
Experiences with Fault-Injection in a Byzantine

Fault-Tolerant Protocol

Rolando Martins1, Rajeev Gandhi1, Priya Narasimhan1, Soila Pertet1,
António Casimiro2, Diego Kreutz2, and Paulo Veŕıssimo2

1 Department of Electrical & Computer Engineering, Carnegie Mellon University
rolandomartins@cmu.edu, priya@cs.cmu.edu, {rgandhi,spertet}@ece.cmu.edu
2 Departamento de Informática, Universidade de Lisboa, Faculdade de Ciências

{casim,pjv}@di.fc.ul.pt, kreutz@lasige.di.fc.ul.pt

Abstract. The overall performance improvement in Byzantine fault-
tolerant state machine replication algorithms has made them a viable
option for critical high-performance systems. However, the construction
of the proofs necessary to support these algorithms are complex and
often make assumptions that may or may not be true in a particular
implementation. Furthermore, the transition from theory to practice is
difficult and can lead to the introduction of subtle bugs that may break
the assumptions that support these algorithms. To address these issues
we have developed Hermes, a fault-injector framework that provides an
infrastructure for injecting faults in a Byzantine fault-tolerant state ma-
chine. Our main goal with Hermes is to help practitioners in the complex
process of debugging their implementations of these algorithms, and at
the same time increase the confidence of possible adopters, e.g., systems
researchers, industry, by allowing them to test the implementations. In
this paper, we discuss our experiences with Hermes to inject faults in
BFT-SMaRt, a high-performance Byzantine fault-tolerant state machine
replication library.

Keywords: Byzantine fault-injector, failure diagnosis, cloud-computing,
Byzantine fault-tolerance, intrusion-tolerance.

1 Introduction

Recent improvements in the performance of Byzantine Fault-Tolerant (BFT) pro-
tocols have made such protocols feasible for building fault- and intrusion-tolerant
systems. Presently, there are multiple implementations of BFT protocols at dis-
posal of systemdevelopers tomake their own system fault/intrusion-tolerantwith-
out worrying about having to implement the functionality by themselves.
However, as other research projects [1] have observed, while current state-of-the-
art BFT protocol implementations have considerably improved the performance
of the fault-free path, they often fail to properly handle all of the corner cases.
The end result is that while many BFT implementations can efficiently handle the
complexity of Byzantine failures, they often suffer from multiple orders of mag-
nitude reductions in throughput and long periods of unavailability when in the

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 41–61, 2013.
c© IFIP International Federation for Information Processing 2013

42 R. Martins et al.

presence of non-independent faults, such as colluding malicious nodes. This often
poses a dilemma for system programmers – on the one hand the use of a publicly
available implementation of BFT protocol allows programmers to develop fault-
and intrusion-tolerant systems without worrying about implementing these com-
plicated aspects themselves while, on the other hand, there is a question about the
ability of an implementation to actually handle complex as well as simple failures
in an efficient manner.

System developers often need answers to multiple questions about a particular
BFT protocol before they are able to select it and be confident that the imple-
mentation will actually meet all of their requirements. Questions can vary from
performance to robustness and trustworthiness, such as the following examples.
What kind of faults does the system tolerates? Does it really tolerates arbitrary
faults? Or only more common faults, e.g. crash faults? What is the degradation
of system throughput in the presence of faults? Are there thresholds for fault-
arrival rates, beyond which the system breaks down? How does a BFT protocol
compare with others?

Software fault injection is often used in software testing to quantitatively as-
sess the impact of faults/bugs in the software. We use a similar approach to
assess the performance of a BFT protocol and answer questions like the afore-
mentioned ones that developers may have about the behavior of a protocol in
the presence of faults. In this paper, we describe Hermes, our fault injection
framework created to help BFT protocol developers in the strenuous task of
testing the behavior of a BFT implementation under a diverse and broad range
variety of faults. To show its usability, we used Hermes to assess the behavior of
BFT-SMaRt [2], a well-known BFT protocol implementation.

Hermes allows system developers to get insight into the performance of a
BFT protocol implementation by allowing them to inject faults and observe the
behavior of the system. Hermes’s fault injection architecture is flexible and allows
protocol independent faults (like crash faults, network faults) as well as protocol
dependent faults (like corrupt headers, forged signatures) to be injected into a
BFT protocol. Our approach is clearly distinguished from existing ones by the
fact that we provide a way to simultaneously inject faults across multiple nodes,
allowing different type of faults to be injected in different nodes. Furthermore,
by simply selecting the appropriate set of faults, the user can enforce a specific
fault model, e.g., if collusion is outside the fault model, then no collusion faults
can be used.

We built Hermes using AspectJ [3], for the JAVA runtime, and AspectC++ [4],
for the C++ runtime, which allows it to seamlessly weave the fault-injecting
infrastructure into the target protocol. The use of Aspect-Oriented Programming
(AOP) was to avoid source-code modifications on the target system, especially
in context-free faults, i.e., faults that do not modify or access any internal state
of the protocol. We decided not to use dynamic weaving because it would in-
troduce further complexity into the infrastructure. As such, the injection points
are statically weaved and compiled into the target source code.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 43

Hermes does not require a system developer to be familiar with the BFT
protocol or its implementation for injecting protocol independent faults. On the
other hand, protocol dependent faults, such as payload size corruption, require
that the developer performs some modifications to the source code. A minimal
amount of adaptation is unavoidable because it depends on the specific details
of protocol in use. In our experience with BFT-SMaRt, it took us about two
hours to inject protocol dependent faults.

2 Related Work

There has been considerable work done in developing fault injection systems [5–8]
and analyzing the dependability of fault-tolerant systems [9–11]. Loki [5] is a
fault injector for distributed systems that injects faults based on a partial view
of the global system state. Loki allows the user to specify a state machine and a
fault injection campaign in which faults are triggered by state changes. DBench
Project [6] aimed to develop standards for creating dependability benchmarks
for computer systems. This joint cooperation characterized benchmarks as rep-
resenting an agreement that is widely accepted both by the computer industry
and/or by the user community. Orchestra [9] is a fault injector that uses an
interception approach similar to ours to inject communication faults into any
layer in the protocol stack. The fault injection core provides the ability to filter,
manipulate, and inject new messages. Ferrari [12] (Fault and Error Automatic
Real-Time Injection) uses software traps to inject CPU, memory, and bus faults.
The Fault Tolerance and Performance Evaluator (Ftape) [13] allows developers
to inject faults into user mode registers in CPUs, memory locations, and the
disk subsystem. Doctor [7] (Integrated Software Fault Injection Environment)
allows developers to inject CPU faults, memory faults, and network communica-
tion faults in a system. Xception [14] takes advantage of the advanced debugging
and performance monitoring features present in many modern processors to in-
ject more realistic faults. Ballista [15] is a “black box” software testing tool that
uses combinational tests of valid and invalid parameter values for subroutine
calls, methods and functions. A good survey of fault injection techniques and
tools for testing software dependability is provided in [16].

Some of the recent research has looked at the inefficiencies of BFT protocol
implementations to handle Byzantine as well as benign faults. In [1], the authors
provide a comparative in-depth analysis of several protocols, namely [17–20], in
their pursuit to build Aardvark. Their assessment is based mainly in the use of
flooding and packet delay (in both primary and non-primary nodes). Similarly,
in Prime [21], the authors provide an evaluation of PBFT [17], a leader-based
Byzantine fault-tolerant replication protocol, but mention that their approach
should work well with all BFT protocols that are leader based, such as [19,22–26].
The experiments conducted in Prime were based on two attacks. The first in-
volved delaying ”pre-prepare” messages, while the second consisted in time-
out manipulation, where the system would become stalled until large timeouts
occurred.

44 R. Martins et al.

Fig. 1. Overview of the Hermes’s architecture

3 Hermes’s Overview

Our fault-injection platform, shown in Figure 1, is governed by a fault-injection
orchestrator that enables the injection of multiple faults, simultaneous or not,
across multiple remote nodes. The actual fault injection is performed by Hermes’s
runtime, which is incorporated into the BFT replica (through code-weaving).
The initial deployment, i.e., the initial view, of both replicas and client is ac-
complished through the use of the deployment service. However, a BFT protcol
can still reconfigure, e.g., adding a new replica, using its usual facilities without
having to interact with the deployment service, because the runtime is able to
transparently connect to Hermes’s orchestrator.

We start by characterizing the types of faults we consider in this work, followed
by the description of the orchestrator, runtime and deployment service.

3.1 Faults

We consider two types of faults, context-free faults and context-dependent faults.
The first relates to faults that can be injected without any context information.
For instance, for injecting CPU load it is not necessary to access any information
on the protocol. The second, the context-dependent faults need to access data
of the protocol being injected in the system. For example, corrupting a specific
packet type for a given consensus instance, we need to access the data contained
in the protocol header.
Context-Free Faults

· CPU Load - injects a specified amount of CPU load.
· Crash - crashes the runtime and associated BFT replica.
· Sleep - delays processing for a specified amount of time.
· Drop packet - induces a packet drop following a pre-defined policy (one-
time or percentage-wise).

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 45

Context-Dependent Faults

· Corrupt header - corrupts a packet header with the main goal of breaking
low-level protocol buffering, i.e., underflow and overflow.

· Corrupt payload - corrupts the payload of a packet with erroneous and
random information.

· Forge signatures - substitutes part of the signature set with forged signa-
tures, in an effort to convince correct nodes of an erroneous value.

· DDOS - causes the malicious nodes to start multicast messages to all correct
nodes.

3.2 Orchestrator

The orchestrator is the main component of Hermes and its goal is to provide the
orchestration between the various runtimes, that are built-in into the replicas
and client, and act as a front-end to the developer. In Section 4, we provide an
overview of the implementation and an example of its usage.

The interactions between the orchestrator and runtime are built on top of
three communication primitives: RemoteAction, Action and Notification.

Fig. 2. Action operation overview

Action

An Action is used by the runtime to verify if the fault that is about to be
injected into the replica is enabled and ready, or alternatively, if the fault is
disabled. While this operation could be used to retrieve information from the
overall execution of the injection protocol, its main purpose is to serve as syn-
chronization barrier (shown in Figure 2) for the injection of simultaneous faults.
For example, a fault is injected in the packet send procedure but it could only
be run (injected) when all the malicious nodes reach the same fault. This allows
us to test colluding among malicious nodes and also target specific test cases in
order to explore specific and tricky/uncommon faults.

46 R. Martins et al.

For achieving this, each active runtime calls an Action when it is about to
inject the fault. Because it is a synchronous operation, the runtime waits for the
reply from the orchestrator. This reply is only sent by the orchestrator when
all the malicious nodes reach the synchronization point, that is, when all the
runtimes have called the same Action. After receiving the reply, each runtime
proceeds and injects the fault.

(a) (b)

Fig. 3. RemoteAction (left) and Notification (right) operations

RemoteAction

The RemoteAction, shown in Figure 3a, is used by the orchestrator to perform
remote procedure calls in the replicas’s runtime, and it can be used to manipulate
the state of the runtime, or to retrieve some portion of state from the replica.

Notification

The notification mechanism, shown in Figure 3b, provides an asynchronous mes-
sage passing interface from a runtime to the orchestrator. Its main purpose is to
avoid the overhead associated with synchronous operations, i.e. an Action, and
is used to inform the orchestrator of the progress of the algorithm.

3.3 Runtime

The runtime’s main responsibility is to inject faults accordingly to the indica-
tions of the orchestrator. The actual fault injection is achieved through the use
of Aspect-Oriented Programming (AOP) [27]. We use aspects as a way to seam-
lessly introduce fault injection points, as well as all the necessary networking
infrastructure needed to interact with the orchestrator. We provide more details
in Section 4.

3.4 Deployment Service

The deployment service was built to allow remote bootstrap and closure of ap-
plications. While it is a general purpose deployment service, its main purpose
is to launch replicas and clients to construct the initial view of the system. It
should be noted that this does not represent an obstacle for any possible built-in
reconfiguration mechanisms, e.g., adding or removing replicas, within the BFT
protocol. All the necessary infrastructure to use Hermes is encapsulated inside
the runtime, that in turn, is weaved into the replica’s (and client) code. Thus,
independently of how a replica is deployed, the runtime will perform all the
necessary logistics.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 47

4 Implementation

We have implemented the orchestrator in JAVA, while the runtime has imple-
mentations in both JAVA and C++. To avoid the complexity/overhead intro-
duced by JAVA existing serialization mechanisms, we custom built a binary
protocol that uses little endian encoding without padding. This also allowed us
to easily extend Hermes runtime to C++, and in the future will allow to ex-
tend to other programming languages, such as python. The implementations are
freely available as open-source projects (under an Apache license version 2) at:

- https://github.com/rolandomar/hermes (JAVA runtime and orchestration)

- https://github.com/rolandomar/hermesCPP (C++ runtime)

Bootstrap Process

It is assumed that each of the hosting nodes has the deployment service running.
The orchestrator upon start-up uses the deployment service to create and boot-
strap the target protocol nodes, which in this paper are BFT-SMaRt [2] replicas
and clients. These nodes were previously weaved, with our runtime and faults,
through the use of aspects (shown in Listings 1.3 and 1.4).

After its creation by the deployment service, the runtime within each protocol
node bootstraps and connects back to the orchestrator. In turn, the orchestrator
creates a barrier for synchronizing the start of all the nodes.

4.1 Orchestrator

An overview of the API provided by the orchestrator is shown in the appendix
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps.
The faultInjection() and simultaneousFaultInjection() are the two most
important operations offered by the orchestrator. They allow for a single and si-
multaneous fault injection, respectively. In order to provide further control over
the activation of the faults, on the remote runtimes, we use the Action primitive.

1 public ActionResult onAction(

OrchestrationNodeServerClient client, Action action)

2 switch (action.getSerialID()) {
3 case CheckFaultInjectionAction.SERIAL ID: {
4 CheckFaultInjectionAction cfa =

(CheckFaultInjectionAction) action;

5 String faultID = cfa.getFaultID();

6 /∗ omitted code ∗/
7 return new CheckFaultInjectionActionResult(

(cfa.getFaultContext().getRun() < 500));

8 }
9 /∗ omitted code ∗/
10 }

Listing 1.1. Orchestration code for fine control over fault injection

https://github.com/rolandomar/hermes
https://github.com/rolandomar/hermesCPP
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps

48 R. Martins et al.

When a runtime reaches a fault, it then uses the Action primitive to check if
it should proceed with the injection. For example, we use it to only allow the
faults to become active after the 500th invocation has taken place (shown in
Listing 1.1). For now this value is fixed but can be easily ported as a parameter.

Listing 1.2 shows the code associated with Attack 1 presented in our evalua-
tion (Section 5). The attack simulates a simultaneous crash of a set of malicious
nodes. It starts with the creation of a CrashFault associated with the specific
injection point, given by faultID. In line 5, the orchestrator generates a simul-
taneous fault, in this case a crash fault. At this point, the orchestrator sends the
fault information to the malicious nodes. The test run starts with the creation
and bootstrap of a client (line 6-8), identified by "1001", that with perform 1000
invocations, with each invocation incrementing the service counter by 1.

1 public void attack1(String[] malicious) {
2 String faultID =

"2B4FA20ED54E4DA9B6B2A917D1FA723F";

3 HermesFault fault = new CrashFault(faultID);

4 try {
5 HermesFuture<Boolean> future =

simultaneousFaultInjection(malicious,fault);

6 String command = HermesConfig.

getClientCommandLaunch();

7 String[] args =

new String[]command, "1001", "1", "1000";

8 launchHermesClient(command, args, 5000);

9 boolean ret = future.get(

TIMEOUT, TimeUnit.MILLISECONDS);

10 if(!ret){
11 /∗ handle error ∗/
12 }
13 } catch (Exception ex) {
14 /∗ handle error ∗/
15 }
16 }

Listing 1.2. Orchestrator-side code for Attack 1

4.2 Runtime Code-Weaving

One of our goals was to make our approach as little intrusive as possible. For
that purpose, and as previously explained we used AOP, through the use of As-
pectJ [3], for the JAVA runtime, and AspectC++ [4] for the C++ runtime. We
use two distinct aspects, shown in Listings 1.3 and 1.4.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 49

Runtime Startup Aspect

To seamlessly bootstrap Hermes’s runtime into the replica’s code, we use aspect
HermesStartupAspect depicted in Listing 1.3. The aspect is executed before the
actual execution of the main() procedure. It starts by retrieving the runtime
identifier from the list of the application arguments (line 5-6). This identifier is
then used to instantiate the singleton’s instance (line 7-10). The bootstrap of
the runtime is followed by the call to the actual application’s main() (line 11).

1 @Aspect

2 public class HermesStartupAspect {
3 @Around("execution (∗ bftsmart.demo.counter.

CounterServer.main*(..))")

4 public void advice(ProceedingJoinPoint jp)

throws Throwable

5 String[] args = (String[]) jp.getArgs()[0];

6 String id = args[0];

7 HermesRuntime.getInstance().setID(id);

8 try {
9 HermesRuntime.getInstance().open();

10 } catch (Exception e) { /∗ handle error ∗/}
11 jp.proceed();

12 }

Listing 1.3. Runtime bootstrap aspect for replicas and client

ServersCommunication Aspect

We needed to access the underlying communication infrastructure to inject low-
level faults, such as payload corruption. For that purpose, we created the aspect
shown in Listing 1.4. For the sake of simplicity and space we only shown the
code associated with the payload corruption attack.

The initial portion of the aspect, lines 7-13, checks if the fault is active, and
if so retrieves the information about the Paxos protocol, namely, the execution
identifier and packet type, e.g., weak and strong packet types. If this information
could not be retrieved, i.e., the message is not related to core Paxos protocol,
but belongs to surrounding infrastructure such as state transfer, we bypass the
fault injection and execute the target code (line 11). In line 14, we update the
execution identifier within the fault’s context. This information is later sent to
the orchestrator in the fault validation, that is executed in line 19.

Because this is a context-dependent fault, the execution of the fault only
triggers the verification of the fault’s validity. The actual injection is performed
in the sendBytesFailureInjected()procedure. This procedure is a duplicate of
the original code with the added fault injection mechanisms. It was not possible
to weave code around this procedure, because it was necessary to access the
underlying infrastructure, i.e., in the packet formation we needed to corrupt
payload but leave the header intact.

50 R. Martins et al.

1 @Aspect

2 public class ServerConnectionAspect {
3 static public String faultID =

"5B4FA20ED54E4DA9B6B2A917D1FA724F";

4 @Around("execution (∗ bftsmart.communication.

server.ServersCommunicationLayer.send*(..))")

5 public void advice(ProceedingJoinPoint jp)

throws Throwable {
6 HermesFault fault = HermesRuntime.getInstance().

getFaultManager().getFault(faultID);

7 if (fault != null && fault.isEnabled()) {
8 byte[] msgData = (byte[]) jp.getArgs()[0];

9 PaxosInfo info = deserialize(msgData);

10 if (info == null) {
11 jp.proceed();

12 return;

13 }
14 fault.updateCtx("RUN", info.getRun());

15 try {
16 switch (fault.getSerialID()) {
17 case BFTForgePayloadFault.SERIAL ID: {
18 BFTForgePayloadFault faultImpl =

(BFTForgePayloadFault) fault;

19 faultImpl.execute();

20 int type = faultImpl.getType();

21 Integer attack =

checkAttack(type,paxosInfo);

22 ServerConnection obj = (ServerConnection)

jp.getTarget();

23 boolean useMac = (boolean) jp.getArgs()[1];

24 obj.sendBytesFailureInjected(

attack,msgData,useMac);

25 return;

26 }
27 /∗ other faults omitted ∗/
28 }
29 } catch (Exception ex) {
30 /∗ handle error case ∗/}
31 }
32 jp.proceed();

33 }
34 }

Listing 1.4. ServerConnection aspect

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 51

5 Evaluation

Hardware Setup

We used a NUMA (Non-Uniform Memory Access) workstation with dual hexa-
cores, for a total of 12 physical cores and 24 logical threads, with 32GB of RAM
and 512GB of RAID-0 storage, comprising 2 SSDs with 256GB each.

For simulating a distributed environment we created 11 virtual machines
(VMs), using QEMU/KVM, 10 of which were dedicated to run BFT replicas
and 1 for the client. Each VM was allocated with 2GB of RAM and 2 virtual
CPUs. The orchestrator ran on the host operating system. Both host the guests
used Ubuntu 12.10 LTS as their operating system. Because the virtualized envi-
ronment already introduces delay and jitter in the network stack (around 1ms la-
tency while measuring with ICMP pings), we only constrained the total amount
of bandwidth available (both in-bounding and out-bounding) in each VM to
100Mbit/s, and thus effectively creating a 100Mbit/s network. For the purpose,
we used the TC command to manipulate the underlying network stacks, with
the following commands:
tc qdisc add dev eth0 handle ffff: ingress

tc filter add dev eth0 parent ffff: protocol ip prio 50 /

u32 match ip src 0.0.0.0/0 police rate 100mbit /

burst 100mbit drop flowid :1

5.1 Experiments

Experimental Setup

In order to assess the resiliency of BFT-SMaRt, we performed 1000 invocations
per run and injected the faults midpoint, i.e., in the 500th invocation. For such
purpose, we devised the following attacks:

· Attack 1 - Simultaneous crash: simultaneously crash all malicious nodes.
· Attack 2 - Payload forged with MAX INT : all malicious nodes forge their
payload size, setting it to MAX INT (2,147,483,647) bytes.

· Attack 3 - Delay Prepare messages below detection timeout : all malicious
nodes delay propose messages to 90% of the timeout used, e.g., for a timeout
of 3s the resulting delay would be of 2.7s.

· Attack 4 - Delay Prepare messages above detection timeout : all malicious
nodes delay propose messages by 5 times the value of the timeout, e.g., with
a timeout of 3s then the delay would be 15s.

Because of space constrains, we only show the results from attacks 1 to 4. The
remaining (5 to 9) are available for consultation in the appendix at http://www.
contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps.

For each attack, we tested it against 12 configurations, shown in Table 1, with
1f, 2f and 3f standing for 1, 2 and 3 faults injected, respectively. N is the total
number of replicas needed to enforce the 3f + 1 requirement, while M is the

http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps

52 R. Martins et al.

set of identifiers for the malicious nodes used in a particular configuration. For
example, M = {0} stands for the set of malicious nodes only containing node
“0”, whereas M = {x, y} represents a set with two randomly chosen identifiers.

Table 1. Configurations used in the attacks evaluation

Configurations

1f, |N | = 4 2f, |N | = 7 3f, |N | = 10

M # M # M

0 {0} 2 {0} 6 {0}
1 {x} 3 {x} 7 {x}

4 {0, 1} 8 {0, 1}
5 {x, y} 9 {x, y}

10 {0, 1, 2}
11 {x, y, z}

For each of these configurations we ran the attack 16 times, and computed the
average and the 95% confidence intervals. Each run (a single test) is comprised
of 1000 invocations. The maximum amount of time allowed for each run was 5
minutes. After this time, we considered that the run had failed, even if it was
not completely stalled or aborted, but rather progressing very slowly.

In our evaluation we collected the following data:

Failed Runs (FR) - the number of failed runs, including stalled or aborted
runs with a running time higher then 300s.
Fault-free Latency (LA) - the invocation latency before the fault was injected
(in milliseconds).
Faulty Latency (LB) - the invocation latency after the fault was injected (in
milliseconds).
Total Duration (D) - the total duration of the run. If the run timed out then
the total duration is 300s (in seconds).
Recovery Time (R) - the invocation latency for the 500th and 501st invoca-
tions (in seconds).
Total Faulty Invocations (FI) - the number of successful invocations per-
formed after the fault was injected. We only considered the faulty invocations
from runs that produced at least 5 invocations after the 500th invocation (oth-
erwise we considered them stalled without recovery).

The application that we chose to run was the bftsmart.demo.counter, a
simple counter built on top of the BFT-SMaRt protocol. On each invocation we
increment the counter by 1. After each successful invocation, the client sends
a notification to the orchestrator to report the invocation number and latency.
When the orchestrator receives the 1000th invocation from the client, it ends
the test and calculates the duration of that run.

The experiments were run twice. We first performed the experiments using the
default values and without any modification to the source code, whereas in the
second time we tuned the timeout values and made modifications to the source

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 53

code, of which we provide a detailed discussion on Section 5.3. The relevant
parameters used in this work are shown in Table 2.

Table 2. Parameters considered in the evaluation

Parameters
Parameter Name Default (ms) Tuned (ms)
SHORT TIMEOUT 3000 2000

TOTAL ORDER TIMEOUT 10000 3000
CONNECTION TIMEOUT 10000 3000
INVOCATION TIMEOUT 40000 60000

For certain cases the SHORT TIMEOUT is used to quickly trigger a reconfig-
uration, such as a voluntary exit from a group. The TOTAL ORDER TIMEOUT is
the main timeout used in the implementation and is used to detect when a re-
quest was not processed and subsequently trigger the leader-change protocol.
The CONNECTION TIMEOUT controls the timeout associated with the establish-
ment of a new connection to a replica. The last parameter, INVOCATION TIMEOUT,
is used by the client, more specifically through the ServiceProxy, to control the
timeout associated with each invocation.

5.2 Results

In this section we will start to discuss the performance using the default param-
eters and without any modifications to the source code (left sub-table on the
results tables 3 to 6). Later, using the knowledge gained throughout the first
round of our evaluation, we show how it helped us to track the underlying issues
and partially overcome them by tuning some of the system parameters (Table 2)
and by applying a modification to the source code (right sub-table).

Generically, we can see throughout the results that the increase in the num-
ber of nodes in the system, from 4 to 10 nodes (1f to 3f) results in a linear
increase on the fault-free invocation latency, from 16ms to 20ms (see column
LA in tables 3 to 6). In some cases, the faulty invocation latency drops after
a fault has occurred. Because the number of nodes decreases, the latency (and
overhead) associated with the protocol also decreases, except in attacks 3 and 4.
The recovery time is higher when the leaders are attacked, going upwards to 30s
in attack 3. We provide a discussion on the reasons beyond this high recovery
time in Section 5.3.

Attack 1

Our goal with attack 1 was to evaluate the impact of simultaneously crashing
multiple nodes in the system (for 2f and 3f configurations). The results from
the single fault scenario (1f configurations) are presented to provide a baseline
comparison. The results from our evaluation of attack 1 are shown in Table 3. In
our initial evaluation, using the default values and implementation, we encoun-
tered some issues with configurations 4, 8 and 10. These issues seemed related
with the change-leader protocol.

54 R. Martins et al.

After a manual inspection of logs, we found that the problem was a composi-
tion of several issues. First, we found that 40s invocation timeout (from within
the client’s ServiceProxy) was too short, and it should be at least 60s. The
stalls that we checked in the results were a direct result from this. When this
timeout is triggered, the client aborts its execution and the run ends. This also
hid the true values of the recovery time, that can reach roughly 60s (which we
concluded after some additional experimentation with larger timeouts).

Overall, we found that the default timeout values (associated with the repli-
cas) were too high for a LAN (Ethernet based network). But that did not account
for the low performance that we detected in the protocol after the injections of
the faults. After an inspection to the source code, we found a subtle bug in the
timeout management that leads to problems in the change-leader protocol. We
provide a better explanation to this problem later in Section 5.3.

Table 3. Attack 1 with the default (left) and the tuned (right) configurations

Attack 1 (Crash Fault)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 0 16±2 9±0 37±0 20±0 499±0 0 16±2 9±0 23±0 6±0 499±0
1 0 16±2 9±0 19±3 2±3 499±0 0 16±2 8±0 18±1 1±1 499±0

2 0 18±1 10±0 38±0 20±0 499±0 0 18±1 10±0 24±0 6±0 499±0
3 0 17±1 10±0 22±3 3±3 499±0 0 17±1 10±0 18±0 0±0 499±0
4 100 18±1 N/A 300±0 N/A N/A 0 18±1 11±0 30±0 11±0 499±0
5 6 17±1 11±0 38±33 2±3 499±0 0 17±1 11±0 21±1 2±1 499±0

6 0 20±0 12±0 41±0 20±0 499±0 0 20±0 12±0 27±0 6±0 499±0
7 0 20±0 12±0 21±2 1±2 499±0 0 20±0 12±0 20±0 0±0 499±0
8 100 20±0 N/A 300±0 N/A N/A 0 20±0 12±0 32±0 12±0 499±0
9 0 20±0 12±0 26±4 6±4 499±0 0 20±0 12±0 21±1 0±0 499±0
10 100 20±0 N/A 300±0 N/A N/A 0 20±0 14±1 36±0 14±0 499±0
11 13 20±0 13±0 55±45 0±0 499±0 0 20±0 13±0 22±1 1±1 499±0

Attack 2

We designed attack 2 for assessing the impact of overflowing in the protocol.
This was achieved by modifying the length field on the PaxosMessage packet.
The results from our evaluation are show in Table 4.

The presence of failures indicates that the protocol is susceptible to the over-
flow attack (also to underflow and payload corruption, c.f. in appendix under
attacks 6 and 7). Furthermore, the failure pattern from attack 2 closely resem-
bles the pattern of attack 1, which indicates that the underlying causes should
be the same or similar.

Using this insight, we were able to successfully track down the root of this
behavior within the source code. We found that the crash (caused by the overflow
or underflow) of the deliver thread in the low-level communication infrastructure
is omitted from the overall leader module management. The same applies when

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 55

Table 4. Attack 2 with the default (left) and the tuned (right) configurations

Attack 2 (Value/Corruption Fault)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 0 16±2 8±0 36±0 20±0 499±0 0 16±2 8±0 23±0 6±0 499±0
1 0 16±2 8±0 21±4 5±4 499±0 0 16±2 8±0 17±0 0±0 499±0

2 0 18±1 10±0 38±0 20±0 499±0 0 17±1 10±0 24±0 6±0 499±0
3 0 17±1 10±0 23±4 5±4 499±0 0 17±1 10±0 18±0 0±0 499±0
4 100 18±1 N/A 300±0 N/A N/A 0 18±1 11±0 27±0 9±0 499±0
5 13 17±1 11±0 63±43 11±5 499±0 0 17±1 11±0 20±1 1±1 499±0

6 0 20±0 13±0 40±0 20±0 499±0 0 20±0 13±0 26±0 6±0 499±0
7 0 20±0 13±0 22±2 1±2 499±0 0 20±0 13±0 21±0 0±0 499±0
8 100 20±0 N/A 300±0 N/A N/A 0 20±0 13±0 30±0 9±0 499±0
9 6 20±0 14±0 42±32 4±4 499±0 6 20±0 13±0 39±32 1±1 499±0
10 100 20±0 N/A 300±0 N/A N/A 0 20±0 15±0 34±0 12±0 499±0
11 0 20±0 15±0 31±4 10±4 499±0 0 20±0 15±0 24±1 2±1 499±0

we corrupt the payload of messages. The deliver thread detects the mismatch
between the payload and the signature but silently ignores it. The protocol is
able to recover because the timeout associated with the request is triggered
forcing the leader-change sub-protocol to change the leader. It is important to
note that BFT-SMaRt is implemented using the principle of decoupling the total
ordering of requests from the actual consensus primitive [28]. The client sends its
requests to every replica, not only the leader. This is done to prevent a malicious
leader to stall the protocol. When a replica (non-leader) detects that the leader
did not propose the request, it forwards the request to the current leader and
activates a new timeout. If this fails, then a new regency is activated through
the leader-change sub-protocol. Later in Section 5.3, we discuss the impact of
this decision on the overall protocol performance.

Possibly it would be feasible to use information from the low-level commu-
nication layer to provide further knowledge to the leader module in order to
speedup the recovery process when malicious nodes are in the role of the leader.
We discuss a possible implementation of this approach later in Section 5.3.

Attack 3 and 4

The use of a leader in BFT protocols creates a potential attack point. This
subject was previously explored by Prime [21], which shows the impact of the
presence of a malicious leader. We devised attacks 3 and 4 for assessing the
resilience of BFT-SMaRt to this kind of attack.

In certain cases, a reconfiguration can be triggered with a short timeout, that
is about one third of the regular timeout (3s in the default configuration and
2s in our tuned configuration). To avoid detection, we delay conservatively the
sending of prepare messages by 90% of the value of this timeout (2.7s for the
default configuration and 1.8s for the tuned configuration). The results from
attack 3 (Table 5) show that delay of the prepare messages by leader causes a

56 R. Martins et al.

increase of invocation latency to around 2.7s, as expected, causing the runs to
fail as they take more than 300s to finish.

Alternatively, in attack 4 (Table 6) we used 5 times the value of the short
timeout, resulting in a timeout of 15s, for the default configuration, and 10s
for the tuned version. This clearly triggers the change-leader sub-protocol but
eventually the protocol itself stalls when about 15 faulty invocations have been
processed. Again, the failure pattern also shows some correlation with the failure
pattern of attack 1.

Table 5. Attack 3 with the default configuration (left) and the tuned version (right)

Attack 3 (Timing Fault, Delay Below Timeout)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 100 16±2 2723±0 300±0 5±0 104±0 100 16±2 1822±0 300±0 3±0 157±0
1 13 16±2 86±10 51±46 0±0 449±63 19 16±2 130±10 69±54 0±0 434±65

2 100 18±1 2729±0 300±0 5±0 104±0 100 18±1 1828±0 300±0 3±0 156±0
3 13 17±1 88±10 53±45 0±0 449±64 6 17±1 46±5 35±33 0±0 477±40
4 100 18±1 2730±0 300±0 5±0 104±0 100 18±1 1828±0 300±0 3±0 156±0
5 25 17±1 186±16 88±59 1±1 400±83 38 17±1 296±16 123±66 1±0 370±81

6 100 20±0 2737±0 300±0 5±0 103±0 100 20±0 1835±0 300±0 3±0 154±0
7 6 20±0 49±7 38±33 0±0 474±46 13 20±0 89±8 55±45 0±0 456±55
8 100 20±0 2736±0 300±0 5±0 103±0 100 20±0 1835±0 300±0 3±0 154±0
9 19 20±0 136±13 73±53 1±1 424±75 19 20±0 134±10 72±53 0±0 434±65
10 100 20±0 2737±0 300±0 5±0 103±0 100 20±0 1836±0 300±0 3±0 154±0
11 38 20±0 312±22 126±66 2±1 350±93 50 20±0 444±21 160±68 1±0 327±84

Table 6. Attack 4 with the default configuration (left) and the tuned version (right)

Attack 4 (Timing Fault, Delay Above Timeout)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 56 16±2 915±117 252±35 30±0 228±116 0 16±2 8±0 22±0 6±0 499±0
1 13 16±2 102±28 66±46 9±6 438±77 0 16±2 8±0 17±1 0±0 499±0

2 19 17±1 353±55 187±38 30±0 408±91 0 17±1 10±0 24±0 6±0 499±0
3 0 17±1 53±18 45±32 5±5 499±0 0 17±1 10±0 19±1 1±1 499±0
4 100 18±1 16058±574 300±0 30±0 15±1 0 17±1 11±0 30±0 12±0 499±0
5 0 17±1 89±24 64±42 7±6 499±0 0 17±1 10±0 20±1 2±1 499±0

6 38 20±0 357±66 202±39 30±0 336±116 0 20±0 12±0 26±0 6±0 499±0
7 6 20±0 34±15 38±33 1±3 468±58 0 20±0 12±0 21±1 1±1 499±0
8 100 20±0 16196±640 300±0 30±0 13±2 0 20±0 13±0 32±0 12±0 499±0
9 19 20±0 101±31 73±53 5±5 408±92 0 20±0 13±0 23±1 2±1 499±0
10 100 20±0 15968±521 300±0 30±0 14±2 0 20±0 27±5 40±0 12±0 499±0
11 25 20±0 154±38 91±59 7±6 379±101 0 20±0 16±0 25±3 3±2 499±0

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 57

5.3 Lessons Learned

Although we are still in the process of analyzing all the data and logs that we have
collected, we found some interesting issues within BFT-SMaRt implementation.
Although the BFT-SMaRt is a leader-based BFT protocol we were surprised to
verify the impact of simple crash faults on the system. While the implementation
was able to sustain flawlessly single crash faults or even multiple random crash
faults, it was vulnerable, performance wise, to the simultaneous injection of crash
faults within the first elements of the nodes, i.e., the initial leaders.

1) After analyzing the code, we detected a misconfiguration of the client, which
normally has a default 40s request timeout. When this timeout is triggered within
the client, it aborts the execution of the run. This was the reason behind the stalls
we detected while using the default timeout values and original implementation.

2) Because BFT-SMaRt is leader-based, faults in the leader have a high impact
on the overall performance (and recovery) of the protocol. After increasing this
timeout we were able to measure a recovery time around 60s. The high recovery
time that we measured is only partially explained by the high timeout values.
An analysis of the source code revealed that the protocol, in the presence of a
request timeout, first tries to forward pending requests to the current leader.
This was done to accommodate the possibility that the current leader did not
propose the request because it might have been dropped by the underlying net-
work infrastructure. However, in the presence of a single malicious leader, this in
fact doubles the recovery time. This is because the request is first forwarded to
the leader, and the change-leader sub-protocol only runs after this operation has
timed out. On top of this, the leader-change protocol goes sequentially through
the processes list to find the next leader (from the lowest to the highest identi-
fier). Because we intentionally injected simultaneous faults in the nodes with the
lowest identifiers (that are the first nodes to be elected as leaders), this resulted
in the protocol having to go through all the malicious nodes. Furthermore, they
immediately assume the roles of leaders, introducing further delays. To minimize
this situation, we lowered the timeout values (shown in Table 2).

3) However, this alone did not fully explain the extensive recovery times. A
closer inspection of the source code reveled a subtle implementation artifact. The
timer used for failure detection (RequestsTimer) for all the pending requests
present in the system gets its timeout value doubled each time the change-
leader protocol is triggered (for example, when receiving a STOP and STOP DATA

messages from other nodes), but it is never reduced, even in the presence of more
favorable system conditions, such as the absence of failures or timeouts. Given
this, we introduced a modification to the original source code that consisted
on only doubling the timeout within the same regency (i.e., the same leader)
on the current view, otherwise the value is reset to the default value. Using
our tuned parameters and correction to the source code (right sub-table on the
results tables) we were able to almost avoid any failed runs, except in attack
3. Sporadically we got a failed run while using attack 2. We are in the process

58 R. Martins et al.

of analyzing the logs to determine the underlying issues associated with those
failed runs.

4) Attack 3 was designed in light to previous work on Prime [21], and was de-
signed to degrade overall performance of the system by delaying the sending of
propose messages. The attack was designed so that the leader was not suspected
by the other nodes, by limiting the amount of delay just below to the detec-
tion timeout value. By lowering the timeout value we were able to minimize the
impact of this type of attack, although it is evident that a more proactive and
structural approach has to be taken to solve this issue when using leader-based
BFT protocols. While Prime provides a way to minimize this situation, it still
does not provide a complete solution, because of the limitations derived from
the use of Diffserv [29], because a flooding attack would compromise the mea-
surements used to adapt the timeouts. We tried to perform a full evaluation of
Prime but we discover after the initial tests that the protocol was not completely
implemented. Therefore, we were unable to verify their results. To corroborate
our findings, we can see in attack 4 that if a sufficiently small timeout is chosen
then the attack is contained, with no apparent loss in performance (except for
the recovery time associated with the election of the new leaders).

5) For Attack 2 we were able to manually verify the code and found a missing ver-
ification in the creation of the packet by the receiving thread (ReceiverThread
in the ServerConnection class). Because it does not verify the size of the pay-
load, it allows the attacker to crash the thread either with overflow or underflow
attacks. While JAVA provides a managed memory system, some vulnerabilities
have been found in the past that explore such cases.

6) Taking the knowledge gathered throughout our evaluation we implemented
a second modification to the original protocol. As stated in the discussion of
Attack 2, we make use of the low-level network events such as unexpected net-
work errors (e.g., closing of TCP connections) or packet malformation (such as
mismatched signatures) to trigger the change-leader sub-protocol. The results
from this second modification are shown in the appendix, under section ”Sec-
ond Round of Corrections”. We were able to cut roughly in half the recovery
time from our first implementation modification (and timeout tuning). From
the original implementation and timeout values we were able to provide up to a
10 fold improvement. Nevertheless, it should be noted that these modifications
come at a price. Because we are assuming a more synchronous network layer
and assuming that any type of fault we get from the network is malicious, we
could be inducing false suspicion on nodes leading to unnecessary leader changes.
However, this would only affect performance but not correctness.

BFT Limitations and Future Directions

It seems clear that leader-based BFT protocols have their weakest point in the
leader and change-leader sub-protocol. The timeout settings also play an impor-
tant role in the overall performance.

For situations without the presence of malicious node, the introduction of
adaptive timeouts like in Adaptare-FD [30], could improve seamlessly the over-

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 59

all performance. However to efficiently deal with the presence of malicious nodes,
current approaches [21] are still not able to deliver degradation-free performance.
While making the assumption that the network is totally asynchronous makes
a strong case from a standpoint of correctness and safety, we feel that in order
to bridge theory and practice, stronger, yet realistic, assumptions must be made
about underlying network infrastructure. The use of software-defined network-
ing, for instance by OpenFlow [31], could allows us to improve on the current
state-of-the-art, such as avoiding the issues related with flooding attacks [1].

6 Conclusions and Future Work

In this paper we presented a novel fault-injecting framework that enables the
assessment of BFT implementations. Furthermore, we demonstrate the impor-
tance of providing support for non-independent faults. Using our approach we
were able to detect 2 implementation bugs. The first, at the low communication
level, allowed overflow and underflow attacks caused by a missing size verifica-
tion on packet reception, whereas the second bug was related to a high level
implementation artifact derived from the ever-increasing timeout values within
the leader-change sub-protocol, that in certain cases would effectively stall the
protocol for more than 60s in the presence of non-independent faults. Lastly,
we proposed a second set of modifications to the source code, where we avoid
forwarding messages to a possibly malicious leader prior to a change in regency
and enhance it by using low-level networking exceptions/events, such as signa-
ture mismatch, to trigger a leader change when in the suspicion of the presence
of a malicious leader.

Using our tuned parameters and source code modifications we were able to
provide up to a 10 fold improvement over the original implementation and default
parameters.

6.1 Future Work

We expect to enhance Hermes by providing the necessary infrastructure to sup-
port proof forging, by coordinating and distributing all the necessary keys across
the malicious nodes. Furthermore, we want to expand the work accomplished in
this paper, by introducing a visualization tool that continuously monitors and
traces all the nodes present in the protocol with the goal of providing the initial
support for debugging.

Acknowledgments. We thank Alysson Bessani and the conference reviewers
for their feedback. This research was sponsored in part by the project CMUP-
T/RNQ/0015/2009 (TRONE - Trustworthy and Resilient Operations in a Net-
work Environment), and by Intel via the Intel Science and Technology Center
for Cloud Computing (ISTC-CC).

60 R. Martins et al.

References

1. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzan-
tine Fault Tolerant Systems Tolerate Byzantine faults. In: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2009, Berkeley, CA, USA, pp. 153–168. USENIX Association (2009)

2. BFT-SMaRt: High-Performance Byzantine Fault-tolerant State Machine Replica-
tion, http://code.google.com/p/bft-smart/ (accessed November 4, 2013)

3. Kiczales, G., Hilsdale, E.: Aspect-Oriented Programming. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 26, p. 313. ACM (2001)

4. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: an Aspect-Oriented
Extension to the C++ Programming Language. In: Proceedings of the 40th Inter-
national Conference on Tools Pacific: Objects for Internet, Mobile and Embedded
Applications, pp. 53–60. Australian Computer Society, Inc. (2002)

5. Chandra, R., Levefer, R.M., Cukier, M., Sanders, W.H.: Loki: A State-Driven Fault
Injector for Distributed Systems. In: International Conference on Dependable Sys-
tems and Networks, pp. 237–242 (June 2000)

6. DBench Project Final Report (May 2004)
7. Han, S., Rosenberg, H.A., Shin, K.G.: Doctor: An integrated software fault in-

jection environment. In: International Computer Performance and Dependability
Symposium, pp. 204–213 (April 1995)

8. Alvarez, G.A., Cristian, F.: Centralized Failure Injection for Distributed, Fault-
Tolerant Protocol Testing. In: International Conference on Distributed Computing
Systems, pp. 78–85 (May 1997)

9. Dawson, S., Jahanian, F., Mitton, T., Tung, T.-L.: Testing of Fault-Tolerant and
Real-Time Distributed Systems via Protocol Fault Injection. In: Symposium on
Fault Tolerant Computing, pp. 404–414 (June 1996)

10. Looker, N., Xu, J.: Assessing the Dependability of OGSA Middleware by Fault
Injection. In: Proceedings of the 22nd IEEE International Symposium on Reliable
Distributed Systems, SRDS 2003, pp. 293–302 (October 2003)

11. Marsden, E., Fabre, J.-C.: Failure Analysis of an ORB in Presence of Faults. Tech-
nical report (October 2001)

12. Kanawati, G.A., Kanawati, N.A., Abraham, J.A.: FERRARI: A Flexible Software-
Based Fault and Error Injection System. IEEE Transactions on Computers 44(2),
248–260 (1995)

13. Tsai, T.K., Iyer, R.K.: Measuring Fault Tolerance with the FTAPE Fault Injection
Tool. In: Beilner, H., Bause, F. (eds.) MMB 1995 and TOOLS 1995. LNCS, vol. 977,
pp. 26–40. Springer, Heidelberg (1995)

14. Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Mon-
itoring in Processor Functional Units. In: Proceedings of the 5th Annual IEEE
International Working Conference on Dependable Computing for Critical Applica-
tions, DCCA 1995, pp. 135–149 (1995)

15. DeVale, J., Koopman, P., Guttendorf, D.: The Ballista Software Robustness Testing
Service. In: Proceedings of Testing Computer Software (1999)

16. Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault Injection Techniques and Tools. Com-
puter 30(4), 75–82 (1997)

17. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-
ery. ACM Transactions on Computer Systems 20(4), 398–461 (2002)

18. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.:
Fault-scalable Byzantine Fault-Tolerant Services. SIGOPS Operating Systems Re-
view 39(5), 59–74 (2005)

http://code.google.com/p/bft-smart/

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 61

19. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault folerance. In: Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles, SOSP 2007, pp. 45–58. ACM, New York (2007)

20. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ Replication: A
Hybrid Quorum Protocol for Byzantine Fault Tolerance. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, SOSDI 2006, pp.
177–190. USENIX Association (2006)

21. Amir, U., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine Replication under At-
tack. IEEE Transactions on Dependable and Secure Computing 8(4), 564–577
(2011)

22. Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-Rotaru, C., Olsen,
J., Zage, D.: Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area
Networks. IEEE Transactions on Dependable and Secure Computing 7(1), 80–93
(2010)

23. Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating Agree-
ment From Execution for Byzantine Fault Tolerant Services. ACM SIGOPS Oper-
ating Systems Review 37(5), 253–267 (2003)

24. Martin, J.-P., Alvisi, L.: Fast byzantine consensus. IEEE Transactions on Depend-
able and Secure Computing 3(3), 202–215 (2006)

25. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Customizable Fault Tolerance forWide-
Area Replication. In: Proceedings of the 26th IEEE International Symposium on
Reliable Distributed Systems, SRDS 2007, pp. 65–82. IEEE (2007)

26. Li, J., Mazieres, D.: Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant
Systems. In: Proceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2007 (2007)

27. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

28. Sousa, J., Bessani, A.: From Byzantine Consensus to BFT State Machine Repli-
cation: A Latency-Optimal Transformation. In: Proceedings of the 9th European
Dependable Computing Conference, EDCC 2012, pp. 37–48. IEEE Computer So-
ciety, Washington, DC (2012)

29. IETF. An Architecture for Differentiated Services, http://www.ietf.org/rfc/

rfc2475.txt (accessed October 17, 2011)
30. Dixit, M., Casimiro, A., Lollini, P., Bondavalli, A., Verissimo, P.: Adaptare: Sup-

porting Automatic and Dependable Adaptation in Dynamic Environments. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 7(2), 18 (2012)

31. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Computer Communication Review 38(2), 69–74 (2008)

http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2475.txt

	Experiences with Fault-Injection in a Byzantine
Fault-Tolerant Protocol

	1 Introduction
	2 Related Work
	3 Hermes’s Overview
	3.1 Faults
	3.2 Orchestrator
	3.3 Runtime
	3.4 Deployment Service

	4 Implementation
	4.1 Orchestrator
	4.2 Runtime Code-Weaving

	5 Evaluation
	5.1 Experiments
	5.2 Results
	5.3 Lessons Learned

	6 Conclusions and Future Work
	6.1 Future Work

	References

