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Abstract. In this paper three computational models for the study of the evolu-
tion of cooperation under cultural propagation are studied: Kin Selection, Direct 
Reciprocity and Indirect Reciprocity. Two analyzes are reported, one compar-
ing their behavior between them and a second one identifying the impact that 
different parameters have in the model dynamics. The results of these analyzes 
illustrate how game transitions may occur depending of some parameters within 
the models and also explain how agents adapt to these transitions by individual-
ly choosing their attachment to a cooperative attitude. These parameters regu-
late how cooperation can self-organize under different circumstances. The 
emergence of the evolution of cooperation as a result of the agent’s adapting 
processes is also discussed.  

1 Introduction 

Urban traffic problems have a complex behavior even in their most simplistic abstrac-
tions [2]. This behavior becomes more complex when driver interaction is added [10]. 
With these two premises, in this paper, three computational models, which were orig-
inally intended for studying driving behaviors and their impact in traffic, are pre-
sented. The aim is to explore the possibilities for controlling some of the complex 
characteristics of traffic, e.g. the consequences of driver interactions. The possibility 
of using them for other social problems is also discussed. 

The models were conceived to study the evolution of cooperation [1], which stu-
dies how cooperative behaviors are preserved when selfish behaviors offer greater 
individual rewards, e.g. drivers who yield at lane changes or crossings, animal fe-
males taking care of their offspring, students who don’t betray each other. Several 
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abstractions for simulating different circumstances in which this phenomenon occurs 
have been proposed [6]. The models are based in three abstractions of different ob-
served situations in which cooperation evolves [4]. Table 1 shows these abstractions 
as theoretical games in which players may choose between two behaviors: coopera-
tive or selfish. When a player chooses to cooperate she has to pay a cost that her game 
partner is going to receive as a benefit. In each game, the decision of the players is 
influenced by a different probabilistic variable. This variable represents some feature 
that is exploited by the global behavior to favor the evolution of cooperation. For the 
kin selection strategy, relationships are exploited, the relation may be genetic, emo-
tional or of any other type but as long as it its closer, cooperation will be more fre-
quent. In the direct reciprocity case, the evolution of cooperation is linked with the 
probability of one player to play again with the same partner, and this condition is set 
because players are responding cooperation with cooperation and defection with de-
fection. The feature exploited by the indirect reciprocity case is peer pressure. While 
more players get to know the actions of a determined player, she will obtain more 
benefits by cooperating and while fewer players get to know her actions more benefits 
she will obtain by defecting. Each strategy has a condition for the cooperation to be-
come an evolutionary stable strategy (ESS, cooperators survive), another when coop-
eration becomes risk-dominant (RD, cooperators are near 1/2 of the population)  
and other when cooperators are advantageous (AD, cooperators are near 2/3 of the 
population). 

Table 1. Rules for the three game strategies [4] 

Strategy Payoff table ESS RD AD Variables 
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2 The Models 

We developed agent-based computational models, using the NetLogo [12] platform, 
to better understand three strategies for the evolution of cooperation: kin selection, 
direct reciprocity and indirect reciprocity [4]. Unlike the results shown in [4]  
these models are focused in cultural evolution (players may choose to cooperate or 
not under different circumstances instead of been born as players who always coope-
rate or always defect), therefore, the first characteristic these models share is that they 
have a constant population. The behavior of the agents is similar to the one of  
agents described in Skyrm’s Matching Pennies model [8]. Agents have a cooperation 
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probability variable (cp) that determines their attachment to a cooperator strategy, 
while this variable gets a greater value the agent will cooperate more frequently. We 
will use this variable for deciding if the agents will cooperate or not in a particular 
game. Each agent is able to identify herself as a cooperator or as a defector: 

 If 5.0)( >ipcp  then ii pc =  and 0=id  

 If 5.0)( ≤ipcp  then ii pd = and 0=ic  

Where pi is the ith agent or player, ci is the ith cooperator and di is the ith defector. 
As a consequence of this characteristic, a partition of the population can be made. 

The initial proportions of cooperative versus defective agents in the population (ipc 
and ipd) are relevant parameters of the model although they can be reduced to one as 
ipc=1-ipd. In order to identify agents as cooperators or defectors at the beginning of 
the simulations we give them an initial cp, thus, initial cp of defectors (iicpd) and 
initial cp of cooperators (icpc) are two more parameters. The agents move through a 
defined two-dimensional space. It has been seen [3] that in such cases population 
density is a key determinant of the dynamics, so the number of players (population) 
interacting in the defined space is another important parameter of the model. 

Agents interact following the payoff tables corresponding to each strategy studied. 
As can be seen in Table 1, the three strategies share two variables: the benefit (b) one 
agent gives to another while cooperating and the cost (c) paid by the cooperator while 
cooperating. With the purpose of keeping track of the player’s decisions, each one of 
them is assigned a fitness value from where the cost will be subtracted and the bene-
fits will be added. 

Appendix A of [13] shows the instructions executed by the agents during each ite-
ration of the simulations. The behaviors of each game are detailed in appendix B of 
[13]. 

2.1 Tune Cooperation Probability 

Agents adapt to the environment by modifying whether they are going to cooperate or 
defect in the next round. We implemented several exogenous tuning algorithms based 
on the literature [8][9][6][7][11] with no satisfactory results. We developed two self-
organizing tuning alternatives and were tested with very good results: 

• Selfish fitness: the agents only take their own fitness value as a parameter, unlike 
other algorithms that take into account the values of all the other players or values 
of the game partners. If the player cooperates or defects, and her fitness increases, 
then the agent increases or decreases her cp respectively. If the player cooperates 
or defects, and her fitness is reduced, then the agent decreases or increases her cp 
respectively. And if there is no change in the agent’s fitness, then there is no 
change in her cp. 
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• Selfish profit: this is very similar 
to the previous one, but instead 
of comparing fitness values (sum 
of all profits obtained), agents act 
based in the comparison of the 
profit of their last game and the 
profit of the current round. Thus, 
if the player cooperates or defects 
and the actual profit is greater 
than the last one, then the agent 
increases or decreases her cp. If 
the player cooperates or defects 
and the actual profit is lower than 
the last one, then the agent de-
creases or increases her cp. Final-
ly if the last profit is equal to the 
actual profit, then there is no 
change in the cp value. 

3 Methods 

Before general results were ob-
tained, an analysis of the variables 
was conducted. A primary goal of 
this analysis was to determine the 
impact of the parameters on the 
dynamics of the models. A second-
ary goal was to obtain parameter 
values that best exemplify the mod-
el’s behavior. Detailed information 
about the experiments may be found 
in appendix C of [13]. 

Fig. 1. Graphics of the payoff table behaviors for x’s 
values in the range [0,1] for a) Kin Selection, b) 
Indirect Reciprocity and c) Direct Reciprocity (DR is 
in logarithmic scale) 

 

4 Results 

Interesting results can be derived from a careful analysis of the graphics of the payoff 
table behavior as the corresponding probability takes values within the range [0,1] 
(Figure 1). As x has a higher value, the agents move to different games. Using the 
same notations as in [6] that designates R (reward) when two agents cooperate, P 
(punishment) when two players defect, T (temptation) when one player defects and 
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the other cooperates and S (sucker´s payoff) when one player cooperates and the other 
defects; the move from game to game is described in appendix D of [13].  The values 
of b and c also determine the transition value of x that takes the agents from one game 
to another. It is important to notice that the agents respond to these transitions by 
interacting with the others and adapt by using only simple local rules with only two 
basic requirements: 1) the agents must know how to distinguish that an amount is 
bigger than other and 2) the agents must have the notion of more is better. Within the 
strategies studied, other requirements are implicitly given for each case and are de-
scribed in the appendix E of [13]. 

4.1 ESS, RD and AD Conditions 

It was shown in Table 1, when the x variable reaches certain value, ESS, RD and AD 
behaviors emerge. Figure 2 shows the characteristic behavior obtained by the analysis 
described in the behavior part of the Methods section; in it, these expected behaviors 
are not noticeable. Analyzing the model variables, we could find that these conditions 
are preserved, but the effect can be observed by setting the starting population of coo-
perators as 2/3, 1/2 and 1/3 of the total population for ESS, RD and AD respectively 
and obtaining a graphic similar to Figure 2. This result is shown in appendix F of [13] 
along with the impact of all the parameters to each strategy. 

 

Fig. 2. Percentage of cooperating population while the corresponding probability is varied 

4.2 Self-organization 

Self-organization seems to be a key element for the cultural evolution of cooperation. 
There are several studies [8][9][6][7][11] in which the agents just can choose between 
cooperate or defect. In the models presented here, the players can choose the degree 
of cooperation that they consider the best. Another important difference between our 
models and the others [6][7] is the inclusion of a probabilistic variable so that agents 
choose the degree of cooperation by comparing their actual state with a past one in-
stead of comparing their state with the state of others. This is important because each 
agent may be seen as an individual system adaptable to different environments or 
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contexts using the information given by the interactions with other similar, not neces-
sarily equal, systems. 

5 Conclusions 

Three agent-based computational models for the study of the evolution of cooperation 
under cultural propagation were described. It was shown that their behavior is the 
result of transitions between games defined by Game Theory. The transitions are con-
sequences of the structure determined by the payoff matrixes of the three strategies 
studied. Each of these strategies abstracts well-known real behaviors [4]; hence the 
importance of creating computational models that let us experiment exhaustively 
different circumstances for these phenomena, a difficult task with living organisms. 
The impact of the parameters in each model was analyzed to better understand how to 
manipulate the models and adapt them for more specific studies, such as social phe-
nomena (e.g. bulling, market formation, and migration), traffic problems (e.g. signal-
ing issues, conflicting use of roads) and biological processes (e.g. interactions be-
tween organisms and populations). 
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