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Abstract. A recent trend in computer vision is to combine the cen-
sus cost function with a TV-L; energy minimization scheme. Although
this combination is known for its robust performance in computer vision
applications, it has not been introduced to 3D medical image registra-
tion yet. Addressing pulmonary motion estimation in 4D (3D+t) CT
images, we propose incorporating the census cost function into a 3D im-
plementation of the ‘duality-based approach for realtime TV-L; optical
flow’ for the task of lung CT registration. The performance of the pro-
posed algorithm is evaluated on the DIR-lab benchmark and compared
to state-of-the-art approaches in this field. Results highlight the potential
of the census cost function for accurate pulmonary motion estimation in
particular, and 3D medical image registration in general.

Keywords: Medical image registration, census transform, pulmonary
motion estimation, 4D CT.

1 Introduction

This paper is motivated by the clinical need for fast and accurate registration
of 3D computed tomography (CT) images. Recent advances in computer vision
resulted in strong performing 2D optical flow estimation algorithms, which in-
clude the census cost function into a TV-L; energy minimization scheme. This
paper demonstrates their potential for the task of pulmonary motion analysis.
Figure 1 illustrates the application context.

The applied registration method is a 3D variant of the ‘duality-based approach
for realtime TV-L; optical flow’, which was published in 2007 by Zach et al. [27].
They introduced a coupled convex approximation of a TV-L; energy functional,
defined by an L; data term and a total variation (TV) regularization term. Both
terms are alternately minimized within an iterative scheme. The decoupling of
data and smoothness term, combined with a point-wise gradient-descent step to
minimize the data term residual, makes this algorithm very applicable to be imple-
mented on parallel hardware architectures. For the sake of simplicity, we refer to
this particular minimization scheme as TV-L;. However, there are other concepts
to minimize the same energy; see for example Brox et al. [2].
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Fig. 1. Ilustration of the task of 3D lung CT registration for pulmonary motion anal-
ysis. Left and middle: Coronal views of lung CT images at end-expiration (EE) and
end-inspiration (EI). Right: Overlay of the EE (blue) and EI (orange) lung structures.
These structures are to be aligned by a physiologically plausible, non-linear transfor-
mation; the corresponding displacements are interpreted as the motion field between
EE and EI.

The census cost function is based on the census transform, which was intro-
duced in 1994 by Zabih and Woodfill [26]. The census transform is a binary
representation of all intensity differences at a pixel in relation to its immediate
pixel neighborhood. It is based on ordering statistics and encodes in addition
the spatial relationship between the considered pixels. The census cost function,
which is the Hamming distance of two binary representations, is often applied
for correspondence analysis in discrete methods. Those methods usually com-
bine a data cost accumulation scheme with a cost limitation function to provide
piecewise smooth and consistent solutions. An established example of such a
combination is semi-global matching (SGM), as introduced by Hirschmiiller [11]
for stereo analysis.

In 2011, Miiller et al. [14] discussed the formulation of an L; data term for
arbitrary non-linear residuals in coupled energy minimization schemes such as
TV-L;. They highlighted the performance gain for dense 2D optical flow esti-
mation that results when intensity-based data terms are replaced by the census
cost function. For the performance of correspondence detection methods using
census data terms we refer to the KITTI Vision Benchmark Suite.!

The work presented in this paper may be considered as an extension of the
method proposed by Pock et al. [16], who applied the intensity-based TV-L;
scheme [27] to lung CT registration. The introduction of the census cost function,
following Miiller et al. [14], represents a novel contribution to 3D medical image
registration in general, and to pulmonary motion estimation in 4D CT image
data in particular.

The paper is structured as follows: Section 2 presents the clinical background
and informs about the state-of-the-art in 3D pulmonary medical image regis-
tration. Section 3 outlines TV-L; optical flow estimation, the applied numerical
scheme, and the incorporation of the census data term. Experiments and results
are presented in Section 4. Section 5 concludes.

! http://www.cvlibs.net/datasets/kitti/
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2 Image Registration for Pulmonary Motion Estimation

Since the adaption of cardic imaging protocols for time-resolved thoracic and
abdominal CT in the last decade, 4D CT scanners and images are making their
way into an increasing number of medical facilities [21]. Here, the 3D CT images
of a 4D CT data set are assumed to sample the patient’s breathing cycle. A
typical application scenario of 4D CT data is the estimation of breathing-induced
effects on a planned dose distribution (dose accumulation) during radiotherapy
treatment planning of thoracic and abdominal tumors [7]. Dose accumulation
aims at understanding the interaction between organ and tumor motion and the
process of dose delivery for a specific treatment modality.

It is usually performed on a pixel-by-pixel basis and requires non-linear 3D
registration to estimate the displacement fields between different frames of the
3D CT image sequence [13,24].

The reliability of the extracted information, which is applied, for example,
to dose accumulation, is directly linked to the accuracy of the registration [15].
This motivation led to great interest in 3D medical image registration of lung
CT data over the past years. Although there is a great diversity of registra-
tion approaches in this field (see, for example, [1,7,15]), from a methodological
perspective it is noticeable that the majority of these approaches realizes a min-
imization of common intensity-based distance measures or data terms, which
are usually formulated as squared Ly norms. Here, we refer to the EMPIRE10?
study (EMPIRE = Evaluation of Methods for Pulmonary Image REgistration
2010) as a recent and large comparison benchmark. Considering the top-ranked
algorithms as current state-of-the-art in this field, it is interesting to see that
six of the top-ten approaches used variants of SSD (sum of squared intensity
distances) as data terms during the initial study phase [15].

Thus, in contrast to computer vision applications, the use of an L; data term
is not common for pulmonary motion estimation in 4D CT data. The same is true
for the application of TV-based regularization. Nevertheless, some work exists
in this direction: For example, three of the EMPIRE10 participants proposed
using SAD (sum of absolute intensity differences) as distance measure, with
some recent publications on lung registration also following this idea (e.g. [8]). As
mentioned before, Pock et al. and, in addition, Urschler et al. proposed applying
the ‘duality-based approach for realtime TV-L; optical flow’ of Zach et al. [27]
for 3D lung CT registration [22,16]. However, the published registration errors
are considerably larger when compared to state-of-the-art algorithms for lung
registration.

To our best knowledge, the integration of a census cost function as penalty
term for TV-L; has not yet been evaluated in the given context.

2 http://empire10.isi.uu.nl
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3 Formulation of Duality-Based TV-L; Optical Flow

This section provides a formulation of the duality-based TV-L; optical flow
energy optimization. It follows the notation of Zach et al. and Pock et al. [27,16].
The integration of an arbitrary data term is taken from Miiller et al. [14].

3.1 Basic Notations

The input of the algorithm are two single channel images Iy and I, defined on
an n-dimensional image domain 2 C R™ with I : 2 — R. A point x € 2
describes a position within the image domain and I(x) refers to the intensity of
an image [ at x.

The output is an n-dimensional vector field u : 2 — R™" with u =
(U1, ooy U, Oy 1, v, On ), that describes the displacement from the base or refer-
ence image I to the match or target image I. Here, m refers to the degrees of
freedom of the elements of the vector field. A typical example for m < n is the
case of stereo estimation for rectified image pairs, where n = 2 but m = 1. For
the task of 3D medical image registration we have n = m = 3.

3.2 The Energy Functional

The approach for recovering the displacement field u is based on minimizing the
energy functional

:/QZ |V (x)] + A [ p(x, u(x))| dx (1)
b=1

where p(x,u) refers to a generic residual with p := pr, 1, : 2 X R™" — R,
which is evaluated between Iy and I; at position x under consideration of u(x).
To minimize this energy, the following convex approximation of Eq. (1) was
introduced by Zach et al [27]:

(u,v) QZ Ve ()| 4 () ~ ()] + A ol v(0)] dx ()
b=1

with v : 2 — R™"  This can be efficiently solved by applying the following
iterative scheme:

(1) For every b and fixed v, minimize over up:

angmin{ [ [Tus()] + () — o)) ax )

Up

(2) For fixed u, minimize over v:

arg mln{ , Z 29 (up(x) — (%)) + A|p(x, V)| dx} (4)

b=1
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where the residual p is linearized around the fixed value u using the Taylor
expansion [14]:

p(x,v(x)) = p(x, v(x)) = p(x, u(x)) — (u = v)Vp(x,u) ()

3.3 The Numerical Scheme

The minimization problem defined by Eq. (3) is the TV energy functional as
introduced by Rudin et al. [17]. It is solved by the efficient numerical scheme
proposed by Chambolle [6]. With p € R™, and omitting the dependency on x
for better readability, the solution of Eq. (3) is for b =1,..,m:

up = vp — 0div p, (6)
with
V(0 divp, —w) = |V(0divp, — v)|pPs (7)

To solve this equation, the following iterative fixed point scheme is applied:

ki1 _ p’bc +TV(divp§ - évb)
b 1—|—T\V(divp}b€— évb)\

(8)
with pg = 0 and 7 as a time step.

The minimization problem of Eq. (4) can be solved by applying the thresh-
olding scheme described in [27]:

NOV5  if p< =M Vj|?

v=u+{ -V if j> NV (9)
~ Bl < AV

3.4 The Census Cost Function as Data Residual

The census transform, as introduced by Zabih and Woodfill [26], assigns a bi-
nary signature vector to an image position x. The signature is calculated based
on the ordinal characteristic of I(x) in relation to intensities within a defined
neighborhood Ny of x. The binary signature vector C[x] at x is generated as
follows:
Cix) = {T[1(x) = 1(y)] } 10
K= {Tl 2 160)} _ (10)
where 1'[-] returns 1 if true, and 0 otherwise. The residual p(x, u) is the Hamming
distance of two signature vectors. Formally, we write

p(x,u) = F{C’o[x] ®Cix+ u]} (11)

where Cy and C refer to census signatures of the images Iy and ;. I'{-} is an
operator that counts the 1’s of the binary string in the argument. For efficiently
counting 1’s in bit strings, we refer to Warren’s ‘Hackers Delight’ [23].
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3.5 Implementation Details

Before the input images are given to the algorithm, their dynamic is reduced to
an intensity domain of [0, 1], with a scale factor that is based on the maximum
intensity of both images. In order to restrict the focus during the registration
process on a specific region of interest, the algorithm takes binary lung segmenta-
tion masks Sy, S7 : 2 — {0, 1} as optional input data. In case that segmentation
masks are provided, the input images are cropped accordingly and the evalua-
tion of the data term is omitted where Sp(x) = 0. This provides a way of coping
with motion discontinuities near the lung borders, which are the consequence of
the lungs sliding along the inner part of the chest wall, and additionally speeds
up the run-time of the algorithm.

The numerical scheme from section 3.3 is embedded into a coarse-to-fine ap-
proach, a common technique to overcome local minima. We employ Gauss pyra-
mids with L levels, where ¢ = 1 refers to the finest and ¢ = L refers to the
coarsest level. If the input images exhibit an anisotropic spatial resolution (CT
data usually offer high in-plane resolution when compared to the slice thick-
ness; cf. Section 4.1), we follow a common strategy, see for example [18,12]: In
a first step, we scale down only along the image axes with a high resolution un-
til the pixel spacing is almost identical for all image dimensions. The following
downscaling steps are then performed along all image axes and are subsequently
referred to as ‘isotropic levels’.

At the coarsest level, the displacement field is initialized with zero and the
result of each level is propagated to the next finer level. At the beginning of each
level, the dual variables py, with b = {1, 2, 3} are initialized with zero. Each level
consists of a fixed number of image warps 1 and a fixed number v of iterations,
in which the alternating numerical scheme is applied. After each iteration on
isotropic levels, the intermediate solution is first filtered by a median filter to
remove potential outliers (see [25]), followed by a Gauss filter with a fixed window
size w and a fixed o. The scheme is summarized in Algorithm 1.

Our TV-L; implementation is C++ based, and the algorithm is executed on
an Intel®Core™ i7 Quad-Core Processor with 2.4 GHz. We use OpenMP to
utilize hyper-threading. No calculation was, however, outsourced to a GPU. This
should be noted because one of the main features of the applied algorithm is that
it is especially well suited to be implemented on GPUs, which could result in an
additional run-time improvement over our CPU-based implementation.

4 Experiments

The performance of the algorithm was evaluated on ten thoracic 4D CT data
sets, provided by the DIR-lab? of the University of Texas M.D. Anderson Cancer
Center (Houston, USA) [3,4].

3 http://www.dir-lab.com
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input : images Ip and I;
ouput: displacement field u
initialization of image pyramids
set uf =0
for ¢ < L to 1 do

for b+ 1 to 3 do

set pf; =0
end
for w < 1 to n do
u@

w

warp It —% I, by means of trilinear interpolation
for i + 1 to v do
solve Eq. (9)
for b+ 1 to 3 do
solve Eq. (8)
end
if ¢ is isotropic level then
filter u’, with a 3 x 3 x 3 median filter
end
smooth u!, with a Gauss filter (w, o)
end
end
if £ > 1 then
initialize u®~! with u’
else
return current solution u’
end
end

Algorithm 1. Census-based TV-L; algorithm

4.1 Image Data and Evaluation

Each 4D CT image sequence of the DIR-lab data pool consists of 3D CT im-
ages for ten different breathing phases. The dimension of the sequences varies
between 256x256x94 and 512x512x136 pixel, the spatial resolution between
0.97x0.97x2.5 mm? and 1.16x1.16x2.5 mm?. To be in line with most of the
related publications, we focussed on the registration of the end-inspiration (EI,
base image) and end-expiration (EE, target image) scans for evaluation purposes.
These are the scan pairs with the largest motion amplitudes. The corresponding
lung segmentations are generated using basic image processing operations with
manual correction, followed by a level set-based refinement; cf. [20] for details.
For each EI and EE scan pair, 300 anatomical landmark pairs within the lungs
(prominent bifurcations of the bronchial or vessel trees) have been annotated
and are provided by the DIR-lab. The landmark pairs serve as ground truth
information for quantitative evaluation of the registration accuracy, for which
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the Euclidean distances between the landmark positions in the target image and
the positions of the transformed reference landmarks are computed.

The resulting landmark-based registration errors are compared with corre-
sponding numbers that can be found in current literature and on the DIR-lab
website. These numbers can, however, be computed in two different ways. Let
Xy, be a landmark position in the reference image, Xy, + u (Xy,) its transformed
position, and xj, the true landmark position in the target image. One way is to
directly compute ||Xs, + u (X7,) — Xy, [|2- Instead, the DIR-lab proposes moving
the transformed reference landmark towards the next pixel center before calcu-
lating its distance to Xr,. This ‘snap-to-pixel evaluation’ is justified by arguing
that human observers only select integer pixel locations in image pairs when
identifying landmark sets. Working on the same integer grid would therefore
increase consistency when comparing registration results with landmark posi-
tions as defined by the human observers. In this paper, we follow the DIR-lab
argumentation and evaluation strategy. We also list the intra-observer errors as
given on the DIR-lab website. For a landmark Xj,, this value describes the mean
distance between ‘true’ positions Xy, if they are detected by a human observer in
several runs. In other words: The final goal is to end up with registration errors
in the order of and below these observer errors.

Furthermore, we applied the common intensity-based registration approach
of Schmidt-Richberg et al. [19] to the DIR-lab data, which is one of the top-
ten-ranked approaches of the EMPIRE10 benchmark. This allows us to present
some qualitative comparison of the estimated motion fields in addition to the
quantitative landmark-based evaluation.

4.2 Algorithm Configuration

In this paper, we used the following registration parameters:

Census-Based TV-L; Registration: Census evaluated in a 5 x 5 x 5 neigh-
borhood on isotropic and 5 x 5 x 3 neighborhood on anisotropic levels; image
pyramids with 5 levels; n = 32 and v = 2 for each level, Gauss smoothing of the
flow with (w, o) = (5 pixel, 1.0 pixel); A = 30, 7 = 0.25, 6 = 0.1.

Intensity-Based TV-L; Registration: Same parameters as for the census-
based registration, except for the number of warps per level (now: n = 128) and
the relative influence of the residual (now: A\ = 150).

Registration Approach of Schmidt-Richberg et al.: default parameter
setting as reported in the paper [19)].

4.3 Results

Intensity (SAD)- vs. Census-Based TV-L; Registration. The registra-
tion results and estimated motion fields of data set 08 (maximal landmark dis-
placement from all data sets) are illustrated in Fig. 2. The figure demonstrates
that both the TV-Lj-based registration with common intensity-based data term
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(a) TV-Li-based registration with census cost function
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(b) TV-Li-based registration with common intensity-based data term (SAD)

Lk AR v

v
T4l

(c) Intensity-based registration with approach of Schmidt-Richberg et al. [19]

Fig. 2. Illustration of registration results (here: DIR-lab case 08, registration masked
by lung segmentation data). From left to right: Overlay of lung structures of the refer-
ence (orange) and the warped target image (blue), estimated motion vectors between
EI and EE, and color-coded visualization of the motion field magnitude inside the
lungs (blue: <2 mm motion; red: >25 mm). Rows from top to bottom: (a) census-
based TV-L; registration, (b) standard intensity-based T'V-L; registration, and (c) the
registration approach following [19].

(i.e. SAD) and the proposed variant that minimizes the census cost function
yield a visually good alignment of inner lung structures (see Fig. 1 for the dis-
placement prior registration). The estimated motion fields also look similar for
the two variants, with small differences being visible, e.g., near the outer left lung
border (see highlighted area), and the field calculated by means of the census
data term exhibits in general slightly larger motion amplitudes.

However, these small differences lead for the particular data set and the given
algorithm configuration to a reduction of the landmark-based registration error
from 1.51 mm to 1.11 mm when applying the census cost function instead of
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Table 1. Mean landmark distances and corresponding standard deviations before and
after registration (snap-to-pixel evaluation) and the intra-observer error for repeated
landmark identification for the individual data sets values as specified by the DIR-lab.
All values in mm.

w/o lung masks with lung masks
# No reg. Obs. error Intensities Census Intensities Census

01 3.89 (2.78) 0.85 (1.24) 1.57 (1.29)  0.79 (0.93) 1.29 (1.11) 0.78 (0.92)
02 4.34 (3.90) 0.70 (0.99) 0.76 (0.98) 0.80 (0.96) 0.73 (0.92) 0.78 (0.92)

03 6.94 (4.05) 0.77 (1.01) 2.37 (2.33) 1.02 (1.18)  1.24 (1.19)  0.93 (1.09)
04 9.83 (4.86) 1.13 (1.27) 1.73 (1.95)  1.23 (1.27)  1.31 (1.29) 1.24 (1.30)
05 7.48 (5.51) 0.92 (1.16) 1.99 (2.30)  1.27 (1.52)  1.44 (1.61) 1.22 (1.43)
06 10.89 (6.97) 0.97 (1.38) 1.79 (1.61)  1.09 (1.35) 1.38 (1.20) 0.94 (0.99)
07 11.03 (7.43) 0.81 (1.32) 3.67 (4.59) 1.87 (3.06) 1.36 (1.22) 1.01 (0.96)
08 14.99 (9.01) 1.03 (2.19) 7.09 (8.56) 3.01 (5.16)  1.51 (1.71)  1.11 (1.28)
09 7.92 (3.98) 0.75 (1.09) 2.06 (1.70)  1.11 (1.24)  1.16 (1.03)  0.98 (1.00)
10 7.30 (6.35) 0.86 (1.45) 2.01 (2.66) 1.17 (1.87) 1.32 (1.51) 0.94 (1.03)

Derr  8.46 (6.58) 0.88 (1.31) 2.50 (2.80) 1.34 (1.85) 1.27 (1.28)  0.99 (1.09)

intensity differences (registration with lung masks). This trend can be observed
for most of the other data sets as well; corresponding results can be found in Ta-
ble 1. The table also illustrates the advantage of lung segmentation information
for the registration process, with especially high differences for the intensity-
based registration (mean error without lung masks: 2.50 mm; with lung masks:
1.27 mm).

Comparison to State-of-the-Art Approaches. Corresponding error values
for the approach of Schmidt-Richberg et al. [19] and related numbers of other
state-of-the-art algorithms for pulmonary motion estimation are summarized in
Table 2. Minimum values are highlighted by a gray background and with bold
letters. In case of two identical mean values, the standard deviation (found in
brackets behind each error value) determines the minimum.

In contrast to published data on TV-Li-based image registration [16,22], we
achieved registration errors in the order of the state-of-the-art approaches al-
ready for our implemented SAD-based TV-L; variant. However, these values are
only obtained if lung segmentation masks are used during the registration pro-
cess. This common pre-processing step has not been described in [16,22] and may
be the reason for the comparably weak performance reported in these papers.

Replacing the intensity-based data term with the census cost function sig-
nificantly reduces registration errors. The resulting values of our census-based
TV-L; algorithm are competitive to the lowest registration errors that are cur-
rently published on the DIR-lab benchmark. This holds for both registration
with (cf. Table 2) and without employing lung segmentation data (see, e.g., [8]
with a reported average registration error of 1.43 mm). It should be mentioned
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Table 2. Landmark-based registration errors for the approach following [19] and cor-
responding published numbers after registration of the end-inspiration and -expiration
images of the DIR-lab 4D CT data sets; values given in mm (snap-to-pixel evaluation).
‘Our approach’ refers to the masked census-based TV-L; registration.

Our CCW+H HSS+ HW RHK+ SEW+
approach [5]! [10]2 (9] [18] [19]

01 0.78 (0.92) 0.85 (1.00) 0.98 (1.00) 0.80 (0.92) 0.78 (0.91) 0.87 (0.93)
02 0.78 (0.92)  0.74 (0.99)  0.83 (1.02)  0.77(0.92) 0.74 (0.87) 0.84 (0.95)
03 0.93 (1.09) 0.93 (1.07) 1.08 (1.15) 0.92 (1.10) 0.94 (1.07) 1.02 (1.13)
04 1.24 (1.30) 1.33 (1.51) 1.45 (1.53) 1.22 (1.24) 1.26 (1.26) 1.35 (1.27)
05 1.22 (1.43) 1.14 (1.25) 1.55 (1.75) 1.21 (1.47) 1.22 (1.48) 1.39 (1.47)
06 0.94 (0.99) 1.04 (1.05) 1.52 (1.28)  0.90 (1.00) 0.97 (1.03) 1.25 (1.14)
07 1.01 (0.96) 1.03 (1.01) 1.29 (1.22)  0.98 (1.01)  0.91 (1.00) 1.19 (1.12)
08 1.11 (1.28) 1.11 (1.18) 1.75 (2.40) 1.16 (1.45) 1.07 (1.24) 2.55 (3.70)
09 0.98 (1.00) 1.04 (1.00) 1.22 (1.07) 1.00 (0.97) 1.03 (1.01) 1.23 (1.16)
10 0.94 (1.03) 1.05 (1.10) 1.47 (1.68) 0.99 (1.28) 0.98 (1.10) 1.15 (1.25)

Derr  0.99 (1.09) 1.03 (1.12) 1.31 (1.41) 0.99 (1.13) 0.99 (1.10) 1.29 (1.41)
Dtime 110's 192 s* 55/73 min® 46 s 104 s 64 min

1 Ranked 1st on DIR-lab homepage; please note that the 300 freely available landmark
correspondences, which are used throughout our paper, are only a subset of the landmarks
used for evaluation by the DIR-lab.

2 Ranked 2nd on DIR-lab homepage; see above note on the used landmark sets.

3 Times for balanced flow; format: cases 01-05 / 06-10 (after additional preprocessing).

4 Sum of mean times of grid search and filtering as given in table 5 of [5].

that employing lung masks in the registration process leads to invalid motion
fields outside the specified region of interest. This is not acceptable for several
applications, such as dose accumulation for abdominal structures during radio-
therapy planning for lung tumors. Therefore, error values for registration without
segmentation masks are as well of interest in the given application context.

The reported gain in performance due to the introduction of the census data
term into TV-Lj-based medical image registration is also reflected by the val-
ues listed in Table 2 for the approach [9]. In [9], we describe an extension of
the ‘high accuracy optical flow’” formulation of Brox et al. [2] for 3D medical
image registration in combination with the census cost function; we refer to the
corresponding paper for methodical details.

5 Conclusions

This paper reports about a 3D implementation of the ‘duality-based approach for
realtime TV-L ; optical flow’ in combination with the census cost function. This
combination constitutes a novel contribution to 3D medical image registration
in general and pulmonary motion estimation in 4D CT images in particular. The
algorithm was evaluated on the DIR-lab benchmark for lung CT registration and
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results demonstrate competitive performance compared to current state-of-the-
art methods. Registration accuracy, computation times, as well as the robustness
regarding registration without segmentation masks highlight the potential of the
census cost function for medical image registration tasks.

Acknowledgments. The authors thank Dr. Clemens Rabe for a helpful discus-
sion on the linearization of the census data residual, Prof. Dr. Reinhard Klette
for helpful comments on early drafts and Dr. Gisela Klette for thoroughly proof
reading this paper.
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