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Abstract. Particle Swarm Optimization (PSO) algorithm is a swarm
based algorithm deliver good performance in many optimization prob-
lems. However, PSO has tendency of trapping into local optima. In the
paper, an improved PSO algorithm has been proposed by employing Ex-
ploratory Move on global best particle of the swarm called as PSO with
exploratory move (ExPSO) algorithm. In the proposed approach in order
to preventing PSO algorithm from trapping into local optima, particles
are jumped to an unknown position made by the exploratory move. The
performance of the ExPSO algorithm has been investigated on a set
of eight standard benchmark functions and results are compared with
the simple PSO, constriction factor PSO (CFPSO) and inertia weight
PSO (IWPSO). The numerical results show that the ExPSO algorithm
performs better, robust and statistically significant on most of the test
cases.

Keywords: Particle Swarm Optimization, Exploratory Move, Explo-
ration and Exploitation, Local Optima.

1 Introduction

PSO is a population based stochastic optimization algorithm inspired by the
social behaviour of bird flocking, firstly introduced by Kennedy and Eberhart
[1,2]. In the early stage of development of PSO algorithm, it was used for contin-
uous optimization problems. Now PSO has received more and more attentions
by many researchers due to its promising optimization capacity in various fields
[3,4]. However, PSO is often trapped into local optima due to premature con-
vergence while the convergence rate decreases in the latter period of evolution.
Therefore, accelerating convergence rate and avoiding local optima become the
two most important and appealing challenges in PSO research.

To overcome the above drawbacks of PSO, existing methods attempted to im-
prove the performance by introducing variable parameters [5] or modifying the
updating equations [6] or adopting the operators of the optimization algorithm
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[7,8]. In [9], a constriction factor algorithm was introduced to ensure the conver-
gence of PSO. The lack of population diversity in PSO algorithms is the reason
of premature convergence [10]. Therefore, in addition of search/move operator
to PSO, enhancement of global search capacity is most important to improve
its performance. In the paper, an improved PSO is proposed by introducing ex-
ploratory move on global best particle of the swarm. In the exploratory move,
the current point is perturbed one at a time along each variable in positive
and negative direction and the best point is recorded. Therefore, the proposed
method creates set of search directions iteratively in such a way so that the
search directions completely cover the search space. As a result, global search
capability increases for its long jump ability. The proposed method shows the
fast convergence speed and greatly overcome the tendency of trapping into local
optima.

The rest of the paper is organized as follows: section 2 describes the basic
concepts of the PSO. In section 3, exploratory move and the proposed ExPSO
algorithm has been described while in section 4 experimental analyses, results
and discussion are presented. Section 5 concludes the paper with a possible
direction in future works.

2 Particle Swarm Optimization Algorithm

In PSO algorithm, each member of the swarm is called a ’particle’ and each par-
ticle flies around in the D-dimension search space with a velocity. Each particle
in the PSO has a position and a velocity, its evaluation is achieved using the
objective function/fitness function (f) of the optimization problem, whose vari-
ables are the particle position dimensions. The particle updating method tries
to move particles to better positions by accelerating them towards personal best
position of a particle and global best position of particles.

In general, a particle moves in a D-dimensional search space and a swarm con-
tains N such particles. The position vector and velocity vector of the ith particle
is represented by Xi = (xi1, xi2, .., xiD) and Vi = (vi1, vi2, ..., viD) respectively.
Each particle maintains a memory of its previous best position which is repre-
sented by Xpbest = (xpbest1, xpbest2, ..., xpbestD) and best of all the particles in the
swarm by Xgbest = (xgbest1, xgbest2 , .., xgbestD). The basic PSO algorithm can be
described using equations (1)and (2).

Vi(t+ 1) = ω ∗ Vi(t) + c1r1(Xpbesti(t)−Xi(t)) + c2r2(Xgbesti(t)−Xi(t)) (1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

Where c1 and c2 are positive constants and called the acceleration coefficients,
r1 and r2 are two uniformly distributed random number in the interval [0, 1]. Vi

is the velocity of ith individual of dimension D and Xi is the current position of
ith individual on dimension D. Xpbesti is the best position of the ith particle and
Xgbesti represents the best position found so far by all particles in the swarm at
time t. In Eq. (1), ω is the inertia weight which provides the necessary diversity
to the swarm by changing the momentum of particles.
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Algorithm 1. Exploratory Move

Input: Initialize current solution (Xc) with dimension D. Xc
i is the ith dimension perturbed

byΔi

Output: New best point
begin

for i = 1 to D do

y+
i = xc

i + Δi

// y+
i is the ith component of Y + = (xc

1, x
c
2, ...., x

c
i + Δi, x

c
i+1, ...x

c
D)

y−
i = xc

i − Δi

// y−
i is the ith component of Y − = (xc

1, x
c
2, ...., x

c
i − Δi, x

c
i+1, ...x

c
D)

evaluate f = f(Xc), f+ = f+(Y +)andf− = f−(Y −)

find fmin,min(f, f+, f−). Set X corresponds to fmin

if i = D then
Break

if Xc �= X then
Success

else
failure

3 Proposed Methodology

3.1 Exploratory Move

An exploratory move is performed systematically in the vicinity of the current
point to find the best point around the current point. In this move, the current
point is perturbed in positive and negative directions along each variable one at
a time and the best point is recorded. The current point is changed to the best
point at the end of each variable perturbation. If the point found at the end
of all variable perturbations is different than the original point, the exploratory
move becomes success otherwise not. The exploratory move procedure shown in
Algorithm 1. In the proposed method, a set of search directions are iteratively
generated to cover the search space completely. The process starts from any
point in the search space and the search can be reached to any other point in
the search space by travelling along the search directions. In an N-dimensional
problem, its requires at least N linearly independent search directions. Among
many possible combinations of N search directions, some combinations may help
to reach the destination faster with less number of iterations.

3.2 Proposed Mechanism

PSO has been shown rapid convergence in the first part of the search and then
slow down or no improvement has been observed in the fitness function. This
behaviour has been attributed as the loss of diversity in the population. It is
possible to lead the swarm away from a current location by improving a sin-
gle individual if the improved individual becomes the new global best. The
global best individual attracts all members of the swarm. In the paper, we
consider gbest position as the current position and exploratory move is ap-
plied on this current position along each component,selected randomly. Suppose
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Algorithm 2. Algorithm for Proposed Mechanism
Input: Initialize the particles position and velocity
Output: Global best
begin

Calculate fitness. Updating pbest and gbest
while (stopping condition is not reached) do

for i = to N do
Updating velocity and position using Eq. (1) and (2)
calculate fitness. updating the pbest and the gbest

call ”Exploratory Move” on global best and find the new global best.
if the new global best is better than the gobal best, then replace the global best.

Xgbest = (xgbest1 , xgbest2, ..., xgbestD) and select a random integer k between 1 to
D. Exploratory move is therefore, performed on kth component,Xgbestk of Xgbest

to compute Xgbest(+) and Xgbest(−) along the positive and negative direction
in the search space by random increment and decrement. This is represented by
Xgbest(+) = (xgbest1 , xgbest2, ..., xgbestk + r1, ......., xgbestD)
Xgbest(−) = (xgbest1 , xgbest2, ..., xgbestk − r2, ......., xgbestD)

Evaluating f(Xgbest(+)) and f(Xgbest(−)),the best position is selected based
on the fitness values of the points Xgbest, Xgbest(+)and Xgbest(−). This point
corresponds to the current position of the next iteration of the exploratory move.
Exploratory move terminates when fitness value of the best position reaches to
the desired error. Otherwise, it is performed on all components of the dimensions.
The proposed algorithm is shown in Algorithm 2. The proposed approach escapes
local optima and new positions become the new global best position.

4 Experimental Studies

4.1 Benchmark Functions

Eight benchmark functions are considered for experiment, which are widely
adopted in global optimization algorithms [11,12]. The test functions f1 and
f2 are unimodal, having only one global minimum 0. The benchmark functions
from f3 to f7 are multimodal functions having the global minimum at the ori-
gin or very near to the origin. We have also taken a noisy function f8, where a
uniformly distributed random noise is added to the function. The description of
these benchmark functions and their global optima are given in Table 1.

4.2 Parameter Settings

For the purpose of performance evaluation, we compare the purposed algorithm
with other PSO algorithms, simple PSO, constriction factors PSO (CFPSO) and
inertia weights PSO (IWPSO) over 50 independent runs. Experiment is carried
out for eight benchmark problems having 30 dimensions and population size is 50.
The parameters of the proposed algorithm are c1 = c2 = 1.49618 and decreasing
inertia weight (ω) in each iteration starting from 0.9 to 0.4. The acceleration
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Table 1. The Benchmark Functions

Function Mathematical Representation Range Option

Sphere f1(x) =
∑D

i=1 x
2
i [−100, 100] 0

Schwefel f2(x) =
∑D

i=1

∑j
j=1 x

2
i [−100, 100] 0

Griewank f3(x) =
1

40000

∑D
i=1 x

2
i −

∏D
i=1 cos(

xi√
i
) + 1 [−600, 600] 0

Rastrigin f4(x) =
∑D

i=1(x
2
i − 10cos(2πxi) + 10) [−5.12, 5.12] 0

Rosenbrock f5(x) =
∑D−1

i=1 [(1− xi)
2 + 100(xi+1 − x2

i )
2] [−100, 100] 0

Ackley f6(x) = 20 + e− 20e−
1
5

√
1
n

∑D
i=1 x2

i

−e
1
n

∑D
i=1 cos(2πxi) [−32, 32] 0

Weierstrass f7(x) =
∑D

i=1(
∑kmax

k=0 [akcos(2πbk(xi + 0.5))])

−n
∑kmax

k=0 [akcos(2πbk0.5)]
with a = 0.5, b = 3 and kmax = 20 [−100, 100] 0

Dejong’s Noisy Function f8(x) =
∑D−1

i=0 (i+ 1)x4
i + rand[0, 1] [−1.28, 1.28] 0

coefficients (c1andc2) for the simple PSO, CFPSO and IWPSO are set to 2. The
inertia weight (ω) for simple PSO is set to 0.732 and for IWPSO is in decreasing
order and in each iterations set from 0.9 to 0.4. Maximum velocity, Vmax = Xmax

where [Xmin, Xmax] is the search space range. The same initial population is used
for all PSO algorithms. In this work, the termination criteria are considered as
maximum number of generations i.e. 4000 and E = |f(X)− f(X∗)| ≤ e (f(X)
is the current best and f(X∗)is the global optimum) is the best-error of a run
of the algorithm and e is the threshold error. In our experiment error e = 0.001.
Algorithms are implemented using MATLAB 7.6.0 (R2008a) applied on Intel
(R) Core (TM) i7-2670QM CPU @ 2.20 GHz with 8 GB RAM on windows 7
Home Premium platform.

4.3 Results and Discussion

Table 2 presents the mean, standard deviation, average number of generations
and success rate (frequency of hitting the optimum) of the benchmark functions
respectively using the four PSO algorithms over 50 independent runs respec-
tively. The best results are marked in boldface. Convergence characteristics of
each functions are comaperd with the PSO algorithms are shown in Figure 1.
From the results it has been observed that the proposed method outperforms
over other algorithms with 100% Success Rate(SR) for the function f1, f2, f4, f6
and f7. In case of the functions f3 and f5, proposed ExPSO algorithm produced
better solution but no improvement in SR as well as convergence speed. The
ExPSO achieved better results than other algorithms with zero SR for function
f8. The quality of solution obtained by the proposed method with minimum
number of average generations than simple PSO, CFPSO and IWPSO except
the function f8 as shown in Table2.

Table 3 shows results of unpaired t-tests between the best algorithm and the
second best in each case (standard error difference of the two means, 95% con-
fidence interval of this difference, the t- value and the two - tailed P value). For
all cases in Table 3 sample size is 50 and degree of freedom is 98. It is interesting
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Table 2. Result of 8 functions

Function no. Algorithm
Evaluation Metrics

Mean Std. Dev. Avg no. Generations SR

f1

ExPOS 8.740e-004 1.343e-004 165.36 100.00
PSO 2.391e + 001 1.766e+ 001 4000.00 0.00

CFPSO 2.431e + 003 2.314e+ 002 4000.00 0.00
IWPSO 5.200e + 003 6.141e+ 003 3438.36 54.00

f2

ExPOS 9.864e-004 1.436e-005 1944.22 100.00
PSO 1.618e + 004 5.285e+ 003 4000.00 0.00

CFPSO 4.612e + 003 7.257e+ 002 4000.00 0.00
IWPSO 5.804e + 004 2.953e+ 004 4000.00 0.00

f3

ExPOS 1.259e-001 8.128e-002 3870.20 4.00
PSO 3.012e + 000 1.270e+ 001 4000.00 0.00

CFPSO 2.294e + 001 2.155e+ 000 4000.00 0.00
IWPSO 4.340e + 001 5.548e+ 001 3758.00 24.00

f4

ExPOS 9.553e-004 4.573e-005 767.08 100.00
PSO 1.020e + 002 2.627e+ 001 4000.00 0.00

CFPSO 1.882e + 002 1.227e+ 001 4000.00 0.00
IWPSO 1.697e + 002 4.690e+ 001 4000.00 0.00

f5

ExPOS 1.280e+001 2.740e+001 3468.58 30.00
PSO 6.024e + 005 5.174e+ 005 4000.00 0.00

CFPSO 4.508e + 007 1.010e+ 007 4000.00 0.00
IWPSO 7.600e + 005 4.314e+ 005 4000.00 0.00

f6

ExPOS 9.571e-004 4.182e-005 834.34 100.00
PSO 3.216e + 000 1.918e+ 000 4000.00 0.00

CFPSO 1.041e + 001 3.605e − 001 4000.00 0.00
IWPSO 1.996e + 001 3.048e − 003 4000.00 0.00

f7

ExPOS 0.000e+000 0.000e+000 3.96 100.00
PSO 1.819e− 005 1.286e − 004 24.02 100.00

CFPSO 1.053e + 001 1.124e+ 001 3714.36 14.00
IWPSO 1.383e− 013 2.766e − 014 8.54 100.00

f8

ExPOS 2.609e-003 1.052e-003 4000.00 0.00
PSO 4.004e + 003 9.258e+ 003 4000.00 0.00

CFPSO 6.813e + 002 1.441e+ 002 4000.00 0.00
IWPSO 5.600e + 003 1.280e+ 004 4000.00 0.00

Table 3. Results of Unpaired t-test on the data of Table 2

Function Std. Error T 95% Conf. Interval Two-Tailed P Significance
f1 2.498 9.5732 (−28.865,−18.953) < 0.0001 Extremely Significant
f2 102.629 44.9383 (−4815.664,−4408.3341) < 0.0001 Extremely Significant
f3 1.796 1.6074 (6.451, 0.677) 0.1112 Not Significant
f4 3.715 27.4550 (−109.377,−94.627) < 0.0001 Extremely Significant
f5 73171.410 8.2325 (−747593.512,−457180.888) < 0.0001 Extremely Significant
f6 0.271 11.8529 (−3.753,−2.677) < 0.0001 Extremely Significant
f7 0.000 1.0002 (−0.0001,−0.0000) 0.3197 Not Significant
f8 20.379 33.4316 (−721.739,−640.856) < 0.0001 Extremely Significant

to see from Table 2 and Table 3 that in most of the cases the proposed method
meets or beats the nearest competitor in a satistically meaningfull way. These
results show that the proposed method leads to significant improvements in most
cases.

5 Conclusions

The proposed algorithm shows better performance both in early period of gen-
erations and later period of generations. Thus it achieves effective trade-off
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Fig. 1. Convergence characteristics of 8 benchmark functions for 30 dimensions
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between exploration and exploitation. The experimental results show that for
the optimization problems described by the benchmark functions, our algorithm
can obtain better performances than simple PSO, constriction factor PSO and
inertia weight PSO. In our future study, a method that can adaptively tune the
parameters (inertia weight and constriction factor) of PSO will be investigated
using exploratory move.
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