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Abstract. We implemented a parallel version (hereafter referred as “msPar”) of 
the coalescent simulation program ms, providing the same functionality and  
output, parallelized using a Master-Worker scheme with on-demand scheduling 
and MPI to run on an HPC cluster. To our knowledge this is the first time such 
parallelization has been  applied to ms, and shown to be effective in using all 
computational resources of an HPC cluster, performing up to 42 times  
faster than original ms when using 72 logical processors. We propose  
msPar as an alternative to ms and other simulators using approximations to  
the standard coalescent approach. Source code is available at 
https://github.com/cmontemuino/mspar 
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1 Introduction 

Population genetics, a field of biology that studies the molecular diversity within and 
between species [1], is playing a major role in human genetic research linking 
hypothesis on sequence variation with empirical observations [2].  

As genome-scale data is becoming a common place in genetic research, 
disagreements between expectation and observation have become clear [3], forcing 
geneticist to work with more complex evolutionary scenarios [4]. 

Simulation software is the key tool used in population genetics to generate genetic 
data. Much effort is continuously put in designing efficient simulation programs that 
aim to deal both with genome-scale data and complex evolutionary models [2][4].  

The more complex the evolutionary model, the less efficient the simulation and 
vice versa [4]. From the two types of simulation applications, coalescent-based 
(backward in-time) and forward in-time, the standard coalescent approach shown to 
be computationally intractable when working at genome scale [4][5][6].   

The common approach to overcome this issue is to design new algorithms, 
compromising the flexibility for the sake of efficiency, but some authors are starting 
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to make use of new technologies and computer clusters [4][7], as with forward in-
time simulators, SimuPop [8], Nemo [9] and Mendel’s Accountant [10].  

Parallel programming is a promising approach to improve the performance of a 
broad range of applications, especially bioinformatics applications. In this paper we 
present an approach to parallelize a coalescent simulator, enabling it to be run in an 
HPC cluster. We parallelized the Hudson’s ms coalescent simulator [11], the most 
classical and widely used coalescent simulator [2][12][13], not only by the  
community research, but also as a point of comparison when new coalescent 
simulators are released. We coined this simulator as msPar. 

We propose to parallelize the coalescent simulator ms, without affecting its 
flexibility when working at genome-scale or to perform analysis requiring high 
number of iterations, as long as more computational resources are available. We 
measured    execution time of ms to generate 528 replicas in an HPC cluster, with a 
mutation rate of 640 and a recombination rate of 5120 (both scaled to 4N 
generations), with a sample size of 200 chromosomes and a region of 1e6 bp, 
resulting in 24 hours. Doubling the recombination rate to 10240 we found ms took 
7.75 days to complete. 

The organization of the article is as follows. In next section we present the 
background and related work. In section 3, we present the ms application and describe 
its structure. Section 4 describes our proposed solution. We present and discuss the   
performance results in section 5, and end with some conclusions from this research in 
section 6. 

2 Related Work 

Researching in genetics population field was supported by mathematical modeling for 
over 75 years. Empirical testing of theoretical models is practically impossible for 
organisms with long generation times. Continuous advances in numerical simulation 
and wide availability of computational resources allow researchers to use numerical 
simulation to test mathematical models in virtual populations, and even to analyze 
genetic data [10][14]. As a direct consequence there is a high number of simulators 
available, each one tailored to a specific scenario, implying geneticists must decide 
which simulator to use depending on the research being conducted [12]. 

From the two approaches to simulation algorithms, forwards in-time (also known 
as individual based-simulation) and backwards in-time (also known as coalescent 
simulation), coalescent simulations are most widely used because of its efficiency and 
flexibility [5][8][12]. Forward in-time simulations have been mostly used for cases 
where coalescent approach does not suit, as to observe the evolution of allelic spectra 
from the founder to the current generation [15], when the interest is focused on the 
evolutionary process itself [2], or teaching purposes [7]. 

The standard coalescent approach showed to be extremely efficient for short 
sequences, but becomes computationally demanding and very slow for large genome 
regions (> 100Mb) with increasing recombination rate. New approaches emerged to 
overcome this issue, as the sequentially Markov coalescent [4][16][17] and Markov 
chain Monte Carlo [18]. Among other coalescent simulators developed last years 
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We propose to apply the Master-Worker pattern to parallelize the ms application, a 
widely used form of parallel application programming, and a natural fit for Monte 
Carlo applications as well [24][25].  

The replica sampling orchestration from Fig. 1 assigned to the master. Its algorithm 
is as follow:  

masterProcessingLogic(){ 
  initialize and distribute RNG seeds to workers 
 while there are replicas to generate { 
  find an idle worker 
  if there is an idle worker { 
   assign work to worker 
  } else { 
   retrieve generated replica from workers 
  } 
 } 
} 

The master also maintains the idle workers pool. In the beginning, all workers are 
idle and the pool is full. When one replica is assigned to one idle worker, the worker 
is removed from the pool. And after one worker has generated its assigned replica, it 
sends a message to the master and master adds this worker to the pool. When the  
master reads the generated replica sent by workers, it determines if there are more 
replicas to be generated and send a signal to the worker to let it know whether to wait 
for more request or to stop working.  

Each worker is waiting for a request of replica generation, and then run both step 1 
and 2 (see  Fig. 1) to generate one replica and then transmits it back to the master. 
Following is the pseudo-code for worker’s processing: 

workerProcessingLogic(){ 
  receive seeds and initialize local RNG 
 read experimentation parameters 
 while worker is active { 
  run step 1 
  run step 2 
  send replica to master 
  receive activation signal 
 } 
} 

The inline commands and output is the same as in the original ms, but includes 
additional arguments to setup the parallelization strategy. If the target environment 
consists of m cores, the parallelization is performed by dividing the N replicas evenly 
amongst m-1 cores, and remaining core plays the role of the orchestrator. 
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Master-Worker ecosystem is approached with the MPI model, to spawn worker 
processes and map them to hardware processors in the system, each one using its own 
local memory. We specifically use MPI parallel library [26]. 

Quality of random number streams employed by the master-worker is guaranteed 
by using the RNG (Random Number Generator) twice. The RNG seeds specified as 
input parameters are used to initialize the master’s RNG. Then the master generates a 
set of random numbers ultimately used by each worker as seeds to initialize their own 
RNG.  

5 Analysis and Results 

In this section we give a description of the experimental setup for gathering and 
analyzing based on an HPC cluster. 

5.1 Experimental Setup 

We compare our application with respect to ms in terms of execution time 
performance metric. 

Test cases were designed to be simple enough (i.e. without population structure), 
taking into consideration only recombination, mutation, genetic region and population 
size, focusing our attention on the performance evolution when the recombination 
ratio changes. The mutation rate is not the principal factor affecting execution time 
(see Fig. 3), but as it is still important in the standard coalescent process, we decided 
to use a scaled2 mutation rate of 640, that being not too high, it is big enough to let the 
mutation assignment step to get some computation. 

We selected a population size of 200 chromosomes and a region of 1e6 bp (base 
pairs), considered by geneticists as big for genetic analysis and quite close to what is 
required in genomic analysis [16]. 

If evolutionary parameters do not change from one replica to another (as it is in 
this setup), then differences in the execution time and memory consumption for each 
replica generation will be negligible. For the recombination rate we decided to start 
with a scaled value of 2560 because combined with the other parameters makes ms 
consume enough memory (1.3 GB). We doubled it until we reached 10240, which is 
considered a very big recombination rate.  

The number of generated replicas was set in 528 for two reasons: first we wanted 
ms to execute during enough time (2.75 hours in the minimal setup) for measuring, 
and second because it allows our Master-Worker to distribute work fairly well in the 
case of 72 workers. 

                                                           
2 All neutral parameters are given by per-site rates 4N, where N is the current population size. 
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The most important contribution for the geneticist is the reduction of the overall 
running time. Table 1 shows the overall running time ms and mspar take to complete 
different problem sizes, demonstrating a significant improvement in the time a     
researcher should wait to run the experiments. 

Table 1. Execution times (in ‘d’ days, ‘h’ hours and ‘m’ minutes) for both ms and msPar 

Recombination ms 

msPar 

72 48 24 

2560 2h45m 4m 6m 12m 

5120 24h40m 35m 53m 1h44m 

10240 7d18h5m 8h11m 12h36m 24h2m 

6 Conclusions 

Initial results indicate that using the proposed parallel approach we can achieve 
significant speedup values and much better execution times on an HPC cluster. This 
can allow population genetic scientists to use ms with large genome regions or      
analysis requiring high number of iterations (e.g. Approximate Bayesian 
Computation, ABC [28]) otherwise intractable due to time restrictions. 

The next step is to refactor the ms code in order to remove the data structure       
dependency and then to apply an hybrid approach (MPI - SMP/GPGPU) depending 
on the input parameters (genomic region, population size and recombination rate)..  
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