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Abstract. Kernel spectral clustering is a model-based spectral cluster-
ing method formulated in a primal-dual framework. It has a powerful
out-of-sample extension property and a model selection procedure based
on the balanced line fit criterion. This paper is an improvement of a pre-
vious work which sparsified the kernel spectral clustering method using
the line structure of the data projections in the eigenspace. However, the
previous method works only in the case of well formed and well sepa-
rated clusters as in other cases the line structure is lost. In this paper, we
propose two highly sparse extensions of kernel spectral clustering that
can overcome these limitations. For the selection of the reduced set we
use the concept of angles between the data projections in the eigenspace.
We show the effectiveness and the amount of sparsity obtained by the
proposed methods for several synthetic and real world datasets.

1 Introduction

Clustering algorithms are widely used tools in fields like data mining, machine
learning, graph compression and many other tasks. The aim of clustering is to
divide data into natural groups present in a given dataset. Clusters are defined
such that the data present within the group are more similar to each other in
comparison to the data between clusters. Spectral clustering methods [1,2,3] are
generally better than the traditional k-means techniques. A new spectral clus-
tering algorithm based on weighted kernel principal component analysis (PCA)
formulation was proposed in [4]. The method is based on a model built in a
primal-dual optimization framework. The model has a powerful out-of-sample
extension property which allows to infer cluster affiliation for unseen data.

The data points are projected to the eigenspace and the projections are ex-
pressed in terms of non-sparse kernel expansions. In [5] sparsification of this
clustering model was done by exploiting the line structure of the projections
when the clusters are well formed and well separated. However, the method fails
when the clusters are overlapping and for real world datasets where the projec-
tions in the eigenspace do not follow a line structure as mentioned in [8]. In this
paper, we propose methods to handle these issues. We locate the mean of each
cluster in the eigenspace. The mean of the cluster in the eigenspace is located on
the least squares linear regressor for all the points in that cluster. We use angular
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distance to locate the projections close to the mean in the eigenspace and then
select these projections based on their euclidean distance from the origin in the
eigenspace. The main advantage of these sparse reductions is that it results in
much simpler and faster predictive models.

2 Kernel Spectral Clustering

Weprovide a brief description of the kernel spectral clusteringmethodology.Given
a datasetD = {xi}Ntr

i=1, xi ∈ R
d, the training points are selected bymaximizing the

quadratic Rènyi criterion as depicted in [8,9,10]. Here xi represents the i
th training

point and the training set is represented byXtr. The number of data points in the
training set is Ntr. Given D and the number of clusters k, the primal problem of
the spectral clustering via weighted kernel PCA is formulated as follows [4]:

min
w(l),e(l),bl

1

2

k−1∑

l=1

w(l)ᵀw(l) − 1

2Ntr

k−1∑

l=1

γle
(l)ᵀD−1

Ω e(l)

such that e(l) = Φw(l) + bl1Ntr , l = 1, . . . , k − 1,

(1)

where e(l) = [e
(l)
1 , . . . , e

(l)
Ntr

]ᵀ are the projections onto the eigenspace, l = 1, . . . ,
k − 1 indicates the number of score variables required to encode the k clusters,
D−1
Ω ∈ R

Ntr×Ntr is the inverse of the degree matrix associated to the kernel
matrix Ω. Φ is the Ntr × nh feature matrix, Φ = [φ(x1)

ᵀ; . . . ;φ(xNtr )
ᵀ] and

γl ∈ R
+ are the regularization constants. We note that Ntr < N i.e. the number

of points in the training set is less than the total number of points in the dataset.
The kernel matrixΩ is obtained by calculating the similarity between each pair of
data point in the training set. Each element of Ω, denoted as Ωij = K(xi, xj) =
φ(xi)

ᵀφ(xj) is obtained for example by using the radial basis function (RBF)
kernel. The clustering model is then represented by:

e
(l)
i = w(l)ᵀφ(xi) + bl, i = 1, . . . , Ntr, (2)

where φ : Rd → R
nh is the mapping to a high-dimensional feature space nh,

bl are the bias terms, l = 1, . . . , k − 1. The projections e
(l)
i represent the latent

variables of a set of k − 1 binary cluster indicators given by sign(e
(l)
i ) which

can be combined with the final groups using an encoding/decoding scheme. The
decoding consists of comparing the binarized projections w.r.t. codewords in
the codebook and assigning cluster membership based on minimal Hamming
distance. The dual problem corresponding to this primal formulation is:

D−1
Ω MDΩα(l) = λlα

(l), (3)

whereMD is the centeringmatrix which is defined asMD = INtr−(
(1Ntr1

ᵀ
Ntr

D−1
Ω )

1ᵀNtr
D−1

Ω 1Ntr

).

The α(l) are the dual variables and the positive definite kernel function K : Rd ×
R
d → R plays the role of similarity function. The corresponding predictive model
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is ê(l)(x) =
∑Ntr

i=1 α
(l)
i K(x, xi) + bl which provides clustering inference for unseen

data points x. Thus the model has an out-of-sample extension property. For se-
lection of the hyper-parameters of the model i.e. k and σ for RBF kernel we use
the Balanced Angular Fit (BAF) criterion proposed in [6,7].

3 Sparse Reductions to the KSC Model

3.1 Related Work

The projections of the data points in the eigenspace are expressed in terms of

non-sparse kernel expansions. The primal vectors w(l) =
∑Ntr

i=1 α
(l)
i φ(xi) can be

approximated by a reduced set. The objective is to approximate w(l) by a new

weight vector w̃(l) =
∑R
i=1 β

(l)
i φ(x̃i) minimizing ||w(l) − w̃(l)||22 where x̃i is the

ith point in the reduced set RS whose cardinality is R. In [5], it was shown that
if the reduced set RS is known then the β(l) co-efficients can be obtained by
solving the linear system:

Ωψψβ(l) = Ωψφα(l), (4)

where Ωψψ
mn = K(x̃m, x̃n), Ω

ψφ
mi = K(x̃m, xi), m,n = 1, . . . , R, i = 1, . . . , Ntr and

l = 1, . . . , k − 1.
This reduced set can be built by selecting points whose projections in the

eigenspace occupy certain positions or by using an elastic net penalization. Two
methods to attain the same was proposed in [5,8]. The amount of sparsity at-
tained by introducing penalization is not as much as that obtained by selection
of points based on their position. The method based on selecting points from
certain positions as proposed in [5] works when the clusters are well formed and
separated. This is because in that condition we obtain a line structure corre-
sponding to the projections of the data points in the eigenspace.

3.2 Proposed Methods

We propose two methods for selection of points to form the reduced set RS.
In case when the clusters are not well formed and overlapping, the projections
of the corresponding data points in the eigenspace loses the line structure. We
estimate the mean of all the projections for a particular cluster. According to
the properties of least squares linear regressor [11], the linear regressor fit for all
the projections belonging to that cluster in the eigenspace passes through the
mean of the projections. However, it might so happen that in the input space
there is no actual data point corresponding to that mean. So, in order to select
points existing in the input space, we use the concept of angular similarity.

We select all the projections from a cluster whose cosine distance w.r.t. mean
for that cluster (eμi) is less than threshold t i.e. 1 − cos(ej , eμi) < t. Here i =
1, . . . , k − 1 and j = 1, . . . , NCi , ej is a projection and NCi is the number of
points in the ith cluster. We initially set t = 0 and increase it using an iterative
procedure. During each iteration, we increase the value of the t by 0.1 until we
have non-empty selection set corresponding to that cluster. We observe in our
experiments that one iteration is enough for most of the datasets.
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First Proposed Method - Once the selection set is obtained, we calculate the
euclidean distance of these projections from the origin. For the first method of
selection, we select the projection which is the farthest and at median distance
from the origin. The projection which is the farthest from the origin generally
corresponds to a point which is close to the center of the cluster in the input

space. This is because the projection value say e
(l)
c =

∑Ntr

i=1 α
(l)
i K(xi, xc) + bl is

dependent on the α
(l)
i and the kernel evaluation of K(xi, xc). According to the

nearly piecewise structure of the eigenvectors, all the points belonging to that

cluster have nearly similar value of α
(l)
i . The cluster center in the input space

has maximum similarity (≈ 1) to points in that cluster and minimum similarity

(≈ 0) to the points in other clusters. Thus, since the effect of the α
(l)
i is nearly

constant for all the points belonging to a cluster, it can be concluded that the
point corresponding to the cluster center in the input space is the projection
whose euclidean distance is farthest from the origin in the eigenspace . The
median point is selected to provide more stability to the reduced set RS. Thus,
if there are k clusters in a dataset, the number of points required to build the
reduced set is 2k and the sparsity is given as:

Sparsity = 1− 2k

Ntr
(5)

Second Proposed Method - For the second method, we select 10% of the
projections from the selection set obtained as a result of cosine distance for each
cluster. We keep the vector containing the angular distance between these pro-
jections and the corresponding mean in a sorted order. Let the size of this vector
be Si. Then the size of the reduced set for each cluster is ri = �Si

10�, i = 1, . . . , k.

We divide this vector into �Si

ri
� bins for each cluster and select a projection from

each bin. The minimum value that sparsity can take for this method is 1− Ntr

10×Ntr
.

This is when all the projections corresponding to each cluster maintain a line
structure. This is because the cosine similarity of all the projections w.r.t. mean
is maximum. However, in other cases when the projections deviate from the line
structure then the amount of sparsity introduced is:

Sparsity = 1−
k∑

i=1

1

Ntr

Si
ri
. (6)

4 Experimental Results

Table 1 provides information about internal quality metrics namely silhou-
ette criterion (sil), davies-bouldin index (db) and Sparsity (S) in percent-
age for the 2 proposed methods. The benchmark datasets are obtained from
http://cs.joensuu.fi/sipu/datasets/. We compare with method proposed
in [5] and the L2 +L1 penalization based method in [8]. Higher values of sil are
better and lower values of db represents better clustering quality. We highlight
the best results in Table 1 for the 9 real world datasets.

http://cs.joensuu.fi/sipu/datasets/
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Table 1. Experimental Results on various benchmark datasets

Dataset1st Highly Sparse Method2nd Highly Sparse Method Method in [5] L2 + L1 Penalization
sil db S (%) sil db S (%) sil db S (%) sil db S (%)

Breast 0.665 0.928 98.0 0.645 0.955 90 0.6120.975 97.00 0.639 0.933 96.65
Bridge 0.2787 2.05 99.5 0.28 2.009 91.7 0.265 2.15 99.26 0.275 1.72 98.57
Glass 0.433 1.85 78 0.35 1.71 90 0.32 1.99 69.15 0.41 1.81 96.88
Iris 0.3975 0.87 86.7 0.343 1.12 91 0.31 1.25 80.0 0.309 1.306 86.77
MLF 0.74 1.07 99.7 0.701 1.127 96 0.70 1.15 99.5 0.7951.158 99.55
MLJ 0.823 0.448 99.5 0.82 0.453 94.8 0.801 0.67 99.2 0.881 0.67 95.51

Thyroid 0.499 1.198 93.75 0.5121.183 90 0.492 1.73 91.0 0.51 1.24 93.75
Wdbc 0.565 1.28 97.6 0.5535 1.28 90 0.54 1.30 95.12 0.56 1.303 97.6
Wine 0.282 1.86 88.7 0.3 1.86 92.5 0.273 1.92 82.5 0.29 1.91 86.8

(a) Polar Bear Image
(b) Eigenspace for 1st Highly
Sparse Method.

(c) Eigenspace for 2nd

Highly Sparse Method.

(d) Reduced Set for 1st Highly Sparse
Method.

(e) Reduced Set for 2nd Highly Sparse
Method.

(f) Clustering Results for 1st Highly
Sparse Method.

(g) Clustering Results for 2nd Highly
Sparse Method.

Fig. 1. Steps involved for the 2 proposed highly sparse KSC models for an image
dataset

An image segmentation experiment using the χ2 kernel is shown in Figure 1.
The total number of pixels is 154, 401 (321 × 481). The training set consists of
Ntr = 7, 500 pixels and the validation set consists of 10, 000 pixels. Both these
set are selected by maximizing the quadratic Rènyi entropy. After validation we
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obtain k = 3 for kernel parameter σχ = 2.807. The 1st clustering model uses just
6 pixels out of 7, 500 pixels while the second method uses 225 pixels out of 7, 500
training pixels. Since original cluster memberships for this image is not known
beforehand, we use 2 internal quality metrics - the silhouette criterion (sil) and
the davies-bouldin index (db) as described in [12]. For the 1st highly sparse KSC
model the sil value is 0.39 and the db is 1.35 and for the 2nd proposed method
these values are 0.32 and 1.15 respectively.

Figure 1a represents the image to be segmented. Figures 1b and 1c showcase
the eigenspace. In Figure 1b the red lines represent the cluster means and the
black lines represent the farthest and the median projection for that cluster.
Similarly, in Figure 1c the red triangles represent the cluster means and the black
triangles correspond to 10% of the projections. Figures 1d and 1e highlight the
pixels selected from the image as the reduced set RS. These pixels are marked
by red-colored ‘*’ reference. Figures 1f and 1g depict the clustering results for
the highly sparse KSC models.

5 Conclusion

We proposed 2 highly sparse reductions to KSC model based on a reduced set
method. This was achieved by selection of those projections from the eigenspace
which occupy certain positions w.r.t. mean projection for each cluster. The clus-
tering model only depended on this reduced set RS obtained from the training
points. This made the clustering model simpler and the predictive model faster
as less number of computations were required for out-of-sample extensions. The
simulations showed the applicability of the proposed sparse method on various
overlapping and real world datasets.

Acknowledgments. This work was supported by Research Council KUL, ERC
AdG A-DATADRIVE-B, GOA/10/09MaNet, CoE EF/05/006, FWO G.0588.09,
G.0377.12, SBO POM, IUAP P6/04 DYSCO, COST intelliCIS.

References

1. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an al-
gorithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Proceedings of
the Advances in Neural Information Processing Systems, pp. 849–856. MIT Press,
Cambridge (2002)

2. Luxburg, U.: A tutorial on Spectral clustering. Statistics and Computing 17(4),
395–416

3. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Intelligence 22(8), 888–905 (2000)

4. Alzate, C., Suykens, J.A.K.: Multiway spectral clustering with out-of-sample ex-
tensions through weighted kernel PCA. IEEE Transactions on Pattern Analysis
and Machine Intelligence 32(2), 335–347 (2010)

5. Alzate, C., Suykens, J.A.K.: Highly Sparse Kernel Spectral Clustering with Pre-
dictive Out-of-sample extensions. In: ESANN, pp. 235–240 (2010)



Highly Sparse Reductions to Kernel Spectral Clustering 169

6. Mall, R., Langone, R., Suykens, J.A.K.: Kernel Spectral Clustering for Big Data
Networks. Entropy 15(5), 1567–1586 (2013)

7. Langone, R., Mall, R., Suykens, J.A.K.: Soft Kernel Spectral Clustering. IJCNN
(2013)

8. Alzate, C., Suykens, J.A.K.: Sparse kernel spectral clustering models for large-scale
data analysis. Neurocomputing 74(9), 1382–1390 (2011)

9. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:
Least Squares Support Vector Machines. World Scientific, Singapore (2002)

10. Girolami, M.: Orthogonal series density estimation and the kernel eigenvalue prob-
lem. Neural Computation 14(3), 1000–1017 (2002)

11. Kenney, J.F., Keeping, E.S.: Linear Regression and Correlation. Mathematics of
Statistics 3(1), ch. 15, 252–285

12. Rabbany, R., Takaffoli, M., Fagnan, J., Zaiane, O.R., Campello, R.J.G.B.: Relative
Validity Criteria for Community Mining Algorithms. In: International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pp. 258–265
(2012)


	Highly Sparse Reductions to Kernel Spectral
Clustering
	1 Introduction
	2 Kernel Spectral Clustering
	3 Sparse Reductions to the KSC Model
	3.1 Related Work
	3.2 Proposed Methods

	4 Experimental Results
	5 Conclusion
	References




