

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 321–330, 2014.
© Springer-Verlag Berlin Heidelberg 2014

msPar: A Parallel Coalescent Simulator

Carlos Montemuiño1, Antonio Espinosa2, Juan-Carlos Moure3,
Gonzalo Vera-Rodríguez4, Sebastián Ramos-Onsins4, and Porfidio Hernández Budé3

1 Universitat Autònoma de Barcelona, Bellaterra, Spain
cmontemu@acm.org

2 Universitat Autònoma de Barcelona, Bellaterra, Spain
antonio.espinosa@caos.uab.es

3 Universitat Autònoma de Barcelona, Bellaterra, Spain
{juancarlos.moure,porfidio.hernandez}@uab.es

4 Centre de Recerca en Agrigenòmica, Bellaterra, Spain
{gonzalo.vera,sebastian.ramos}@cragenomica.es

Abstract. We implemented a parallel version (hereafter referred as “msPar”) of
the coalescent simulation program ms, providing the same functionality and
output, parallelized using a Master-Worker scheme with on-demand scheduling
and MPI to run on an HPC cluster. To our knowledge this is the first time such
parallelization has been applied to ms, and shown to be effective in using all
computational resources of an HPC cluster, performing up to 42 times
faster than original ms when using 72 logical processors. We propose
msPar as an alternative to ms and other simulators using approximations to
the standard coalescent approach. Source code is available at
https://github.com/cmontemuino/mspar

Keywords: HPC, parallel, master-worker, MPI, coalescent.

1 Introduction

Population genetics, a field of biology that studies the molecular diversity within and
between species [1], is playing a major role in human genetic research linking
hypothesis on sequence variation with empirical observations [2].

As genome-scale data is becoming a common place in genetic research,
disagreements between expectation and observation have become clear [3], forcing
geneticist to work with more complex evolutionary scenarios [4].

Simulation software is the key tool used in population genetics to generate genetic
data. Much effort is continuously put in designing efficient simulation programs that
aim to deal both with genome-scale data and complex evolutionary models [2][4].

The more complex the evolutionary model, the less efficient the simulation and
vice versa [4]. From the two types of simulation applications, coalescent-based
(backward in-time) and forward in-time, the standard coalescent approach shown to
be computationally intractable when working at genome scale [4][5][6].

The common approach to overcome this issue is to design new algorithms,
compromising the flexibility for the sake of efficiency, but some authors are starting

322 C. Montemuiño et al.

to make use of new technologies and computer clusters [4][7], as with forward in-
time simulators, SimuPop [8], Nemo [9] and Mendel’s Accountant [10].

Parallel programming is a promising approach to improve the performance of a
broad range of applications, especially bioinformatics applications. In this paper we
present an approach to parallelize a coalescent simulator, enabling it to be run in an
HPC cluster. We parallelized the Hudson’s ms coalescent simulator [11], the most
classical and widely used coalescent simulator [2][12][13], not only by the
community research, but also as a point of comparison when new coalescent
simulators are released. We coined this simulator as msPar.

We propose to parallelize the coalescent simulator ms, without affecting its
flexibility when working at genome-scale or to perform analysis requiring high
number of iterations, as long as more computational resources are available. We
measured execution time of ms to generate 528 replicas in an HPC cluster, with a
mutation rate of 640 and a recombination rate of 5120 (both scaled to 4N
generations), with a sample size of 200 chromosomes and a region of 1e6 bp,
resulting in 24 hours. Doubling the recombination rate to 10240 we found ms took
7.75 days to complete.

The organization of the article is as follows. In next section we present the
background and related work. In section 3, we present the ms application and describe
its structure. Section 4 describes our proposed solution. We present and discuss the
performance results in section 5, and end with some conclusions from this research in
section 6.

2 Related Work

Researching in genetics population field was supported by mathematical modeling for
over 75 years. Empirical testing of theoretical models is practically impossible for
organisms with long generation times. Continuous advances in numerical simulation
and wide availability of computational resources allow researchers to use numerical
simulation to test mathematical models in virtual populations, and even to analyze
genetic data [10][14]. As a direct consequence there is a high number of simulators
available, each one tailored to a specific scenario, implying geneticists must decide
which simulator to use depending on the research being conducted [12].

From the two approaches to simulation algorithms, forwards in-time (also known
as individual based-simulation) and backwards in-time (also known as coalescent
simulation), coalescent simulations are most widely used because of its efficiency and
flexibility [5][8][12]. Forward in-time simulations have been mostly used for cases
where coalescent approach does not suit, as to observe the evolution of allelic spectra
from the founder to the current generation [15], when the interest is focused on the
evolutionary process itself [2], or teaching purposes [7].

The standard coalescent approach showed to be extremely efficient for short
sequences, but becomes computationally demanding and very slow for large genome
regions (> 100Mb) with increasing recombination rate. New approaches emerged to
overcome this issue, as the sequentially Markov coalescent [4][16][17] and Markov
chain Monte Carlo [18]. Among other coalescent simulators developed last years

(GENOME [6], mlcoalsim
appeared to be the mos
recombination rates.

3 MS Coalescent S

Hudson’s ms [11] is a Mon
and molecular biologists to
demographic and mutationa
a neutral Wright-Fisher mo
coalescent process, ms bas
Recombination Graph) for a
mutations over the result
simulating evolutionary ev
occurring on the ancestral
MRCA (Most Recent Comm

We show in Fig. 1 glob
replica sample is indepen
module split up in two in
Assignment. Genealogy con
set of recombination, migr
step works over the ARG p
in order to produce the fina
process is based on an impl

Fig. 1. Schematic representat
samples

The first step is to constr
In Fig. 2, we show how the
the ARG nodes. Each nod
represented by stating the A
node is a child. This stru
(recombination, migration a

 msPar: A Parallel Coalescent Simulator

 [19] and MSMS [13]), MaCS [16] and fastsimcoal [
t efficient ones for large genomic regions and h

Simulator

nte Carlo application widely used by population genetic
o analyze populations and DNA sequences, and estim
al parameters from a theoretical population evolving un

odel. Implementing a continuous-time approximation of
ses its processing in first generating an ARG (Ances
an initial sample of chromosomes and then placing rand
ting ARG. The ARG is constructed by stochastica
vents (such as coalescence, migration or recombinati
 material of sampled alleles backwards in time, until

mon Ancestor) to all the alleles is found.
bal replica generation process. Starting from bottom, e
ndently and sequentially generated by an orchestrat
ndependent steps: Genealogy Construction and Mutat
nstruction is driven by three routines simulating a rand
ration and coalescence events. The mutation assignm
produce by step 1, generating the different segregation l
al chromosomes. The stochastic feature of the coalesce
lementation of the Monte Carlo method.

tion of the Hudson’s ms process to generate a set of rep

ruct the ARG and put it into an array-based data structu
e history of each chromosome’s segment is represented
e points to the start segment, the end segment, history
ARG node this node is the parent and the ARG node
cture is shared by the three event routines from step
and coalescence), updating it as soon as one event occur

323

[17]
high

cists
mate
nder
f the
stral
dom
ally
ion)
the

each
tion
tion
dom
ment
loci

ence

plica

ure.
d by
y is
this
p 1
rs.

324 C. Montemuiño et al

Fig. 2. Data structure of the A
tree. The remaining nodes are

The complete ARG struc
assigned (following a Pois
produced.

The spatial and tempora
size (n), region (l), and tw
incorporate the effect of re
O(nl + w1n + w2l) and spati

3.1 Sequential Applicat

In this section we want to s
steps and the output proc
whether a fine-grained para
time spent by the routines r
consumption of the whole a
two Intel Xeon X5660 six-
at 2.80 GHz, 12MB L3 cach

In Fig. 3, we show ho
processing. As long as the
time needed to construct th
MRCA. The mutation rate
I/O processing time, but th
quickly becomes practicall
400.

l.

ARG node. Given n samples, the first n nodes are the tips of
the ancestral to the sampled chromosomes.

cture is the input of step 2, where mutations are random
sson distribution) and the replica samples data is fina

al complexity of ms is mainly affected by the populat
wo weighting parameters greater than one, w1 and w2, t
ecombination and mutation rates. Temporal complexity
ial complexity is O(nl) [20].

tion Characterization

show how computation is distributed among the algorit
cess of the sequential application, in order to determ
allelization approach could make sense. We measured
related to the algorithm steps and took note of the mem
application execution. The test environment was a box w
core processor with Hyper-Threading Technology runn
he, and 96 GB of DDR-RAM

ow much time is spent by the algorithm steps and
recombination rate is bigger, it is the percentage of to

he ARG due to the occurrence of more events to find
is what determines the size of the output, meaning m

he sum of the mutation assignment step and I/O process
ly negligible when the recombination rate is bigger t

f the

mly
ally

tion
that
y is

thm
mine

the
mory
with
ning

I/O
otal
the

more
sing
than

Fig. 3. Time spent by ARG
processing

In Fig. 4, we show how
replica as a function of reco
rate does not impact memo
This happens because all d
(where recombination even
assignment step where no n

Fig. 4. Maximum resident s

4 Proposal

For analysis requiring milli
generated, means sequentia
result of each of these com
computation. This is a pleas

The high degree of data
variables with global scop
fine-grained parallelization

1 Also termed as “embarrassing

 msPar: A Parallel Coalescent Simulator

construction step, mutation assignment step, and input/ou

much memory the application uses to generate one sin
ombination and mutation rates. We observed that mutat
ory usage, irrespectively of the recombination rate val
data structures are created at genealogy construction s
ts take place), and the mutation rate applies to the mutat

new data structures are created.

set size as a function of recombination and mutation parameter

ions of population replica samples, each one independen
ally running steps 1 and 2 from ms millions of times. T
mputations does not depend on the results from any ot
singly1 parallel problem [21][22][23].
dependency among routines from step 1 (e.g. shared m

pe), and between steps 1 and 2 prevents the use o
approach without completely refactoring the source co

gly”.

325

utput

ngle
tion
lue.
step
tion

rs

ntly
The
ther

most
of a
ode.

326 C. Montemuiño et al.

We propose to apply the Master-Worker pattern to parallelize the ms application, a
widely used form of parallel application programming, and a natural fit for Monte
Carlo applications as well [24][25].

The replica sampling orchestration from Fig. 1 assigned to the master. Its algorithm
is as follow:

masterProcessingLogic(){
 initialize and distribute RNG seeds to workers
 while there are replicas to generate {
 find an idle worker
 if there is an idle worker {
 assign work to worker
 } else {
 retrieve generated replica from workers
 }
 }
}

The master also maintains the idle workers pool. In the beginning, all workers are
idle and the pool is full. When one replica is assigned to one idle worker, the worker
is removed from the pool. And after one worker has generated its assigned replica, it
sends a message to the master and master adds this worker to the pool. When the
master reads the generated replica sent by workers, it determines if there are more
replicas to be generated and send a signal to the worker to let it know whether to wait
for more request or to stop working.

Each worker is waiting for a request of replica generation, and then run both step 1
and 2 (see Fig. 1) to generate one replica and then transmits it back to the master.
Following is the pseudo-code for worker’s processing:

workerProcessingLogic(){
 receive seeds and initialize local RNG
 read experimentation parameters
 while worker is active {
 run step 1
 run step 2
 send replica to master
 receive activation signal
 }
}

The inline commands and output is the same as in the original ms, but includes
additional arguments to setup the parallelization strategy. If the target environment
consists of m cores, the parallelization is performed by dividing the N replicas evenly
amongst m-1 cores, and remaining core plays the role of the orchestrator.

 msPar: A Parallel Coalescent Simulator 327

Master-Worker ecosystem is approached with the MPI model, to spawn worker
processes and map them to hardware processors in the system, each one using its own
local memory. We specifically use MPI parallel library [26].

Quality of random number streams employed by the master-worker is guaranteed
by using the RNG (Random Number Generator) twice. The RNG seeds specified as
input parameters are used to initialize the master’s RNG. Then the master generates a
set of random numbers ultimately used by each worker as seeds to initialize their own
RNG.

5 Analysis and Results

In this section we give a description of the experimental setup for gathering and
analyzing based on an HPC cluster.

5.1 Experimental Setup

We compare our application with respect to ms in terms of execution time
performance metric.

Test cases were designed to be simple enough (i.e. without population structure),
taking into consideration only recombination, mutation, genetic region and population
size, focusing our attention on the performance evolution when the recombination
ratio changes. The mutation rate is not the principal factor affecting execution time
(see Fig. 3), but as it is still important in the standard coalescent process, we decided
to use a scaled2 mutation rate of 640, that being not too high, it is big enough to let the
mutation assignment step to get some computation.

We selected a population size of 200 chromosomes and a region of 1e6 bp (base
pairs), considered by geneticists as big for genetic analysis and quite close to what is
required in genomic analysis [16].

If evolutionary parameters do not change from one replica to another (as it is in
this setup), then differences in the execution time and memory consumption for each
replica generation will be negligible. For the recombination rate we decided to start
with a scaled value of 2560 because combined with the other parameters makes ms
consume enough memory (1.3 GB). We doubled it until we reached 10240, which is
considered a very big recombination rate.

The number of generated replicas was set in 528 for two reasons: first we wanted
ms to execute during enough time (2.75 hours in the minimal setup) for measuring,
and second because it allows our Master-Worker to distribute work fairly well in the
case of 72 workers.

2 All neutral parameters are given by per-site rates 4N, where N is the current population size.

328 C. Montemuiño et al

5.2 Hardware and Soft

We implemented the parall
GNU Compiler 4.4.6. Inter-
[27] 1.4.3.

We run the binaries on a
X5660 six-core processor
12MB L3 cache, and 96 G
processors per compute nod
24 logical processors per no

5.3 Discussion

As a way to evaluate the
efficiency as a function of
as Sp = T1/Tp, where p is t
sequential application, and
processors. The efficiency i

We overcommitted the M
impact in the efficiency n
processors due to the Hy
processors in each compute

In Fig. 5 (a), we show
sequential version. For
performance degradation.
by the MPI processes. Gen
~16 GB, and having 24 MP
more memory (~380 GB)
meaning a penalty because
we obtained as long as mor
considerable drop-off when
significantly change its valu

Fig. 5. a) Speedup obtained
processes (3 nodes). b) Efficie
processes are added for compu

l.

tware

lel application in ANSI C, and compiled it using the Lin
-process communication was implemented using OpenM

a cluster using up to three nodes each with two Intel X
with Hyper-Threading Technology running at 2.80 G

GB of DDR-RAM. This configuration gives us 12 phys
de, but due to the Hyper-Threading technology we can
ode.

e msPar performance we investigated the speedup
increasing numbers of processors. The speedup is defi
the number of processors, T1 is the execution time of
Tp is the execution time of the parallel application wit

is defined as Ep = Sp/p.
MPI processes per node from 12 to 24. This has a dir

numbers, as it will be taken into account the 24 log
yper-Threading technology, instead of the 12 phys

e node.
w the normalized speedup of msPar compared to
the case of maximal recombination we observed
. This happened because the node memory was exhaus
nerating a replica in this scenario means a consumption
PI processes running with this problem size implies to
 than available physical memory at the node (96 G

e the page swapping. In Fig. 5 (b), we show the efficie
re processes are added for computation. Besides there
n the recombination rate is 10240, the efficiency does
ues in each one of the problem sizes.

with 24 processes (1 node), 48 processes (2 nodes) and
ency showing how well the parallelization goes as long as m
utation.

nux
MPI

Xeon
GHz,

ical
get

and
ined

the
th p

rect
gical
ical

the
d a
sted
n of
use

GB),
ncy
is a
not

d 72
more

 msPar: A Parallel Coalescent Simulator 329

The most important contribution for the geneticist is the reduction of the overall
running time. Table 1 shows the overall running time ms and mspar take to complete
different problem sizes, demonstrating a significant improvement in the time a
researcher should wait to run the experiments.

Table 1. Execution times (in ‘d’ days, ‘h’ hours and ‘m’ minutes) for both ms and msPar

Recombination ms

msPar

72 48 24

2560 2h45m 4m 6m 12m

5120 24h40m 35m 53m 1h44m

10240 7d18h5m 8h11m 12h36m 24h2m

6 Conclusions

Initial results indicate that using the proposed parallel approach we can achieve
significant speedup values and much better execution times on an HPC cluster. This
can allow population genetic scientists to use ms with large genome regions or
analysis requiring high number of iterations (e.g. Approximate Bayesian
Computation, ABC [28]) otherwise intractable due to time restrictions.

The next step is to refactor the ms code in order to remove the data structure
dependency and then to apply an hybrid approach (MPI - SMP/GPGPU) depending
on the input parameters (genomic region, population size and recombination rate)..

Acknowledgments. This work has been supported by projects number CGL2009-
09346 and TIN2011- 28689-C0201-01 of Spanish Ministerio de Ciencia y Tecnologia
(MICINN).

References

1. Hudson, R.: Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary
Biology 7, 1–44 (1990)

2. Carvajal-Rodríguez, A.: Simulation of Genomes: A Review. Current Genomics 9,
155–159 (2008)

3. Schaffner, S., Foo, C., Gabriel, S., Reich, D., Daly, M., Altshuler, D.: Calibrating a
coalescent simulation of human genome sequence variation. Genome Res. 15, 1576–1583
(2005)

4. Carvajal-Rodríguez, A.: Simulation of Genes and Genomes Forward in Time. Current
Genomics 11, 58–61 (2010)

5. Kim, Y., Thomas, W.: Simulation of DNA sequence evolution under models of recent
directional selection. Brief. Bioinform. 10(1), 84–96 (2009)

6. Liang, L., Zöllner, S., Abecasis, G.: GENOME: a rapid coalescent-based whole genome
simulator. Bioinformatics 23(12), 1565–1567 (2007)

330 C. Montemuiño et al.

7. Peng, B., Chen, H.-S., Mechanic, L., Racine, B., Clarke, J., Clarke, L., Gillanders, E.,
Feuer, E.: Genetic Simulation Resources: a website for the registration and discovery of
genetic data simulators. Bioinformatics, 1–2 (2013)

8. Peng, B., Kimmel, M.: simuPOP: a forward-time population genetics simulation
environment. Bioinformatics 21(18), 3686–3687 (2005)

9. Guillaume, F., Rougemont, J.: Nemo: an evolutionary and population genetics
programming framework. Bioinformatics 22, 2556–2557 (2006)

10. Sanford, J., Baumgardner, J., Brewer, W., Gibson, P., Remine, W.: Mendel’s Accountant:
A biologically realistic forward-time population genetics program. SCPE 8(2), 147–165
(2007)

11. Hudson, R.: Generating samples under a Wright-Fisher neutral model of genetic variation.
Bioinformatics 18(2), 337–338 (2002)

12. Hoban, S., Bertorelle, G., Gaggiotti, O.: Computer simulations: tools for population and
evolutionary genetics. Nature Reviews Genetics 13, 110–122 (2012)

13. Ewing, G., Hermisson, J.: MSMS: a coalescent simulation program including
recombination, demographic structure, and selection at a single locus.
Bioinformatics 26(16), 2064–2065 (2010)

14. Sanford, J., Nelson, C.: Studies in Population Genetics, pp. 117–135 (August 2012)
15. Peng, B., Kimmel, M.: Simulations Provide Support for the Common Disease–Common

Variant Hypothesis. Genetics 175(2), 763–776 (2007)
16. Chen, G., Marjoram, P., Wall, J.: Fast and flexible simulation of DNA sequence data.

Genome Res. 19, 136–142 (2009)
17. Excoffier, L., Foll, M.: fastsimcoal: a continuous-time coalescent simulator of genomic

diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27(9), 1332–
1334 (2011)

18. Grünwald, N., Goss, E.: Evolution and population genetics of exotic and re-emergin
pathogns: novel tools and appoaches. Annual Review of Phytopathol. 49, 249–267 (2011)

19. Ramos-Onsins, S., Mitchell-Olds, T.: Mlcoalsims: multilocus coalescent simulations. Evol.
Bioinform. Online 3, 41–44 (2007)

20. Yuan, X., Miller, D., Zhang, J., Hirrington, D., Wang, Y.: An Overview of Population
Genetic Data Simulation. J. Comput. Biol. 19(1), 42–54 (2012)

21. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.: Source
book of parallel computing. Morgan Kaufmann (2003)

22. Breshears, C.: The art of concurrency: a thread monkey’s guide to writing parallel
applications. O’Reilly Media (2009)

23. Mattson, T., Sanders, B., Massingil, B.: Patterns for parallel programming. Addison-
Wesley Professional (2004)

24. Shao, G.: Adaptive scheduling of master/worker applications on distributed computational
resources. PhD thesis, University of California at San Diego (2001)

25. Basney, J., Raman, R., Livny, M.: High throughput Monte Carlo. In: Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing (1999)

26. Pacheco, P.: Parallel programming with MPI. Morgan Kaufmann (1996)
27. Open MPI: open source high performance MPI
28. Beaumont, M., Zhang, W., Balding, D.: Approximate bayesian computation in population

genetics. Genetics 162, 2025–2035 (2002)

	msPar: A Parallel Coalescent Simulator
	1 Introduction
	2 Related Work
	3 MS Coalescent S Simulator
	3.1 Sequential Applicat tion Characterization

	4 Proposal
	5 Analysis and Results
	5.1 Experimental Setup
	5.2 Hardware and Soft tware
	5.3 Discussion

	6 Conclusions
	References

