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Abstract. Differential Evolution (DE) algorithm is a real parameter encoded 
evolutionary algorithm for global optimization. In this paper, Levy distributed 
DE (LevyDE) has been proposed. The main objective of LevyDE algorithm is 
to introduce a parameter control mechanism in DE based on levy distribution, a 
heavy tail distribution, for both the mutation and crossover operations. The 
main emphasis of this paper is to analyze the behavior and dynamics of the 
LevyDE and make a comparison with other standard algorithms such as 
DE/best/1/bin [1], DE/rand/1/bin [1] and ACDE [8] on basis of CEC’05 
benchmark functions. 

1 Introduction 

The Global optimization problem [2] can be formalized as a pair s,f , where 

DS R⊆ and f : S R→ is a D-dimensional real valued function. The problem is to 

find a point * *x S such that f(x )  f(x),  x S∈ ≤ ∀ ∈ . Here, f does not need to be 

continuous but to be bounded. There is no exact solution for this problem. Therefore, 
heuristic search algorithms are used to solve this problem efficiently. The Differential 
evolution (DE) outperforms the other existing algorithms in robust performance and 
faster execution to find global optimal solution. The DE [1] is a population based 
stochastic meta-heuristic algorithm for global optimization which is known for its 
simplicity, effectiveness and robustness. Sometime practical experience shows that it 
does not perform up to the expectations. The performance of the DE depends on the 
balance of exploration and exploitation strategies like other evolutionary algorithms. 
If the balance is hampered, the problem like stagnation of the population, premature 
convergence etc may appear. The situation when the algorithm does not show any 
improvement, though it accepts new individuals in the population is known as 
stagnation. Besides this, premature convergence arises when there is a loss of 
diversity in the population [3]. It generally arises when the objective function is non-
separable multimodal having several local and global optimums.  To keep the balance 
between exploration and exploitation strategies, two techniques such as parameter 
tuning and parameter controlling can be used according to Eiben et al [4]. Parameter 
tuning is the commonly practiced approach that amounts to finding good values for 
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the parameters before the run of the algorithm and then running the algorithm using 
these values, which remain fixed during the run. This is a trial & error approach. 
Parameter control is an alternative which controls the parameter in every generation 
following some specified rules. It has three categories: (a) deterministic parameter 
control [5,6] (b) adaptive parameter control [7, 8] and (c) self adaptive parameter 
control [9, 10, 11].  

In this paper, a self adaptive control mechanism is introduced to control the scale 
parameter and crossover probability using Levy distribution with variable location 
parameter, because it produces significant amount of changes in the control 
parameters and reduces manual parameters setting. To validate the proposed strategy, 
experiments are performed on 10 benchmark test problems that were introduced by 
Suganthan et al. in CEC 2005 [2]. The obtained results are compared against the two 
conventional DE algorithms [1] and Adaptive Differential Evolution Algorithm 
(ACDE) proposed by Millie Pant et al [8]. 

2 Related Works 

There is a lot of research done on the parameter control mechanisms. The main 
objective of these researches is to reduce manual control and initialization of the scale 
factor and crossover probability and to reach the global optimum efficiently. Abbas et 
al. [14] introduced a self-adaptive approach to DE parameters using variable step 
length generated by a Gaussian distribution. These parameters are evolved during the 
optimization process. Liu and Lampinen introduced an adaptive parameter control 
mechanism using Fuzzy controller in [7]. Yang et al. [10] proposed a self adaptive 
differential evolution algorithm with neighborhood search (SaNSDE). SaNSDE 
proposes three self-adaptive strategies: self-adaptive choice of the mutation strategy 
between two alternatives, self-adaptation of the scale factor F, and self-adaptation of 
the crossover rate Cr. Qin and Suganthan [11] proposed a self-adaptive DE, called 
SaDE. In this proposed method, scale factor and mutation probability need not require 
any predefining. Teo [9] proposed a self-adaptive strategy where population size 
parameter is adapted during the optimization. A new Differential Evolution algorithm 
based on Adaptive Control parameters (ACDE) is introduced by Pant et al in [8]. 

3 Differential Evolution Algorithm 

Differential Evolution (DE) is a stochastic, population-based optimization algorithm 
which was proposed by Storn and Price in 1996 [1]. It was developed to optimize real 
parameter, real valued functions. Global optimization is necessary in fields such as 
engineering, statistics and finance. But many practical problems have objective 
functions that are non-differentiable, non-continuous, non-linear, noisy, flat, multi-
dimensional or have many local minima, constraints or stochasticity. Such problems are 
difficult if not impossible to solve analytically. DE can be used to find approximate 
solutions to such problems. DE is an Evolutionary algorithm whose initial population is 
of size pN  and dimension is D. The population matrix is initialized as follows: 

( ) ( )
i

L U L
i i iX =B +rand 0,1 * B -B                                        (1) 
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Each initialized vector is called ‘target vector’. Here, U
iB and L

iB represent upper and 

lower bound of iX respectively. 

The classical DE has three operators: mutation, crossover and selection. 
Mutation: Mutation is a kind of exploration technique that can explore the search 

space rapidly. It creates donor vectors. Mutation strategies are as follows: 
1. DE/rand/1: 

         ( )
1 2 3ij r j r j r j 1 2 3V = X + F * X - X  ; r r r≠ ≠             (2)                                            

       2. DE/best/1: 

( )
1 2ij best, j r j r j 1 2V = X + F* X - X  ; r r≠                       (3) 

Here F is a control parameter called scale factor. It controls the speed of convergence 
towards    optimal solutions depending on its value. Range of f is given as [0, 2]. 

Crossover: In DE, Crossover is an exploration technique. It generates trial 
vector ijU . There are two types of crossover strategies i.e. binomial crossover and 

exponential crossover. Generally, binomial crossover is used in DE and it is very 
similar to uniform crossover in evolutionary algorithms. It is described as follows: 

 
ij

ij
ij

V  ; if  rand (0,1)  CR j=jrand
U =

X  ; otherwise

≤ ∨  
 
  

                            (4)      

Here, jrand ∈ [1, D]. The CR is crossover probability. It is defined as CR [0,1]∈ . This 

crossover suggests that in trial vector, there must be at least one component from the 
donor vector.  

Selection: Selection is the exploitation process. It is a greedy method. Selection is 
also termed as mother-child competition. As its name indicates, mother iX  and child 

iU  compete with each other for survival chance in the next generation. The mother-

child competition is done as follows: 

( ) ( )i i i
i

i

U  ; if f U f X
X =

X  ;otherwise

 ≤  
 
  

                                          (5) 

4 Levy Distribution 

Levy distribution [12] is a stable continuous probability distribution for non-negative 
random variable. It is stable because it has the property that a linear combination of 
independent copies of the variable has the same distribution, up to location and scale 
parameters. The Levy probability distribution function is    

( )
c

2(x-μ)

3
2

c ef x:α,β,c,μ =                                                                               (6)
2π (x-μ)

− 
 
 
 

 

Here, α is the characteristic exponent; β  is the skewness parameter which represents 

the measure of asymmetry; c is the scale parameter which measures the width of the 
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distribution; μ  is the shift or location parameter. In Levy distribution, the value of the 

parameters are : α=0.5 ; β=1; c>0; μ 0≥ ; Like all stable distributions except the 

normal distribution, the wing of the probability density function exhibits heavy tail 
behavior falling off according to a power law : 

 ( ) 3
x

2

c 1lim  f x; 0.5,1,c,μ  
2π x

→∞

 
 
 
 

=                         (7) 

5 LevyDE: Levy Distributed Differential Evolution 

This paper introduces a new self-adaptive strategy for control parameters in the DE 
algorithm. Form the study of [13], it has been observed that heavy tail distribution 
works better to probabilistically control the parameters. To create a considerable 
amount of diversity in the solution, a new heavy tail distribution is used in the scale 
factor and crossover rate. Therefore, these values will be altered according to the 
following Levy distribution described in equation (6). The reason of choosing levy 
distribution is that the heavy tail will generate considerable changes more frequently 
and it has higher probability to do a long jump that may escape from local optima or 
move away from a plateau that might provide a better solution for multimodal 
optimization problem.  

In LevyDE, scale factor, F [0.5 , 0.9]∈ and crossover rate, [ ]CR  0.5,1∈ . This F 

and CR are updated according to the Levy distribution. Here, two new parameters are 
introduced delF and delCR. These parameters are used to control the updation of the 
shift parameters (i.e. scaleF and scaleCR) of the Levy distribution to get updated 
control parameters. The parameters scaleF, scaleCR ∈  [0,1], are initialized randomly. 
The LevyDE algorithm is as follows: 

 
Procedure LevyDE ()                                                                                                                               

1. Initialize the population matrix X[N, D] randomly in the search 
space by equation 1 and other parameters. 

2. fitness := calculateFitness(X) 
3. while termination condition not satisfied 

3.1 if delF < U(0, 1) 
3.1.1 scaleF := scaleF + (scaleFu - scaleFl)*U(0, 1) 
3.1.2 F := F + (Fmax - Fmin) * 

Levy(iteration,0.5,1,1,scaleF) 
3.2 else 

3.2.1 F := F + (Fmax - Fmin) * Levy 
(iteration,0.5,1,1,scaleF) 

3.3 if F > Fmax 
3.3.1 F := Fmin + 0.4*U(0, 1) 

3.4 if delCR < U(0, 1) 
3.4.1 scaleCR := scaleCR + (scaleCRu - scaleCRl)*U(0, 1) 
3.4.2 CR := CR + CRmax* Levy (iteration,0.5,1,1,scaleCR) 

3.5 else 
3.5.1 CR := CR + (CRmax - CRmin) * 

Levy(iteration,0.5,1,1,scaleCR) 
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3.6 if CR > CRmax 
3.6.1 CR := CRmax*U(0, 1) 

3.7 U := mutation(X, type) 
3.8 V := crossover(X, U, type) 
3.9 fitness_trial := calculateFitness(V) 
3.10  for i := 1 to N in the step of 1 

3.10.1 if fitness_triali ≤ fitnessi 
3.10.1.1  Xi := Vi 
3.10.1.2 fitnessi := fitness_triali 

6 Experiments and Analysis of the Results 

To test the algorithm, we have selected CEC 2005 benchmark problems [2] and considered 
10 different functions, described in Table 1. The function 1- 4 is unimodal and rest is 
multimodal functions. The F10 is an expanded multimodal benchmark function.  

Table 1. Benchmark functions selected from CEC 2005 function sets 

 

 

 

 

 

 

 

 

 

 

 

 

Function Definition Dimension Range Optimum 

; 
10 [-100,100] - 450 

 
10 [-100,100] - 450 

 10 [-100,100] - 310 

 
10 [-100,100] 390 

 

10 [-32,32] -140 

 
10 [-5,5] -330 

 
10 [-5,5] -330 

 
10 [-0.5,0.5] 90 

 
10  [−π, π] 

 
-460 

 
10 [-100,100] -300 

 

 

 

The algorithms are tested on Intel® Pentium(R) CPU B960 @ 2.20GHz × 2  processor 
with 4 GB DDR3 RAM. The operating system platform is Ubuntu 12.04, 32 bit. The 
programming language is MATLAB R2012a.  

For basic DE, F=0.5 and CR=0.50.For LevyDE, F ∈  [0.5, 0.9], CR ∈  
[0.5, 1.0], delF= 0.50 and delCR=0.70. The maximum iteration is fixed at 
D*1e+04 where D is the dimension of the problem. Here D is 10 and population size 
is 20. In our experiment, four algorithms i.e. LevyDE, DE/best/1/bin, DE/rand/1/bin 
and Adaptive Differential Evolution algorithm (ACDE) [8] are run for 25 times for 
each of the functions. The results are described in Table 2. The Best Result, Mean Error, 
Standard Deviation and Success Rate are considered for comparison of different 
algorithms. We have considered error value 1e-06 for function 1-3, 1e-02 for others. 
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Fig. 1. Convergence 
plot of ‘F1’ 

Fig. 2.  Convergence 
plot of ‘F2’ 

Fig. 3.  Convergence 
plot of ‘F3’ 

Fig. 4. Convergence 
plot of ‘F4’ 

Fig. 5. Convergence 
plot of ‘F5’ 

Fig. 6. Convergence 
plot of ‘F6’ 

Fig. 7. Convergence 
plot of ‘F8’ 

Fig. 8. Convergence 
plot of ‘F9’ 

Fig. 1. Convergence 
plot of ‘F10’ 
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Table 2. Comparison analysis of the best result, mean error, standard deviation and success rate 
of DE/best/1/bin, DE/rand/1/bin, ACDE, and LevyDE 

Functions Procedures Best result Mean Error Std Deviation Success rate (%) 

F1 

DE/best -4.500000e+02 2.042965e-07 1.670335e-07 100 

DE/rand -4.500000e+02 1.561729e-07 1.151371e-07 100 

ACDE -4.500000e+02 4.815826e-08 1.358376e-07 100 

LevyDE -4.500000e+02 2.004074e-09 1.065551e-07 100 

F2 

DE/best -4.500000e+02 2.695379e-07 2.090216e-07 100 

DE/rand -4.500000e+02 1.717866e-02 8.583652e-02 084 

ACDE -4.499767e+02 2.325408e-02 1.867916e-07 000 

LevyDE -4.500000e+02 1.732750e-07 1.260445e-07 100 

F3 

DE/best -4.500000e+02 2.611088e-07 1.922718e-07 100 

DE/rand -4.500000e+02 1.104072e-07 1.096909e-07 100 

ACDE -4.499985e+02 1.338269e+00 2.899092e+00 000 

LevyDE -4.500000e+02 1.002874e-07 1.809248e-07 100 

F4 

DE/best -3.100000e+02 8.984726e-08 5.933756e-08 100 

DE/rand -3.100000e+02 9.914377e-02 4.593829e-01 076 

ACDE -3.061221e+02 3.877860e+00 1.668932e+00 000 

LevyDE -3.100000e+02 7.7675e-07 1.944300e-07 100 

F5 

DE/best 3.900060e+02 4.583631e+00 1.356022e+01 024 

DE/rand 3.900059e+02 4.339623e+00 3.108901e-01 012 

ACDE 3.966768e+02 6.666787e+00 5.933756e+00 000 

LevyDE 3.900011e+02 1.255594e+00 2.189511e+00 072 

F6 

DE/best -1.197357e+02 2.036411e+01 6.547529e-02 000 

DE/rand -1.198571e+02 2.038093e+01 8.970581e-02 000 

ACDE -1.198655e+02 2.038609e+01 9.796716e-02 000 

LevyDE -1.208680e+02 2.036857e+01 9.175338e-02 000 

 
 
 
 
F7 

DE/best -3.270151e+02 8.745213e+00 5.989216e+00 000 

DE/rand -3.300943e+02 2.584488e+00 3.332907e+00 036 

ACDE -3.290050e+02 8.996444e+00 5.631635e+00 000 

LevyDE -3.290050e+02 1.643564e+01 3.854307e+00 000 

F8 

DE/best -3.270151e+02 1.460600e+01 7.608035e+00 000 

DE/rand -3.260202e+02 1.701437e+01 7.496491e+00 000 

ACDE -3.190555e+02 2.452018e+01 1.306585e+01 000 
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Table 2.(Continued) 

 LevyDE -3.290050e+02 1.643564e+01 1.078447e+01 000 

F9 

DE/best 1.120927e+02 2.208274e+01 1.450389e-14 000 

DE/rand 1.120927e+02 2.208274e+01 1.450389e-14 000 

ACDE 1.120927e+02 2.208274e+01 1.450389e-14 000 

LevyDE 1.012927e+02 2.208274e+01 1.450389e-14 000 

F10 

DE/best -1.299605e+02 8.421141e-01 9.943467e-01 000 

DE/rand -1.295507e+02 8.334355e-01 1.997779e-01 000 

ACDE -1.299913e+02 5.945683e-01 1.792737e+00 000 

LevyDE -1.299208e+02 8.119437e-01 3.954782e-01 000 

From the results of Table 2, it is prominent that the LevyDE outperforms the rest 3 
algorithms for most of these benchmark functions in all four criteria. The following 
Figure 1 – 9 shows the convergence rate plot of the four algorithms for the above 
mentioned function values with respect to generations in the log scale. These figures 
also show that the convergence rate of LevyDE is better than the rest three algorithms. 

7 Conclusion 

In this paper, we proposed a modified version of basic Differential Evolution (DE) 
using Levy distribution for parameter adaption. Here, we have applied ‘DE/best/1’ 
mutation strategy and binary crossover strategy with parameter adaption by Levy 
distribution to improve the exploration and exploitation mechanism of mutation and 
selection procedure. This mutation strategy improves the problem of premature 
convergence and trapping in local optimal. Experimental results on standard 
benchmark functions prove the better efficiency of LevyDE algorithm. Future work is 
to evaluate the performance of LevyDE using more test functions and make it more 
robust by upgrading and balancing the exploration and exploitation strategies. 
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