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Abstract. In order to understand the behavior of adult Drosophila
melanogaster (fruit flies), vision-based 3D trajectory reconstruction meth-
ods are adopted. To improve the statistical strength of subsequent anal-
ysis, high-throughput measurements are necessary. However, ambiguities
in both stereo matching and temporal tracking appear more frequently in
high density situations, aggravating the complexity of the 3D tracking sit-
uation. In this paper we propose a high density object tracking algorithm.
Instead of approximating trajectories for all frames in a direct manner,
in ambiguous situations, tracking is terminated to generate robust track-
lets based on the modified tracking-by-matching method. The terminated
tracklets are linked to ongoing (unterminated) tracklets with minimum
linking cost in an on-line fashion. Furthermore, we introduce a set of new
evaluation metrics to analyze the tracking results. These metrics are used
to analyse the effect of detection noise and compare our tracking algorithm
with two state-of-the-art 3D tracking methods based on simulated data
with hundreds of flies. The results indicate that our proposed algorithm
outperforms both, the tracking-by-matching algorithm and a global cor-
respondence selection approach.

Keywords: Drosophila melanogaster, fruit flies, 3D tracking, tracklets,
stereo matching, Kalman filter, evaluation metrics.

1 Introduction

For almost all animals, the ability to move is pivotal for finding food, mating
partners or escaping from dangerous situations. During evolution, an increasingly
complex nervous system allowed sophisticated locomotion control. Therefore,
vision based locomotion analysis of various organisms is an important subject
in neurobiological research [13].

Drosophila melanogaster (i.e. fruit fly) is one of the most popular model or-
ganisms to study the nervous system. It is a holometabolous insect. In the larval
stage, movement is restricted to two dimensions and behavioral experiments are
well established using 2D tracking [12,15]. In the adult stage several 2D behav-
ioral experiments are done by cutting the wings [3] or using an arena with flat
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ceiling [17] to restrict the locomotion to two dimensions. However these manip-
ulations lead to unnatural behavior [5].

Reconstructing 3D trajectories of hundreds of objects with similar appearance
is challenging. On the one hand, more than one camera is necessary to determine
the 3D positions with cross view correspondences. On the other hand, those 3D
positions are associated over time to generate trajectories. Thus, two subpro-
cesses are involved to obtain 3D trajectories: stereo matching between different
views and temporal tracking over time. Both leading to the so-called general
multi-index assignment problem, which is non-deterministically polynomial-time
hard (NP-hard) [2].

For a small number of simultaneously tracked objects (about 10 objects),
epipolar constraint is sufficient for stereo matching [16]. However, in high den-
sity scenes (e.g. hundreds of objects) the ambiguity of both tasks increased
significantly: If there are multiple objects close to an epipolar line in view 2
corresponding to a single object in view 1, stereo matching is ambiguous (Fig-
ure 1 (left,mid)). Temporal tracking is more ambiguous if there are more than
one possible successors within the search region of a tracked object (Figure 1
(right)). Furthermore, the number of occlusion increases in high density scenes
which affects both, cross views and temporal associations.

Fig. 1. Stereo and temporal ambiguities. The projection i of a object in Camera 1
(left) may have multiple candidates, as multiple projections are located on or close to
its epipolar line li in Camera 2 (mid). Right: Blue and purple empty circles denote the
search region for two tracklets shown with blue and purple solid circles respectively.
Projections in current frame are represented by red solid circles.

1.1 Related Work

Methods for estimating 3D trajectories are typically based on stereo matching
and temporal tracking; consequently they require two or more cameras. In [4,18],
2D trajectories are calculated in the image plane, and then matched between
cameras to reconstruct 3D trajectories. Alternatively, in [11,6,14], stereo match-
ing is used to reconstruct 3D coordinates, then followed by tracking 3D points to
obtain 3D trajectories. However, these methods are vulnerable to either stereo
or tracking ambiguities. In [9], several more frames are considered together to
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deal with stereo matching ambiguities. A modified Hungarian method is pro-
posed to handle stereo matching for sequences containing up to seven objects
[1]. Beside utilizing several cameras, a single-camera setup in combination with
two mirrors is used in [7] to track up to 10 flies in a comparatively small test
tube. In [6,14], more than two cameras are used for the 3D tracking task. [6]
adopts three cameras for reconstructing a 3-dimensional hull for a fly, and then
tracks the hull using the extended Kalman filter (EKF). In a similar approach
[14] employs up to eleven cameras for realtime trajectory estimation.

[20] handles stereo matching and tracking simultaneously by minimizing a cost
function related to the epipolar constraint, kinetic coherency, and observation
matches. However the domain of the cost function increases exponentially for
both, the number of objects and the number of frames. In [16], a third camera
is employed to verify stereo pairs in the other two views. Stereo matching and
temporal tracking are conducted alternatively to further reduce the ambiguities,
but generating fragmented or incorrectly merged trajectories.

Multiple pedestrian tracking is a different task but shares certain similarities
with fruit fly tracking. Both aim to reconstruct trajectories of multiple objects.
In high density scenes, occlusions happen more frequently, which increases the
difficulty to obtain good results. Pedestrian tracking adopts appearance, motion
and temporal cues to deal with occlusions [19,8]. Appearance is considered as
the most important cue to avoid identity switch [8]. However, fruit flies share
similar appearance so that appearance is not a useful cue for reducing identity
switches in temporal tracking. As the size of the object is small, occlusion time
is relatively short. Thus, motion and temporal cues are reasonable selections for
fruit fly temporal tracking.

1.2 Our Approach

In this paper, we propose a robust 3D tracking algorithm for high density object
trajectory reconstruction. Trinocular stereovision is adopted to reduce stereo am-
biguity in binocular stereovision by utilizing the projection consistency [16]. The
tracking algorithm is an extended version of the Tracking-by-Matching (TbM) al-
gorithm, which uses the epipolar constraint for stereo matching and the Kalman
filter for temporal tracking [16]. In the conventional TbM approach trajectories
were extended as long as there are valid successors available. If no valid succes-
sors are found, tracks are terminated and reinitialized if the ambiguity is solved
in at least two of the three views [16]. Unfortunately this leads to fragmented or
incorrectly merged trajectories and prevents the preservation of fly identities.

In the proposed approach only unambiguous situations are used to generate
robust tracklets (i.e. trajectory segments). Tracklets which can not be associated
to a unique successor are terminated and subsequently linked to appropriate
temporally and spatially ongoing tracklets in an on-line fashion. We use both,
motion and location context for tracklet association. The 3D trajectories are
reconstructed with paired 2D trajectories.

A set of new evaluation metrics is proposed to quantify the tracking per-
formance. The effect of detection noise is analyzed with these new metrics.
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The proposed algorithm outperforms the state-of-the-art algorithms [16,20] in
sequences with up to 200 simulated objects so that ground truth is available.

2 Notation

Given three time-synchronized sequences recorded from calibrated cameras Cam-
era 1, Camera 2 and Camera 3. Then Iit represents an image obtained from Cam-
era i (i = 1, 2, 3), at time t. In each Iit, the detected fruit flies (i.e. detections)
in each view at each frame are denoted by Di

t = {dini,t} = {(ui
ni,t, v

i
ni,t)} for

ni = 1, . . . , N i
t , where (ui

ni,t, v
i
ni,t) is the centroid of a blob (i.e. projection of a

fly) in view i.
Stereo pairs are generated by matching blobs dini,t from D1

t , D
2
t and D3

t be-
tween the views. These matches can be associated over time to generate tra-
jectories S = {skts:te}, k = 1, . . . ,K, where K denotes the number of trajec-
tories and ts, te denote the start and end time of a trajectory. A trajectory
skts:te = {skts , . . . , skte} consists of a set of states st. A state is defined by

st = ((d1n1,t, d
2
n2,t, d

3
n3,t), (v

1
n1,t,v

2
n2,t,v

3
n2,t)) (1)

containing the projection term (d1n1,t, d
2
n2,t, d

3
n3,t) and the corresponding velocity

term (v1
n1,t,v

2
n2,t,v

3
n2,t) belonging to a object in three views, where (vi

ni,t =

(νiu,ni,t, ν
i
v,ni,t)). The 3D trajectories T = {T k

ts:te}, where T k
t = (x, y, z) is the

3D location, are obtained from S by triangulating stereo pairs from triplets.

3 Proposed Algorithm

The proposed causal approach aims to handle 3D trajectory reconstruction in
high density scene, see Figure 2. Because of the high occlusion rate, trajectories
are frequently fragmented (missing valid triplet) or merged (multiple trajectories
sharing one triplet). Thus, our approach proposes to generate robust tracklets by
modifying the TbM method [16], and then associate tracklets using 2D motion
and location context information.

3.1 Robust Tracklet Generation

The TbM method proposed in [16] is adopted to generate robust tracklets with
more tracklet termination constraints. All candidate stereo pairs are verified
based on epipolar line between any two views. Thus, the resultant triplets all
satisfy the projection consistency. For the first three time-synchronized frames,
triplets are found by exhausted search cross the three views, see Figure 2. Then,
valid triplets are employed to initialize a triplet Kalman filter tracker. One
Kalman filter is applied to one element of a triplet respectively. With the es-
timated velocities (v1

n1,t,v
2
n2,t,v

3
n2,t) from the filters, predicted locations in the

image planes are optained for frames Iit+1 by utilizing a constant velocity model.
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Subsequently, search regions around the predicted locations are used to compare
the detections with the predictions. Ambiguities (e.g. more than one detection
is located in the search region) are addressed by verification, correction and
fetching as described in [16].

In order to obtain robust tracklets, triplet tracking is terminated if one of the
following termination conditions is satisfied:

– no valid triplet found within the search region;
– missing detections in more than one view;
– more than one tracklets associated with one valid triplet.

Fig. 2. Detections (up) and valid triplets (down) in three time-synchronized frames
with 200 objects. Up: one red circle denotes a detection (object). Down: corresponding
triplets are given by the same color across the views. Comparing detections and valid
triplets indicates that invalid triplets are discarded.

3.2 Causal Tracklet Association

At time t, the terminated traklets are denoted by S− = {slts:te} and the unter-
minated tracklets, namely ongoing tracklets, are denoted by S+ = {skts:t}. In a
first step, unambiguous detections are associated to the ongoing tracklets S+.
The tracklets satisfying at least one of the termination conditions are terminated
and assigned to the terminated tracklets S−. Afterwards, terminated tracklets
S− are linked with ongoing tracklets S+ online using the current frame instead
of the whole seauence as proposed in [18,19]. As mentioned above, only motion
and temporal cues can be used for linkage because of the similar appearance of
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fruit flies. slts:te and skts:t is linkable if the number of missing frames is within the
range:

0 < t− te < τ (2)

where τ is the maximum gap between the linkable tracklet pairs and is set
according to the frame rate and the occlusion time.

In order to calculate the association cost between a ongoing tracklet sk and
a terminated tracklet sl, the tail triplet locations of the terminated tracklet
(d1,lni,te , d

2,l
n2,te , d

3,l
n3,te) are extended to pi,lfwd, defined by:

pi,lfwd = (ui,l
ni,te + νi,lu,ni,te ×Δt, vi,lni,te + νi,lv,ni,te ×Δt) (3)

Δt = tks − tle (4)

where Δt is the time difference between sl and sk. The head triplet locations of
the ongoing tracklet (d1,kni,ts , d

2,k
n2,ts , d

3,k
n3,ts) are extended to pi,kbwd, defined by:

pi,kbwd = (ui,k
ni,ts − νi,ku,ni,ts ×Δt, vi,kni,ts − νi,kv,ni,ts ×Δt) (5)

The linear motion extended head and tail locations are compared to the real
head and tail locations to produce the motion based linking cost Lm:

Lm =
1

3

3∑

i=1

(w1dist(d
i,k
ni,ts

, pi,lfwd) + w2dist(d
i,l
ni,te

, pi,kbwd)) (6)

w1 + w2 = 1 (7)

where w1, w2 are the weight value for considering the forward and backward
triplet location differences respectively.

This motion based linking costs Lm are used to identify candidates within the
terminated tracklets S− to be linked to ongoing tracklets in S+. If there is only
one close terminated tracklet sl1 ∈ S− satisfying

L∗
m = min

s∗∈S+

1

3

3∑

i=1

(w1dist(d
i,∗
ni,ts

, pi,l1fwd) + w2dist(d
i,l1
ni,te

, pi,∗bwd)) < τ1 (8)

sl1 is matched to the ongoing tracklet s∗ and s∗ is removed from S+ for this
time step (Figure 3 left). τ1 is selected based on the frame rate and the maximal
flight speed.

If two terminated tracklets sl1 , sl2 ∈ S− are temporally and spatially close,
equation 9 and 10 are satisfied:

|tl1e − tl2e | < τ2 (9)

1

3

3∑

i=1

dist(di,l1ni,te
, di,l2ni,te

) < τ3 (10)

Again, τ2 and τ3 are constant thresholds based on the frame rate and the maximal
flight speed. The respective other tracklet, e.g. sl2 , is considered as context when
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Fig. 3. Illustration of the motion cost based (left) and the context cost based (right)
associations. The terminated tracklets are highlighted in blue and red and the ongoing
tracklets are highlighted in green.

linking sl1 . The context term for the linking costs Lc of sl1 is defined similar to
the motion based linking costs by:

Lc =
1

3

3∑

i=1

(w1dist(d
i,k
ni,ts

, pi,l2fwd) + w2dist(d
i,l2
ni,te

, pi,kbwd)) (11)

The ongoing tracklet s∗ is matched to sl1 , if equation (12) is satisfied:

L∗
c = min

s∗∈S+

1

3

3∑

i=1

(w1dist(d
i,∗
ni,ts

, pi,l2fwd) + w2dist(d
i,l2
ni,te

, pi,∗bwd)) > L∗
m (12)

given the motion based linking costs L∗
m (equation (8); see Figure 3 right).

Fig. 4. Frame triplet generated by the simulator

4 Simulator and Evaluation Metrics

4.1 Ground Truth

Quantitative evaluation of fruit fly trajectories is very difficult in real-world high-
density scenes. In order to measure the performance of the proposed method, a
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simulator used in [16] is adopted to generate test sequence. It generates both,
synthetic images from three cameras including all camera matrices and 2D/3D
ground truth. Detections are generated by adopting background subtraction to
extract the blobs from the synthetic sequences. The center of mass of each seg-
mented blob is used as dini,t. As a result, occlusions and image noise is within

the 2D detections Di
t similar to real world conditions (Figure 4).

4.2 Evaluation Metrics

In [16] and [20] Eca and RAE are used to measure the tracking algorithms
performance. The number of inaccurate 3D locations and wrong associations
are divided by the number of frames (Eca) or by the number of all objects in
all frames (RAE). Both offer a general measure for performance. We propose
several metrics to evaluate the tracked trajectories in more details. MT, Acc,
and IDS are proposed to measure the stereo accuracy:

– MT specifies the number of missed triplets, i.e. the ground truth triplets
which are not matched to any valid detected triplets.

– Acc specifies the number of inaccurate 3D locations. If the Euclidean distance
between the reconstructed 3D locations from detected triplets and 3D ground
truth locations is between 5 and 10cm, Acc is incremented.

– IDS specifies the number of identity switches. If the Euclidean distance be-
tween the reconstructed 3D locations from detected triplets and 3D ground
truth locations is lager than 10cm, it is counted as a wrong match.

In addition, Occ is used to measure detected occlusions:

– Occ specifies the number of detected occlusions. If one detection is matched
to multiple triplets, Occ is incremented.

Fig. 5. Occlusions lead to shifted centers. The detected centers (small red circles) of
an object (big green circles) in Camera 2 and Camera 3 are shifted due to occlusions.
Arrows denote the shifting directions.

To evaluate the quality of the trajectories, Frag is proposed to measure the
fragmentation of the trajectories, and Complete Tracks, Partial Tracks, and Lost
Tracks are employed to measure the completeness of the tracked paths:



144 J. Tao, B. Risse, and X. Jiang

– Frag specifies the number of fragments. It counts the number of fragments
for all trajectories in a sequence.

– Complete Tracks specifies the number of completed trajectories. If both, 95%
of the trajectory is tracked and 95% 3D locations are accurate, this trajectory
is counted as a complete track.

– Lost Tracks specifies the number of lost trajectories. If more then 50% of the
trajectory is lost it is counted as a lost track.

– Partial Tracks specifies the number of partially tracked trajectories, which
are neither Complete Tracks, nor Lost Tracks.

5 Experiments

Sequences with 10 to 200 objects are used to test the algorithm. All cameras
cover the whole tracking chamber and are located with a distance of 80cm to the
chambers center. Rotations around the y-axis are 0o, 120o and −120o for camera
1, 2 and 3 respectively. The scene is captured with a resolution of 800×800 pixels
and a frame rate of 150fps. The chamber is set to be 20× 20× 20cm3. The flies
are represented with a radius of 2mm. The maximum speed is set to 0.8m/s [10].
A screen shot from the resultant synthetic images is given in Figure 4. Based on
the maximum speed and experiment experience, the linking parameters are set
to be τ = 7, τ1 = 10, τ2 = 3, τ3 = 20.

5.1 Detection-Based Ground Truth

Due to occlusions, nearby targets and noise, detections in the images do not
match to the 2D ground truth. As a consequence, triangulated pairs of detections
do not match to the 3D ground truth. Therefore, detection-based 3D ground
truth is generated: For all detections for time t (i.e. D1

t , D
2
t , D

3
t ), triplets are

determined by employing stereo matching and projection consistency [16]. These
triplets are compared to the 2D ground truth, selecting only detections with
an average Euclidean distance below a certain threshold. The detection-based
ground truth was then calculated by triangulating the remaining detections.

The aberration between the detection-based ground truth and the 3D ground
truth from the simulator is given in Table 1 (MT, Acc, IDS and Occ are given in
% by dividing the measures by the number of frames). Obviously, the more ob-
jects need to be tracked, the more missed triplets, inaccurate locations, identity
switches and detected occlusions can be measured, which decreases the over-
all tracking performance. In fact, MT, Acc and IDS increase with the number
of occlusions, since the blob centers are shifted in case of overlapping silhou-
ettes (Figure 5): Shifted blob centers lead to inaccurate stereo pairs which can
not be corrected by projection consistency [16], some triplets are missed in the
detection-based ground truth (compare to MT). If matching the shifted centers
is still successful (Section 3), triangulation leads to wrong 3D locations (com-
pare to Acc). Other shifted blob centers are, however, erroneously assigned to
the real 3D ground truth locations because they are located in a certain range
of tolerance, leading to identity switches (compare to IDS).
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Table 1. Detection-based ground truth measure results

General(1000 frames) High-Density (150 frames)

# objects 10 20 30 40 50 100 150 200

MT
Abs. 128 521 681 1106 1436 147 489 921

% 0.13 0.52 0.68 1.11 1.44 0.98 3.26 6.14

Acc
Abs. 0 5 11 48 40 6 15 25

% 0.0 0.01 0.01 0.05 0.04 0.04 0.1 0.17

IDS
Abs. 129 522 682 1107 1437 148 490 922

% 0.13 0.52 0.68 1.11 1.44 0.99 3.27 6.15

Occ
Abs. 21 119 289 846 1248 889 1850 3423

% 0.02 0.12 0.29 0.85 1.25 5.93 12.33 22.82

5.2 Comparison

The results of proposed algorithm are compared with detection-based ground
truth (see Table 2 and 3). The numbers shown in brackets are the corresponding
results from Table 1. Obviously, our proposed algorithm outperforms detection-
based ground truth measurements by reducing IDS and MT while slightly in-
creasing Acc. IDS is reduced significantly due to temporal tracking information.
Similar to the detection-based ground truth MT and Acc increase with the num-
ber of objects. Trajectories are more fragmented in high density scenes (e.g.
53 fragmentations occur for 200 objects, whereas no fragmentations are mea-
sured for 10 objects). Almost all objects are tracked for all frames (compare to
Complete Tracks). Only for very high object densities this measure is decreased
(Table 3).

Furthermore, the proposed algorithm is compared to the algorithms proposed
in [20] and [16], namely Global-Correspondence Selection (GCS) and Tracking-
by-Matching (TbM). The results measured with Eca are shown in Table 4. Based
onEca both, the TbMmethod and the proposed method outperform the GCS ap-
proach. Most accurate trajectories are generated by the tracklet-based method.

Table 2. Comparison between the our algorithm and the detection-based ground truth
using the proposed metrics for 10-50 objects

(# objects, # frames) (10,1000) (20,1000) (30,1000) (40,1000) (50,1000)

MT 0(128) 16(521) 23(681) 54(1106) 67(1436)
Acc 0(0) 12(5) 32(11) 111(48) 107(40)
IDS 0(129) 0(522) 0(682) 0(1107) 0(1437)
Frag 0 1 3 7 16

Complete Tracks 10 20 30 40 49
Partial Tracks 0 0 0 0 1

Lost Tracks 0 0 0 0 0
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Table 3. Comparison between the our algorithm and the detection-based ground truth
using the proposed metrics for 100-200 objects

(# objects, # frames) (100,150) (150,150) (200,150)

MT 29 (147) 473 (489) 745 (921)
Acc 21 (6) 76 (15) 132 (25)
IDS 0 (148) 0 (490) 36 (922)
Frag 4 26 53

Complete Tracks 99 135 172
Partial Tracks 1 13 26

Lost Tracks 0 2 2

Table 4. Comparison between the our algorithm and the TbM and GCS approach
using the Eca quality measure

# objects 10 20 30 40 50 100 150 200

TbM 0.009 0.052 0.33 0.326 0.544 1.16 3.353 6.727
GCS 0.085 1.657 0.791 0.317 2.517 n/a n/a n/a

Proposed 0.00 0.034 0.064 0.163 0.206 0.38 1.98 4.63

A further comparison between the TbM and proposed method is given for
very high-density scenes (Table 5). The results of proposed algorithm is shown
in brackets. The proposed method reduces fragmentation with the proposed

Table 5. Comparison between our algorithm and the TbM approach in very high-
density situations using the proposed metrics. The numbers shown in brackets are the
corresponding results from Table 3.

(# objects, # frames) (100,150) (150,150) (200,150)

MT 394 (29) 1093 (473) 1880 (745)
Acc 17 (21) 68 (76) 108 (132)
IDS 73 (0) 248 (0) 382 (36)
Frag 14 (4) 42 (26) 75 (53)

Complete Tracks 87 (99) 122 (135) 138 (172)
Partial Tracks 13 (1) 24 (13) 58 (26)

Lost Tracks 0 (0) 4 (2) 4 (2)

linking strategy. More complete trajectories are obtained as the termination and
association process terminates ambiguous tracklet tracking and retrieves the cor-
responding tracklets later on. With the termination and association, less identity
switches occur. As the corrected tracklets from IDS might contain inaccurate 3D
locations as a result of shifted centers, Acc is slightly increased.
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6 Conclusions

In this paper, we proposed a tracklet-based probabilistic 3D tracking algorithm
for high-density situations. This algorithm is compared to two state-of-the-art
algorithms, by utilizing a set of new evaluation metrics to analyze the tracking
results in details. It has been shown that tracklet-based probabilistic tracking
outperforms both, a Global Correspondence Selection algorithm and a conven-
tional probabilistic tracking algorithm.

Furthermore, the proposed metrics offer information to perceive more about
the tracking results by evaluating detection-based ground truth. These metrics
in combination with synthetic data offer help to set up real-world experimental
settings because of the possibility to quantify trade-offs between the number of
fruit flies to be observed, the frame rate used for recording, the image resolution
or other crucial parameters.

Thus, our future work will mainly focus on two mutually influencing chal-
lenges: On the one hand, we will design and improve our real-world setups by
quantifying above mentioned trade-offs using simulated data. On the other hand,
we will adjust our tracking algorithm to facilitate high-throughput behavioral
experiments for freely flying fruit flies. For example, a more precise velocity
model could be used for an overall better prediction performance.
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