a
new method which chains all LLL reductions as follows. First, one LLL-reduces B0

for the case t = 0. This gives a reduced matrix BR
0 . Then, one iterates this process by

performing LLL reduction on Bi+1 = BR
i ·P (for i ≥ 0) to obtain BR

i+1 and so forth until
all solutions are found (each time by solving the polynomial corresponding to the first
vector of BR

i ).
In the sequel, we study this chaining method by performing similar roundings as in

Section 3 before each call of LLL reduction.

4.2 Rounding and Chaining LLL

During the exhaustive search described in Section 4.1, we perform the LLL algorithm
on the matrix Bi+1 = BR

i ·P for 0 � i < N1/δ/X , where BR
i is LLL-reduced. It is worth

noticing that the structure of BR
i and thereby of Bi+1, is different from the original

Coppersmith’s matrix B0 (in particular, it is not triangular anymore). Yet, we are able
to show that under certain conditions on Bi+1 verified experimentally, one can combine
the rounding technique of Section 3 with the chaining technique of Section 4.1. Indeed,
we show that during the chaining loop, one can size-reduce Bi+1 and then round its
elements for all i ≥ 0 as follows:

B̃i+1 =

⌊
cBi+1/ min

1≤i≤n
‖b�

i ‖
⌋
, (4)

where b�
i are Gram-Schmidt vectors of Bi+1 and c is a rational that will be determined

later. Then, one applies LLL on the rounded matrix B̃i+1 as performed in Section 3.
We obtain an LLL-reduced matrix B̃R

i+1 and a unimodular matrix Ũi+1 such that Ũi+1 ·
B̃i+1 = B̃R

i+1. Then one shows that by applying Ũi+1 on Bi+1, the first vector of this
matrix Ũi+1 ·Bi+1 is a short vector that allows to find the solutions provided that they
are smaller than a bound X that will be determined latter. For the sake of clarity, in the
sequel we denote by B the matrix Bi+1, and by xB, the first vector of matrix Ũi+1 ·Bi+1.
We would like to exhibit an upper-bound on ‖xB‖. To this end, we will need, as in
Section 3, to upper-bound the value ‖B̃−1‖2. This is done in the following lemma:

Lemma 5. Let B = (bi, j) be an n × n non-singular integral matrix and α ≥ 1
such that nα‖B−1‖2 < 1. Then the matrix B̃ = �B/α� is invertible with ‖B̃−1‖2 ≤
α‖B−1‖2(1− nα‖B−1‖2)

−1.

As one can see, this value depends on ‖B−1‖2 which is given in Lemma 6.

Lemma 6. Let B be an n× n non-singular size-reduced matrix, with Gram-Schmidt
vectors b�

i . Then ‖B−1‖2 ≤
√

n(3/2)n−1/min1≤i≤n ‖b�
i ‖.
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One can now give an upper-bound on ‖xB‖:

Corollary 6. Let B = (bi, j) be an n× n size-reduced non-singular matrix over Z. Let
α ≥ 1 such that n2α‖B−1‖2 < 1. Then B̃ = �cB/min1≤i≤n‖b�

i ‖� = �B/α� is non-
singular. And if xB̃ is the first vector of an LLL-reduced basis of B̃, then: 0 < ‖xB‖<

c
n+1

n

(c−n3/2(3/2)n−1)(c−n5/2(3/2)n−1)1/n 2
n−1

4 det(B)
1
n .

Again, if ‖xB‖ is sufficiently short, then it corresponds to a polynomial of the
form v(xX) for some v(x) ∈ Z[x] satisfying Lemma 1. In particular, for the case
t = t0, solving this polynomial equation would allow to retrieve the solution x0.
Note that the condition n2α‖B−1‖2 < 1 specified in Cor. 6 gives a condition on
the rational c. Indeed, since α = min1≤i≤n ‖b�

i ‖/c and using Lemma 6, one gets:

n2α‖B−1‖2 � n2 min1≤i≤n ‖b�i ‖
c

√
n(3/2)n−1

min1≤i≤n ‖b�i ‖ � n5/2(3/2)n−1

c < 1 that is c should be such

that c > n5/2(3/2)n−1. The whole chaining and rounding algorithm is depicted in Al-
gorithm 2. Note that in practice, we do not need to perform Step 8 of Alg. 2 and that
min1≤i≤n‖bt+1

�
i ‖ can be estimated instead of being computed in Step 9 (see Section

4.3 for more details).

Algorithm 2. Coppersmith’s Method with Chaining and Rounding
Input: Two integers N ≥ 1 and h ≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N −1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0)≡ 0 mod N.
1: Perform Step 1 and Steps 3 to 7 of Alg. 1. Step 7 returns B̃R

0 and Ũ0 such that Ũ0 · B̃0 = B̃R
0 .

2: Let n = hδ , X the bound given in Th. 7, c = n
5
2 ( 3

2 )
n, t = 0, P is the n× n lower triangular

Pascal matrix.
3: Compute the matrix Ũ0 ·B0, where B0 is the matrix computed in Step 5 of Alg. 1.
4: The first vector of Ũ0 ·B0 corresponds to a polynomial of the form v(xX) for some v(x)∈Z[x].

5: Compute and output all roots x0 ∈ Z of v(x) satisfying f (x0)≡ 0 (mod N) and |x0| ≤ X .
6: while Xt < N1/δ do
7: Compute the matrix Bt+1 = Ũt ·Bt ·P.
8: Size-reduce Bt+1.
9: Compute the matrix B̃t+1 = �cBt+1/min1≤i≤n ‖bt+1

�
i ‖� obtained by rounding Bt+1.

10: Run L2 algorithm on matrix B̃t+1 which returns B̃R
t+1 and Ũt+1 s.t. Ũt+1 · B̃t+1 = B̃R

t+1.
11: Compute the matrix Ũt+1 ·Bt+1.
12: The first vector of Ũt+1 ·Bt+1 corresponds to a polynomial of the form v(xX).
13: Compute all the roots x′0 of the polynomial v(x) ∈ Z[x] over Z.
14: Output x0 = x′0+Xt for each root x′0 which satisfies f (x′0+Xt)≡ 0(mod N) and |x′0| ≤ X .

15: t ← t +1.
16: end while

In the following, we give a small-root bound X on the solution x′0 sufficient to guar-
antee success:
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Theorem 7. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > n5/2(3/2)n−1,
and a univariate degree-δ monic polynomial f (x)∈Z[x] with coefficients in {0, . . . ,N−
1}, one loop of Alg. 2, corresponding to t < N1/δ/X, outputs all x0 = Xt + x′0 ∈ Z s.t.
|x′0| ≤ X and f (x0) = 0 mod N, and n = hδ , where

X =

⎢
⎢
⎢
⎣ N

h−1
n−1 κ

−2
n−1

2√
2n1/(n−1)

⎥
⎥
⎥
⎦ and κ2 =

c
n+1

n

(c− n3/2(3/2)n−1)(c− n5/2(3/2)n−1)1/n
.

The bound X of Th. 7 is never larger than that of Cor. 2. However, if one selects c >
n5/2(3/2)n−1, then the two bounds are asymptotically equivalent. This is why Alg. 2
uses c = n5/2(3/2)n.

4.3 Complexity Analysis: A Heuristic Approach

The complexity of Alg. 2 relies on the complexity of the LLL-reduction performed
in Step 10. The cost of this reduction depends on the size of coefficients in ma-
trix B = B̃t+1, which itself depends on the value min1≤i≤n‖b�

i ‖. The exact knowl-
edge of this value does not seem straightforward to obtain without computing the
Gram-Schmidt matrix explicitly. However, experiments show that the Gram-Schmidt
curve is roughly decreasing, i.e. min1≤i≤n‖b�

i ‖ ≈ ‖b�
n‖ and is roughly symmetric:

i.e. log‖b�
i ‖ − log‖b�

n/2‖ ≈ log‖b�
n/2‖ − log‖b�

n−i+1‖ . If we assume these two ex-

perimental facts, we deduce that ‖b�
n/2‖ ≈ |det(B)|1/n. By duality, this means that

‖b�
n‖ ≈ |det(B)|2/n/‖b�

1‖. Furthermore, from the definition of the Gram-Schmidt or-
thogonalization, we know that ‖b�

1‖ = ‖b1‖, where b1 is the first vector of matrix B.
Therefore we have:

min
1≤i≤n

‖b�
i ‖ ≈ ‖b�

n‖ ≈ |det(B)|2/n‖b�
1‖−1 = Nh−1Xn−1‖b1‖−1 , (5)

Thus, we need an estimation on ‖b1‖. Since in practice matrix B = Bi+1 = Ũi ·Bi ·P is
already nearly size-reduced, one can skip Step 8 of Alg. 2. Therefore, vector b1 is the
first vector of matrix Ũi ·Bi ·P. Using Cor. 6, one deduces that the first vector of matrix
Ũi ·Bi is roughly as short as the first vector of an LLL-reduced matrix. From the well-
known experimental behavior of LLL [17], we can model the first vector of the LLL-
reduced basis as a “random” vector of norm≈ 1.02n|det(B)|1/n . Since the Pascal matrix
P has a norm smaller than 2n−1 , one gets the bound ‖b1‖ �√

n2n−11.02n|det(B)|1/n.
Therefore, we deduce that: min1≤i≤n‖b�

i ‖ ≈ |det(B)|1/n/(
√

n2n−11.02n) . In practice,
we conjecture that min1≤i≤n ‖b�

i ‖> |det(B)|1/n/β n, where β < 2 (see Fig. 5 in Sec. 5).
This discussion leads to the following heuristic approach regarding the method:

firstly, one should rather use the estimation (5) in Step 9 of Alg. 2, instead of explic-
itly computing the Gram-Schmidt matrix; secondly, one can skip Step 8 of Alg. 2. This
heuristic version of Algorithm 2 is the one we used during our experiments, all these
assumptions were always verified.

To conclude our analysis, it suffices to reduce a rounded matrix such that
max1≤i≤n‖b̃�

i ‖ ≤ cmax1≤i≤n‖b�
i ‖/min1≤i≤n‖b�

i ‖ � cβ 2n, instead of being such that
max1≤i≤n‖b̃�

i ‖ ≤ β n|det(B)|1/n. This means that we are trading entries of size O(n).
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Therefore, by considering n = O(logN), we obtain the same complexity as in Theo-
rem 3 but in a heuristic way. However, even if both asymptotic complexities are identi-
cal, in practice for reasonable dimensions the speed-up brought by using Alg. 2 rather
than Alg. 1 is considerable (see Section 5). Indeed, the LLL-reduction of matrix Ũi ·Bi ·P
(Step 10 of Alg. 2) performs surprisingly faster than expected. This comes from the fact
that for reasonable dimensions, the Gram-Schmidt curve of this matrix remains quite
close to the one of matrix Ũi ·Bi, where Ũi ·Bi turns out to be LLL-reduced (or nearly).
Besides, the overall running-time of Alg. 2 is approximately the time spent to perform
one LLL-reduction, multiplied by the number of executed loops, i.e. by N1/δ/X .

5 Experiments

We implemented Coppersmith’s algorithm and our improvements (Algs. 1 and 2) us-
ing Shoup’s NTL library [21]. However, for the LLL reduction, we used the fplll im-
plementation [3] by Cadé et al., which includes the L2 algorithm [18]: fplll is much
faster than NTL for Coppersmith’s matrices. It should be stressed that fplll is a wrapper
which actually implements several variants of LLL, together with several heuristics: L2

is only used as a last resort when heuristic variants fail. This means that there might be
a discrepancy between the practical running time and the theoretical complexity upper
bound of LLL routines. Our test machine is a 2.93-GHz Intel Core 2 Duo processor
E7500 running on Fedora. Running times are given in seconds. Like in [10], we used
the case δ = 3, and N an RSA-type modulus: the exact polynomial congruence is de-
rived from RSA encryption with public exponent δ . Then, one loop of Coppersmith’s

algorithm , with n = 3h, can find all roots x0 as long as |x′0| ≤ X = �2−1/2N
h−1
n−1 n−

1
n−1 �.

For a fixed h, the rounding strategy (Alg. 1) gives a worse bound than X , but the differ-
ence can be made arbitrarily small by increasing the parameter c: in our experiments,

we therefore chose the smallest value of c such that κ
−2

n−1
1 and κ

−2
n−1

2 are larger than 0.90,
so that the new bound is never less than the old bound X by more than 10%, which is
essentially the same. However, we note that the value c can be taken smaller in practice.

Furthermore, it is worth noticing that since the value α is not significant in itself, in
order to increase the efficiency, one can round matrices at negligible cost by taking α :=
2�log2(α)� and performing shifts of �log2(α)� bits. In the same vein, one can increment
t by 2 instead of 1 in Coppersmith’s algorithm or in Step 12 of Alg. 1, and one can
multiply the matrix Ũi ·Bi by P2 instead of P in Step 7 of Alg. 2. This comes from
the fact that if 0 < x′0 < X (resp. −X < x′0 < 0), then x′0 −X (resp. x′0 +X) is also a
valid solution. This refinement allows to divide by 2 the global timing of Coppersmith’s
algorithm and Alg. 1. However, it seems to be much less relevant when applied to Alg. 2.

Figures 1 and 2 summary our limited experiments respectively comparing one loop
of Coppersmith’s algorithm with Alg. 1 and Alg. 2 in practice. They provide the bit-
length of X and the corresponding running times of the lattice reduction only, because
the cost of solving a univariate equation over Z turns out to be much less in practice.
Running times are given as averages over 5 samples. For a typical case where �logN�=
2048, the whole Coppersmith’s algorithm would perform in ((�2048/3− 666�)/2)×
6431.2 ≈ 6.7 years and the new Alg. 2 would perform in (�2048/3− 666�)× 15.52≈
11.8 days, which is about 207 times faster (see Fig. 2 and 6).
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Size Data Parameter h
of N type 10 15 20 25 30

Size of X 318 324 328 331 332
Toriginal 2.54 30.48 216.3 793.4 3720.8

1024 Trounded 0.68 4.49 18.22 48.17 175.9
Speed-up 3.74 6.79 11.87 16.47 21.16
Size of X 634 650 658 663 666
Toriginal 13.47 150.7 865.7 3078 10146.7

2048 Trounding 3.14 17.79 63.3 166.4 379.8
Speed-up 4.29 8.40 13.67 18.50 26.72
Size of X 1270 1302 1318 1327 1333
Toriginal 41.45 582.6 3162 11968 42053

4096 Trounded 7.07 43.25 157.5 449.8 1301.5
Speed-up 5.86 13.47 20.07 26.61 32.31

Fig. 1. Bounds and running time of rounding
method for cubic congruences

Size Data Parameter h
of N type 10 15 20 25 30

Size of X 316 323 327 330 332
Toriginal 2.14 23.55 161.55 646.37 1955.1

1024 Trc 0.04 0.42 1.71 5.56 12.71
Speed −uprc 53.5 56.07 94.47 116.25 153.83

Size of X 633 649 657 663 666
Toriginal 8.21 95.12 641.22 2299.5 6431.2

2048 Trc 0.07 0.55 2.39 7.75 15.52
Speed −uprc 117.28 172.95 268.29 296.71 414.38

Size of X 1270 1302 1318 1327 1333
Toriginal 27.64 378.62 2226 8303.2 25813

4096 Trc 0.11 0.87 3.73 11.72 29.65
Speed −uprc 251.27 435.19 596.78 708.46 870.6

Fig. 2. Bounds and running time of rounding plus
chaining method for cubic congruences
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Fig. 3. Speed-up of rounding method
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Fig. 4. Speed-up of rounding plus chaining
method

From Figure 3, we see that we already get significant speedups (say, larger than
10) even for small values of h and typical sizes of N, by using the rounding method
(Alg. 1). The speedup grows when logN or h grows: for fixed N, the speedup grows
roughly a bit less than quadratically in h, whereas the theoretical analysis gives a
speedup linear in h. From Figure 4, we see that we can obtain more speedups as the
sizes of N or h increase, by using the rounding and chaining method (Alg. 2). Hence,
our improvement is practical and allows to get much closer to the asymptotic small-root
bound. Furthermore, we verify the assumption on value min1≤i≤n‖b�i ‖ for matrix B. Let
max1≤i≤n‖b�

i ‖≈ β n
1 vol(L)1/n and min1≤i≤n ‖b�

i ‖ ≈ β n
2 vol(L)1/n. In this paper, we have

assumed that β1 = 1/β2. We summary the results of our experiments for �logN�= 512
with dimensions 30,60,90,120,150 in Table 5. We can see that β1 × β2 ≈ 1 and that
β1 ≤ 2. This means our assumptions are reasonable.

6 Other Small-Root Algorithms

Other small-root algorithms (see the surveys [14,16]) are based on the same main ideas
where LLL reduction plays a crucial role. Due to the different structure of the matrices
in these settings, a direct application of our new approach does not seem to provide
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Data Parameter h
type 10 20 30 40 50
β1 1.7582 1.8751 1.9093 1.9218 1.9435
β2 0.5460 0.5271 0.5155 0.5091 0.5077

product 0.9600 0.9883 0.9842 0.9785 0.9867

Fig. 5. Beta values for �logN�= 512

logN
1024 2048 4096

Original 5.8 days 6.7 years 1757782 years
Alg. 2 1.8 hours 11.8 days 4038 years

Speed-up 77 207 435

Fig. 6. Timings comparisons for the total method

the same speedup. We leave it as an open problem to obtain polynomial (non-constant)
speedups for these other small-root algorithms: this might be useful to make practical
attacks on certain fully homomorphic encryption schemes (see [5]). See the extended
version of this paper for a further discussion on these generalizations.

Acknowledgements. We would like to thank the anonymous reviewers of PKC’14 for
their valuable comments.
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