Implementation Strategy of NDVI Algorithm
with Nvidia Thrust

Jests Alvarez-Cedillo, Juan Herrera-Lozada, and Israel Rivera-Zarate

Instituto Politecnico Nacional
Parallel Processing Department
Up. Adolfo Lépez Mateos Edif. CIDETEC, 07700 Mexico City
{jaalvarez ,jlozada, irivera}@ipn .mx

Abstract. The calculation of Normalized Difference Vegetation Index
(NDVI) has been studied in literature by multiple authors inside the
remote sensing field and image processing field, however its application
in large image files as satellite images restricts its use or need prepro-
cessed phases to compensate for the large amount of resources needed
or the processing time. This paper shown the implementation strategy
to calculates NDVT for satellite images in RAW format, using the bene-
fits of economic Supercomputing that were obtained by the video cards
or Graphics Processing Units (GPU). Our algorithm outperforms other
works developed in NVIDIA CUDA, the images used were provided by
NASA and taken by Landsat 71 located on the Mexican coast, Ciudad
del Carmen, Campeche.

1 Introduction

It is recognized that the degree of greenness, either during periods of drought or
heavy rain can be an indicator of its strength and resilience to climate change
conditions (Potter et al.). 1999, Cao et al. 2004; Stow et al. 2003, Peters et al.
2003). However, information on the tolerance threshold of the ecosystems of this
region in years of extreme weather events does not exist. This paper calculates
NDVT images for large images captured by satellite using the supercomputing
as a tool and by using GPU video cards.

1.1 Normalized Difference Vegetation Index

It is well known in remote sensing that the relationship between bands near Infra-
red and red allow a verification test of the abundance or scarcity of vegetation
in a region. The NDVI is used to identify the presence of green vegetation on
the surface and characterize their spatial distribution and the state of evolution
over time. This is determined primarily by weather conditions.

The interpretation of the index must also consider the phenomenological cycles
and annual development to distinguish natural oscillations, vegetation changes
in the temporal and spatial distribution caused by other factors. Water has re-
flectance R > IRC [15][16] therefore NDVI negative values. Clouds have similar

R. Klette, M. Rivera, and S. Satoh (Eds.): PSIVT 2013, LNCS 8333, pp. 184-193, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Implementation Strategy of NDVI Algorithm with Nvidia Thrust 185

values of R and CRF [16], so that its NDVT is close to 0. Bare soil with sparse
vegetation has positive values although not very high. Dense vegetation that is
moist and well developed presents the highest values of NDVI.

The NDVI has great value in ecological terms, as it is a good estimate of
the fraction of photo synthetically active radiation intercepted by vegetation
(FPAR) [1], primary productivity [2][3]. NDVI calculation exploits the prop-
erties of the high absorption bands in the visible and strong near infrared re-
flectance, with these values to find the relationship between the near infrared
band (700-1300 nm) and red band (650 nm) which corresponds, in the TM,
the relationship between bands 4 and 3 and SPOT, between strips 3 and 2.
(TM4/TM3 or SPOT3/SPOT2).

The first use of vegetation index [4] was simply using the radiation of Infrared
and red properties although this procedure is not named as vegetation index.
The procedure shown was reported by Jordan et al, and still is useful, but has
a big problem in that the range of values obtained can vary from 0 to infinity.

For this reason it is common to calculate NDVI (Normalized Difference Veg-
etation Index). NDVI was reported by Rouse et al. In 1973 [5], having the ad-
vantage that their values from -1 to +1. 1.2. EASY GPU PROGRAMMING

To design a small optimal program in the GPU, it is important to determine
which options could be used for the programming.

Available options are:

1. CUDA: A set of native applications NVIDIA based on C language, is a
powerful programming environment which requires experience to manage
resources.

2. OpenCL: A set of native NVIDIA graphics applications based on OPENGL
language.

3. THRUST: A set of optimized applications and simple based on C++ lan-
guage: THRUST was selected because the optimized code is simple, having
a small learning curve and works perfectly in any generation GPUs

THRUST is a template library for C++ and NVIDIA CUDA language, and
based on the Standard Template Library (STL) [6]. THRUST can implement
high-performance applications in parallel with a minimal programming effort
through a high-level interface that is fully compatible with CUDA ,C and C++.

THRUST provides a collection of primitive parallel data, scanning data, sort
information, and reduces operating expressions and formulas, which together
can implement complex algorithms with simple and readable source code. To
describe the calculations in terms of these high-level abstractions, this tool pro-
vides an option to develop efficient and optimal automatic applications. As a
result, THRUST can be used to develop prototypes and CUDA applications, in
terms of productivity, programming is very simple and concise, making it ideal
where robustness and absolute return are very important. [7]

186 J. Alvarez-Cedillo, J. Herrera-Lozada, and 1. Rivera-Zarate
2 Previous Work

A wide range of NDVI changes having dispensed with these different models
and apply large images knowing that its vegetation is abundant. This concept
has been applied to SAVI (Soil Adjusted Vegetation Index) introduced by Huete
(1988) [8]. The NDVI formula was used by Tucker & Sellers [9]. We also tested
ARVI (Atmospherically Resistant Vegetation Index) reported by Kaufman and
Tanre (1992) [10] for the EOS-MODIS. The ARVI changes NDVI equation be-
havior and its calculation is as follows:

Where, as before, NIR and RED (or VIS) is the response in the near-infrared
and red (or visible) bands respectively.

Bearing in mind these principles, models have been applied to several areas
of southern Mexico for a variety of crops, and natural vegetation. Three RGB
bands, overall TM bands and 432 of the 321 Spot were used.

The blue band, is marked in the image areas as an vegetation index. Being a
normalized index corrected the strong variations that exist in TM4/TM3 simple
relationship between pixels of bands 4 and 3, which here is reduced to the limits
of -1 to 1.

After applying the formula derived NDVI and once reaching the limits of
negative and positive values, it is possible to indicate them in the image and,
within their variants. The final phase is the map generation.

3 Implementation Strategy

3.1 Programming Model

THRUST operates two container types of vectors, host vector & device vector.
As the name suggests, host vector is stored in the memory of the CPU, while
the device vector is processed in the GPU memory.

THRUST vector containers are defined as a typical output vector of C++,
std :: vector. Similarly std :: vector, device vector and host vector are generic
containers (capable of storing any type of data) that can be resized dynamically.
Figure 1 shows the programing model of NVIDIA THRUST.

The equality operator can also be used to copy a host vector to a vector or a
host vector to device vector or device vector to vector.

It is important to note that individual elements of a device vector can be
accessed using the standard bracket notation. However, for each of these ac-
cesses its necessary to call the function “cudaMemcpy” and this should be used
sparingly.

3.2 Algorithm Development

Designing a parallel algorithm is complicated because there are no optimal tools
to generate programs of this type. The development of such programs are scaled
and there is a solution for every case which is more or less optimal.

Implementation Strategy of NDVI Algorithm with Nvidia Thrust 187

Main | :
Memory GPU

opy processing data
Instruct the processing

Execute parallel
in each cora

Processing flow
on CUDA

Fig. 1. Processing flow on NVIDIA CUDA and NVIDIA THRUST

To design the algorithm it was decided to generate a sequential process, as a
base code and this source code was transformed to parallel code. Development
requires the following concept formalization:

pixel where i=1,2.3,...n

As can be seen in contrast to the traditional method that takes a tour of the
matrix in rows and columns, the suggested procedure only takes a tour of rows.

This feature is special, and indicates where to deploy and develop the device.
This device manages memory vectors which consume raw or, simple memory,
and this kind of memory is called linear.

The optimization model NVIDIA THRUST is an interface application to im-
plement this style of programming without problems.

Trusth programming model has important differences to CUDA, to optimize
the process, but using a lot of memory resources on the GPU. The low cost of
the Nvidia card, allows run procedures directly, without having to partition the
data problem. When the GPU memory is assigned, we create a transformation
operator; this operator is a vector that executes in parallel the code inside,
directly to architecture in a single step.

Thrust Nvidia handles transformation operators and direct operations in
shared memory of the GPU; the operations it performs are called processing
operations, and is typically found in the library file funcional.h as well as the
basic operations. See Figure 2.

Our code is trying to solve NDVI, with a more simple,optimal code compared
to the works reported by several authors in Literature with CUDA.

We defined our transformation operator source code as shown in
Algorithm 1.

188 J. Alvarez-Cedillo, J. Herrera-Lozada, and 1. Rivera-Zarate

Vis Cells Vector
I I N S S S B N S R

Nir Cells Vector

A Transformation operator ‘

Ndvi Cells Vector

nriftid]+vistid]

nri[tid]-vis[tid]127+0.05

Fig. 2. Nvidia Thrust programming strategy

Algorithm 1. NDVI Cuda core source code
struct NDVI: THRUST::binary function < char, char, char >

{

device float operator() (const char &4, const char &B)

return (((B+A4A) / (B -4)) +1)*x 127+0.05;

}
b

As can be seen, the transform operator is of a binary type, very similar in
characteristic to CUDA, where the operator can acquire ownership of the device
being executed at device , the CPU host or both.

The typical computational complexity of this algorithm is O (n2), and after go-
ing through the incredibly convert operator in O (k), where k is a constant num-
ber of instructions programmed into the transformation operator. (In our case a
multiplication, division and a sum).Furthermore the manipulation of the image
(read and write) is constant over time and can not be parallelized.Following the
method and respecting the Thrust programming model:

Our proposed algorithm is shown in the algorithm 2.As we can see the pro-
gramming style is simple and because it is a vector operation, this was designed
in a simple style

The code #1 shows how the vector operation was defined and the final
operation.

Implementation Strategy of NDVI Algorithm with Nvidia Thrust 189

Algorithm 2. NDVI Paralell Algorithm
Input: Given a set of images I={I wis , I nir } R2 of n = n size
quantified in the range of an image [0,255] .

Output: one Indvi image ,2D , n T n size

load I vis to host vis

load I nir to host nir

Copy host vis to device vis

Copy host nir to device nir

: Apply transformation operator to < item of NDVI in device nir
Copy device NDVI to I nir

U

4 Results and Analysis

4.1 Algorithm Validation

Among the great variety of urban spaces we only present an example of an image
of positive values that indicates the method of analysis. But in each case study,
small index variations result in new images of similar vegetation. To validate the
algorithm, we compare our results with those generated with the tool ImagelJ.

ImagelJ is a Java image processing program inspired by NIH Image for Mac-
intosh. It runs, either as an on-line applet or as a down loadable application.

Figure 3 and 4 show two gray-scale images, both images were obtained by
Mex-sat, VIS and NIR respectively. Both images have a RAW format of 8547
rows x7585 columns at 8 bits.

typical behaviors.

Figure 5 shows the resulting NDVI image in (red-1.0) * (red-blue) at RAW
format of 8547 rows x7585 columns at 8 bits and the corresponding histogram

3500000
3000000
2500000
2000000
1500000
1000000

500000

Fig. 3. Left:VIS image histogram right:Ciudad del Carmen, Campeche. Vis image in
(red-1.0) * (red-blue) at RAW format of 8547 rows x7585 columns at 8 bits.

190 J. Alvarez-Cedillo, J. Herrera-Lozada, and 1. Rivera-Zarate

7000000

85477535 phels; 8-t 621B

6000000
5000000
4000000
3000000

2000000

1000000
OMWM
7“‘1‘@ =~

Fig. 4. left:NIR image, right:NIR image histogram

1800000
1600000
1400000
1200000
1000000
800000
600000
400000 |
200000

Fig. 5. Left:resulting NDVI image, right:Histogram resulting NDVI image

4.2 Stream Data

When analyzing data from the calculation of NDVI (Figure 6) it was observed
that when the data is less than ten thousand, the sequential implementation is
faster than any of the parallel implementations, but when the data is greater
than ten million data, THRUST is faster than CUDA.

It can also be seen that in the parallel versions using linear vectors gives better
speeds below ten thousand data, but when the data is greater than ten million
times the best data was obtained using the floating type (primitive data).

This behavior is repeated with the use of images of a large amount of data
(Figure 7- Top). When the data are greater than ten million times the best data
was obtained when handling a floating rate. It is observed that the behavior of
the execution times of the programs implemented with CUDA and THRUST
have some degree of parallelism, THRUST being faster. This means that CUDA

Implementation Strategy of NDVI Algorithm with Nvidia Thrust 191

1000 T — T —T T —T T —F
float Sequential /
sequential scheme /
float CUDA —— /

800 - CUDA scheme —B— / .
float THRUST /

THRUST scheme /
/ 2}
/
600 - .
|-
/
= S /
E a00 b / 4
= /
f/.
/
200 / i
ri
4
o
0 #=— S .
I 1 1 1 1
1000 10000 100000 le+06 le+07

1400 — . — — —
float Sequential
sequential scheme f

1200 - float CUDA —— B
CUDA scheme a0
float THRUST

1000 - THRUST scheme R

800 |

I

E 600} s
ao | ™ " o / J

f

.‘F.
200 | J E

4
L —_— e o
0 4| L " i L " | L L | n L 1|
1000 10000 100000 1e+06 1le+07

Data

Fig.6. Top:Comparison of different implementations with different types of NDVI,
Bottom:Comparison of different implementations, with different types of large amounts
of data

implementations used in this work are likely to be optimized while algorithms
that use the interface of application (API) are optimized algorithms THRUST

In analyzing the performance of CUDA and THRUST versions regarding its
sequential version, these are the best values of acceleration (speedup). Figure
7-Bottom was obtained using data from the floating rate rather than structures,
and because algorithms are used THRUST optimized implementations, with
THRUST running better than CUDA.

Similar behavior, where THRUST implementations require less time than
those achieved with CUDA have been reported in other studies [11] [12][13][14].

192 J. Alvarez-Cedillo, J. Herrera-Lozada, and 1. Rivera-Zarate

T T T T T T
float Sequential
4r sequential scheme
float CUDA —x—
- CUDA scheme —e—
float THRUST
3} THRUST scheme

t(ms)
N
T

float Sequential
sequential scheme
4 - float CUDA —— —
CUDA scheme & g

float THRUST g
THRUST scheme

Speedup

1000 10000 100000 1e+06 le+07
Data

Fig.7. Top:Comparison of speedups for CUDA and THRUST with different types of
data when processed using NDVI |, Bottom:Comparison of different implementations
THRUST-CUDA

5 Conclusions

The parallelization of NDVI for a GPU can be implemented in CUDA or THRUST,
however, as mentioned before, the use of CUDA means having knowledge of archi-
tecture at the hardware level. Such work must be distributed among the GPU pro-
cessors through the allocation of threads, blocks, grids. On the other hand when
using THRUST programming this does not require knowledge; in addition this
programming is more efficient, but this does not imply that it is possible to achieve
these levels of efficiency with CUDA and finally THRUST is a library based on
CUDA.

Note that the resulting code using THRUST is less than is obtained when
using CUDA, as well as its interface is similar to that of the STL (Standard

Implementation Strategy of NDVI Algorithm with Nvidia Thrust 193

Template Library) which makes implementation simple, and can be combined
in a single CUDA program.

Regarding the type of data, the best implementations were achieved when

using float type data structures instead of generalizing on the basis of this work.

A better implementation of this algorithm is based on primitive data instead

of complex data.

References

10.

11.

12.

13.

14.

15.

16.

Zhang, Y., Tian, Y., Knyazikhin, Y., Martonchik, J.V., Diner, D.J., Leroy, M.,
Myneni, R.B.: Prototyping of MISR LAI and FPAR Algorithm with POLDER
Data over Africa. IEEE Transactions on Geoscience and Remote Sensing 38(5)
(2005)

Paruelo, J.M., Epstein, H.E., Lauenroth, W.K., Burke, I.C.: ANPP estimates from
NDVI for the central grasslands region of the U.S. Ecology, 953-958 (1997)
Tucker, C.J.: Red and photographic infrared linear combinations for monitoring
vegetation. Rem. Sens. of Environ. 8, 127-150 (1979)

Jordan, C.F.: Derivation of leaf area index from quality of light on the forest floor.
Ecology 50, 663-666 (1969)

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring vegetation sys-
tem in the great plains with ERTS. In: Ecology Third ERST Symposium, NASA
SP-351, vol. 1, pp. 309-317 (1973)

NVIDIA Co., CUDA Toolkit 4.0, THRUST Quick Start Guide, PG-05688-040 v01
(2011)

Ruestch, G., Micikevicius, P.: Optimizing Matrix Transpose in CUDA. Tech report,
NVIDIA (2009)

Huete, A.R.: A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Envi-
ronment 25, 295-309 (1988)

Tucker, C.J., Sellers, P.J.: Satellite remote-sensing of primary production. Interna-
tional Journal of Remote Sensing, 1395-1416 (1986)

Kaufman, Y.J., Tanre, D.: Atmosoherically resistant vegetation index (ARVI) for
EOS-MODIS. In: Proc. IEEE Int. Geosci. And Remote Sensing Symp. 1992, pp.
261-270. IEEE, New York (1992)

Faber, R.: Cuda Application Design and Development. Elsevier (2011)

Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method
Approach. Princeton University Press (2010)

Rubinstein, R.Y.: Simulation and the Monte Carlo Method. John Willey and Sons
(1981)

Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far East Journal
of Theoretical Statistics 4, 207-236 (2000)

A.S Hope, Estimation of wheat canopy resistance using combined remotely
sensed spectral reflectance and thermal observations. In: Department of Geog-
raphy, San Diego State University, San Diego, California 92182 USA (2010),
http://dx.doi.org/10.1016/0034-4257(88)90035-1\

King, M.D., Kaufman, Y.J., Menzel, W.P., Tanre, D.: Remote sensing of cloud,
aerosol, and water vapor properties from the moderate resolution imaging spec-
trometer (MODIS), Geoscience and Remote Sensing. IEEE Transactions Geo-
science and Remote Sensing 30(1), 2-27 (1992)

http://dx.doi.org/10.1016/0034-4257(88)90035-1\

	Implementation Strategy of NDVI Algorithm
with Nvidia Thrust

	1 Introduction
	1.1 Normalized Difference Vegetation Index

	2 Previous Work
	3 Implementation Strategy
	3.1 Programming Model
	3.2 Algorithm Development

	4 Results and Analysis
	4.1 Algorithm Validation
	4.2 Stream Data

	5 Conclusions
	References

