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Abstract. This paper describes an algorithm for a direct solution of
domain adaptation (DA) to transform data in source domain to match
the distribution in the target domain. This is achieved by formulating
a transformation matrix based on the Geometric Mean of Co-Variances
(GMCV), estimated from the covariance matrices of the data from both
the domains. As a pre-processing step, we propose an iterative frame-
work for clustering over data from both the domains, to produce an
inter-domain mapping function of clusters. A closed form solution for di-
rect DA is obtained from the GMCV formulation. Experimental results
on real world datasets confirms the importance of clustering prior to
transformation using GMCV for better classification accuracy. Results
show the superior result of the proposed method of DA, when compared
with a few state of the art methods.

1 Introduction

The basic assumption of the standard techniques of classification is that the
training and the testing samples are drawn from the same distribution. This
assumption may not always be true, specially for large-scale, real-world datasets,
where we do not have clear idea about the distribution of the datasets. In certain
situations, we have a very few number of training samples available from the
domain of test samples for a classification task, but a large number of labeled
samples are available from an auxiliary domain. During training, a very few
number of training samples generally causes an over-fitting for any learning
model, leading to inferior performance of classification.

The task of classification is done on test samples obtained from target domain,
which often provides a few labeled/unlabeled training samples for training. On
the other hand, the domain from which a large number of labeled training sam-
ples with a different distribution are available is termed as the source domain.
Domain adaptation (DA) is the process of using training samples available from
source domain to aid a statistical learning task to be done on testing samples
obtained from target domain. There are mainly two types of DA techniques
available in the literature - (a) supervised - where we have a very few number of
training samples from the target domain and (b) unsupervised - where we have
unlabeled training samples from target domain.
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There has been a lot of work in DA in recent past. One solution to this
problem is to weigh each instance in the source domain appropriately such that,
the weighted instances of the source domain are used for training to minimize the
expected loss [1], [2]. In some works, instances from source and target domains
are projected onto one or more intermediate domain(s), such that the difference
in distribution in two domains are less in projected domain(s). Jiang et. al. [3]
and Yang et. al. [4] have proposed methods of modifying the SVM trained on
samples available from source domain by introducing a bias term between source
and target domains during optimization in training. There has been some work
on clustering using transfer learning [5], [6]. In [5], clustering is done using KL-
Divergence in a common sub-space of features while in [6], a divergence measure
based on inter-cluster and intra-cluster distances has been used. The number of
clusters formed in both the domains are same and known apriori.

In this paper, we propose a direct method of supervised DA, where the in-
stances from source domain is transformed to match the distribution of the
target domain using a transformation matrix. Our work uses the concept of
inter-domain clustering for successful transformation of data from one domain
to another. The number of clusters are automatically determined during an iter-
ative clustering framework. We use the geometric mean of covariance (GMCV)
matrices of data, for direct closed-form solution of a transformation matrix ex-
ploiting the underlying distribution in both the domains. Results are shown on
datasets obtained from UCI repository [7] and a remote sensing dataset [8].

The rest of the paper is organized as follows. Section 2 gives the description
of the proposed method of clustering and domain transformation. Section 3
presents and discusses the performance of the proposed methodology on real-
world datasets. Section 4 concludes the paper.

2 Proposed Solution of Domain Adaptation

This paper discusses a method of DA, where instances from the source domain
are transformed to match the distribution of the target domain. The proposed
method, consists of two stages - (a) clustering data in both the domains and (b)
Calculating Transformation Matrix using GMCV - to transform a source domain
data into target domain. We assume that a minimum of one training sample per
class is available from both source and target domains.

Let X,Y ∈ �D×ns denote the source and the target data having ns and nt

number of samples respectively. Let Xi and Yj denote the i
th and jth clusters of

X and Y and let xi and yj be the ith and jth instance of X and Y respectively.
The entire process has been explained in the following sub-sections.

2.1 Inter-domain Clustering and Mapping

An iterative process of clustering is performed in both the domains simulta-
neously, where the clusters formed in one domain is influenced by the clusters
formed in another domain. The proposed clustering method can be seen as an
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extension of K-means clustering, where we cluster data in both domain simul-
taneously, where the clusters in the source domain helps to form appropriate
clusters in target domain. At first, data is normalized in both the domains and
X is then approximately aligned with the distribution of Y to obtain X̂, using:
X̂ = (E−1

t Es)X, where Es and Et are matrices formed using the eigen-vectors of
datasets X and Y respectively. E−1

t Es is the higher dimensional rotation matrix
which aligns the basis vectors (based on eigen-analysis) of X with that of Y,

such that the scatter of X̂ and Y are qualitatively similar to each other with
significant overlap along each dimension of Et. Let x̂i be the ith instance of X̂
and X̂i be the i

th cluster of X̂. Next, clusters are initialized in X̂ using K-Means
clustering. The number of clusters for initialization must be considered high and
it reduces in the successive iterations to give an appropriate value. Let at any
iteration, Ks and Kt be the number of clusters in X̂ and Y respectively. Let,
ωs : {1, . . . ,Ks} and ωt : {1, . . . ,Kt} be the sets of cluster-labels in X̂ and Y

respectively. Let μi
s and μj

t be the mean of X̂i and Yj , ∀i ∈ ωs and ∀j ∈ ωt.
The clusters are formed in Y based on the distance of each instance yj from

the means formed in X̂. The distribution of clusters are ignored in this case as it
was observed to produce inferior results for classification using DA. A mapping
function Φ : ωt → ωs is calculated as,

Φ(j) = i if i = argmin
k

dist(μj
t , μ

k
s ), ∀k ∈ ωs (1)

Here dist(., .) represents the Euclidean distance between two instances. The dis-
tribution of clusters are ignored in this case as it was observed to produce inferior
results for classification in DA. Once the clusters in Y are formed, the clusters
in X̂ are reformed based on the Bregman divergence [9] from the means of clus-
ters of Y. We consider the Bregman divergence of the convex function xTAx,
which is given by (x−y)TA(x−y). Here, A is a positive definite matrix. For our
experimentation, we consider A as E−1

t Es. To ensure the formation of compact
clusters in X̂, inter-cluster distance is also considered. The iteration converges
when the change in the cluster-labels of instances in X̂ and Y in successive it-
eration is less than 2%. The algorithm of cross-domain clustering and mapping
is given in Algo. 1.

The iterative process (steps 3-9) in Algo. 1 helps to reduce the number of

clusters formed in both the domains. The cluster in X̂, whose mean is not close
to any of the instances in Y will remain outside the range of Φ (steps 4 & 5).

The number of clusters formed in X̂ in step 8, will then be less than or equal to
the cardinality of the range of Φ. This condition reduces the Ks which in turn
will reduce Kt in the next iteration (step 4). While re-clustering X̂ (step 8),
α2 ensures that an instance x̂i is assigned to a cluster with minimum Bregman
divergence [9] from a cluster in Y. On the other hand, α1 ensures that the
cluster assigned to x̂i yields a compact cluster. Hence, clusters formed in both
the domains will be compact due to the distance criterion (steps 4 & 6) used.
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Algorithm 1. Cross-Domain Clustering and Mapping.
INPUT: Source domain: X and target domain: Y.
OUTPUT: Cluster-label of instances in X and Y, i.e., δ(xi) and δ(yj)∀i =
1, 2, . . . , ns and ∀j = 1, 2, . . . , nt and the mapping function Φ : ωt → ωs.

1: Normalize X and Y and align source domain to obtain X̂ = (E−1
t Es)X.

2: Cluster X̂ with Ks (large) number of clusters using K-means, forming means
of clusters μi

s for i ∈ ωs.
3: repeat
4: Cluster instances in Y as: δ(yj) = argmink dist(yj , μ

k
s ) and obtain μj

t ∀j.
5: Calculate the cross-domain mapping function, Φ, as:

Φ(j) = argmink dist(μ
j
t , μ

k
s ), ∀k ∈ ωs and ∀j ∈ ωt.

6: Calculate cluster compactness of X̂k as:
α1(k) =

1
nk
s

∑
x̂∈X̂k

dist(x̂, μk
s), ∀k ∈ ωs.

7: Calculate Bregman divergence [9] of each instance of X̂ with respect to
each of the clusters formed in Y, as:
α2(i, k) = (x̂i − μk

t )
T (E−1

t Es)(x̂i − μk
t ), ∀i = 1, 2, ..., ns and k ∈ ωt.

8: Re-cluster X̂, after normalizing α1 and α2, as:
δ(x̂i) = argmink[λα2(i, k) + (1 − λ)α1(Φ(k))], ∀k ∈ ωt and ∀i. (λ = 0.6,
found empirically).

9: Recompute means of all clusters: μk
s , ∀k ∈ ωs.

10: until Convergence (i.e., δ(x̂i) & δ(yj) are unchanged)

2.2 Estimation of Transformation Matrix Using GMCV

We transform data from X considering each cluster at a time. We consider a
transformation, which ensures that clusters formed in X̂ are same as that in X̂,
i.e., δ(xi) = δ(x̂i), ∀xi ∈ X. If Φ(j) = i, then Xi is transformed to match the
distribution of Yj . Each of the clusters formed in X and Y are hyper-ellipsoidal
in nature, which can be considered as clusters following a Gaussian distribution.
It becomes less erroneous to calculate the transformation matrix if the given
source and the target distributions can be modeled by a similar distribution
but with different parameters. Let, Xi be transformed using a transformation
matrix Wi to match the distribution of Yj (Φ(j) = i). We use geometric mean

of covariance matrices of data from X and Y to calculate Wi. Let, X̃i be the
transformed source domain cluster: X̃i = WiXi.

Let Ci
s and Cj

t be the covariance matrices of Xi and Yj respectively. The

covariance matrix of X̃i can be represented as WiC
i
sW

T
i , which should be equal

to Cj
t as the distribution of Yj should be same as X̃i. This yields a quadratic

expression of Wi: WiC
i
sW

T
i = Cj

t . If Wi is symmetric, we get WiC
i
sWi = Cj

t and

Wi becomes the geometric mean of covariances (GMCV): (Ci
s)

−1
and Cj

t [10].
Let Ci

s = UTU , where U is an upper triangular matrix obtained by performing
Cholesky’s decomposition of Ci

s. Let, V = U−1 and R2 = UCj
tU

T , i.e., R is the
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matrix square-root of UCj
tU

T . Then, the solution to Wi based on GMCV, is
obtained as the following expression (substitution yields the proof �):

Wi = V RV T (2)

Eqn. 2 gives a direct solution to DA, to obtain X̃ based on GMCV.

2.3 Result on a Toy Dataset for Illustration

To explain the steps of the proposed algorithm, we consider a simple example
of data distribution in source (X) and target (Y) domains in �2. In Fig. 1 (a)
the cyan and the green points denote the instances from X and Y. Fig. 1 (b)

shows the overlap of X̂ with Y, where the approximate alignment is performed
using E−1

t Es (step 1 in Algo. 1). The result of cross-domain clustering is shown
in Fig. 1 (c). The yellow, light blue and orange points denote the data in three
clusters formed in X, while blue, magenta and black points denote the data in
three clusters formed in Y. Fig. 1 (d) shows the transformed source domain
data, X̃, in red points obtained using the proposed method (Eqn. 2). Fig. 1 (e)
shows the transformed source domain data when clustering is avoided as the
pre-processing step, producing inferior transformation compared to that shown
in Fig. 1 (d). Transformed source domain data marked in red and violet in Figs.
1 (d) & (e), overlap the data in target domain, marked in green points. Fig. 1 (f)
gives two plots shown against the number of clusters formed in each iteration,
showing the change in: (i) ratio of cluster-labels in X̂ and (ii) the average KL-

Divergence between the clusters formed in X̂ and Y, for cross-domain clustering.
Both monotonically decrease with increase in iterations (Algo. 1). The KL di-
vergence measure with respect to the target domain, for the original, aligned
and transformed source domains in Figs. 1 (a), (b), (d) and (e) are 14.8191,
0.5451, 0.0250 and 0.6240 respectively. Least value of KL-Divergence is obtained
for Fig. 1 (d), which shows the efficiency of the proposed method, specifically
when inter-domain clustering is used.

3 Experimental Results and Performance Analysis

We evaluate the performance of the proposed method on real world datasets
obtained from UCI repository [7] and landmine dataset [8]. We describe the two
sets of experimentation done to exhibit the efficiency of the proposed method.

Landmine dataset has been used for DA by Shi et. al. [8]. This dataset has 5
source domains (Dataset 20 - Dataset 24) with different distributions than the
target domain and one source domain (Dataset 6-10) with similar distribution
with the target domain. The dataset has two classes and the feature set has nine
dimensions. Further details of the dataset is given in [8]. We conduct a 30-fold
experimentation and consider one instance from every class of the target domain
randomly for training purpose, which is similar to the experimental setup used
by Shi et al. [8]. In this case, due to the presence of only one training sample
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Fig. 1. Scatter plots (a)-(e) showing the effect of proposed method using a toy dataset.
(a) cyan - original source domain, green - target domain; (b) cyan - aligned source do-
main (step 1 in Algo. 1), green - normalized target domain; (c) three clusters (shown in
light blue, orange and mustard) formed in source domain and three clusters (shown in
blue, magenta and black) formed in target domain using Algo. 1; (d) red - transformed
source domain using the proposed method of clustering and GMCV transformation
which completely overlaps with the distribution of target domain; (e) violet - trans-
formed source domain using only GMCV transformation which partly overlaps with the
distribution of the target domain; (f) Plots showing changes in average KL-Divergence
between pair of inter-domain clusters with each iteration in blue and the ratio of change
in cluster-labels in successive iterations in red, shown against the number of clusters
in each iteration.

in target domain per class, application of the process of iterative clustering was
not meaningful. Hence, we transform source data considering samples from all
classes together, without using cross-domain clustering as the pre-processing
step. The average accuracy of 30-fold experimentation using SVM classifier with
Gaussian kernel is given in Table 1. We report the results in [8] (columns 2, 3 &
4), whereas the performance of ASVM [4] and CD-SVM [3] (column 5 & 6) are
obtained using the code given in [11]. Results shows that our method (column
7) performs better than the state of the arts as reported, for all datasets having
signification disparity of distribution between two domains (Dataset 20-24).

In the 2nd set of experimentation, we consider 3 datasets - ionosphere, mush-
room and WDBC from UCI repository [7]. We split each dataset into source
and target domains using the method explained in [2]. We observe the accu-
racy of SVM classifier with Gaussian kernel by varying the fraction of training
samples obtained from the target domain (0.3 to 0.7). Comparative studies are
done using ASVM [4], CD-SVM [3] and KLIEP [1]. Two methods of experi-
ments are performed using GMCV based transformation: (i) C-GMCV - with
inter-domain clustering & (ii) GMCV - without inter-domain clustering. Re-
sults in Fig. 2 shows the classification accuracy using different techniques of DA
for varying number of training samples obtained from the target domain. The
red and the green curves show the classification accuracy using the proposed
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Table 1. Classification accuracy (in %-age) of Landmine dataset [8] using different
techniques of domain adaptation. Best classification accuracy is highlighted in bold.

Source Source TrAdaboost AcTraK ASVM CD-SVM Proposed
Data only [8] [2], [8] [8] [4] [3] method

Dataset 20 57 89.76 94.49 94.31 90.77 94.58
Dataset 21 57 86.04 94.48 94.18 94.02 94.58
Dataset 22 57 90.50 94.49 94.44 94.56 94.60
Dataset 23 57 88.42 94.49 94.08 83.97 94.58
Dataset 24 57 90.70 94.49 94.34 93.57 94.58
Dataset 6-10 57 94.76 94.70 94.55 94.58 94.66

methods: C-GMCV and GMCV respectively. When the training samples from
both the domains are taken together for training, we term it as the naive com-
bination, whose performance is shown by the black curve. The blue curves show
the performances when training samples from only one of the domains (X or Y)
is used for training the classifier. The cyan, brown and magenta curves show
the classification accuracy using different methods published for DA: KLIEP
[1], ASVM [4] and CDSVM [3]. Plots for three datasets show that the proposed
method of C-GMCV gives the best result. The results also show that the inclu-
sion of proposed method of inter-domain clustering enhances the classification
performance of DA.

(a) (b) (c) (d)

Fig. 2. Classification accuracy of (a) Ionosphere, (b) Mushroom and (c) Wdbc using
different techniques of DA with varying fraction of training samples obtained from
target domain. (d) shows the color indices indicating the methods used to get different
performance curves. The proposed C-GMCV (in red curve) gives the best accuracy.

4 Conclusion

We propose an algorithm for a direct solution of domain adaptation based on
geometric mean of covariance matrices (GMCV) of data in both the domains,
which exploits the cluster information present in the data. Results demonstrated
in the paper show that the proposed method is better than that reported in
published literature in almost all the cases. The work can be extended for better
object categorization and face recognition.



Inter-domain Cluster Mapping and GMCV Based Transformation 81

References

1. Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Neural Information Processing Systems, pp. 1962–1965 (2007)

2. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Interna-
tional Conference on Machine Learning, pp. 193–200 (2007)

3. Jiang, W., Zavesky, E., Fu Chang, S., Loui, A.: Cross-domain learning methods
for high-level visual concept classification. In: International Conference on Image
Processing, pp. 161–164 (2008)

4. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using
adaptive SVMs. In: International Conference on Multimedia, pp. 188–197 (2007)

5. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Self-taught clustering. In: International
Conference on Machine Learning, pp. 200–207 (2008)

6. Bhattacharya, I., Godbole, S., Joshi, S., Verma, A.: Cross-guided clustering: Trans-
fer of relevant supervision across domains for improved clustering. In: International
Conference on Data Mining, pp. 41–50 (2009)

7. Asuncion, A., Newman, D.H.: UCI machine learning repository (2007)
8. Shi, X., Fan, W., Ren, J.: Actively transfer domain knowledge. In: Daelemans,

W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 342–357. Springer, Heidelberg (2008)

9. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman Diver-
gences. Journal of Machine Learning Research 6, 1705–1749 (2005)

10. Lawson, J.D., Lim, Y.: The geometric mean, matrices, metrics, and more. The
American Mathematical Monthly 108(9), 797–812 (2001)

11. Duan, L., Xu, D., Tsang, I.W.H.: Domain adaptation from multiple sources: A
domain-dependent regularization approach. IEEE Transaction Neural Network
Learning System 23(3) (2012),
http://vc.sce.ntu.edu.sg/transfer-learning-domain-adaptation/

domain-adaptation-home.html

http://vc.sce.ntu.edu.sg/transfer-learning-domain-adaptation/domain-adaptation-home.html
http://vc.sce.ntu.edu.sg/transfer-learning-domain-adaptation/domain-adaptation-home.html

	Inter-domain Cluster Mapping and GMCV
Based Transformation for Domain Adaptation
	1 Introduction
	2 Proposed Solution of Domain Adaptation
	2.1 Inter-domain Clustering and Mapping
	2.2 Estimation of Transformation Matrix Using GMCV
	2.3 Result on a Toy Dataset for Illustration

	3 Experimental Results and Performance Analysis
	4 Conclusion
	References




