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Abstract. In this paper, we demonstrate the effectiveness of superim-
posed features for the purpose of template matching-based speaker recog-
nition using sparse representations. The principle behind our hypothesis
is, if the test template approximately lies in the linear span of the train-
ing templates of the genuine class, then so does any linear combination
of test templates. In this paper, we introduce the notion of superimposed
features for the first time. Using our initial trials on the TIMIT database,
we have shown that superimposed features can result in reducing the com-
plexity cost by 80 % with a very minor decrease in identification rate by
0.67 % and a minor increase in EER by 0.85 %.
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1 Introduction

Speaker recognition is the task to recognize a person from his or her voice,
with the help of machines. Depending on the way feature matching is done,
the systems can be classified into template matching systems and probabilistic
modelling systems [1]. Probabilistic modelling systems involve modelling feature
vectors with probability density functions (pdf). The probability of a test utter-
ance, given the speaker model, is evaluated to get the confidence scores [1]-[2].
The template matching techniques, on the other hand, do not involve any prob-
abilistic measures. The features from the test utterances are considered as some
variation of the training features [1]. The template matching-based techniques
are usually faster as no probabilistic modelling is required prior to matching. A
sparse representation for the purpose of pattern classification has been used in
[3]-[5]. A sparse representation model for the speaker recognition was used in [6].
This technique was probabilistic in nature as they used Gaussian Mixture Model
(GMM) mean super vectors to model speaker characteristics. Sparse representa-
tions were invoked after the speaker characteristics were modelled using GMM.
Recently, sparse representations were used using template matching technique
in [7]. The benefit of this kind of technique is the reduction in complexity as
sparse representations can directly be used on the features, without any prior
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modelling. The work also uses Orthogonal Matching Pursuit (OMP)[8] for the
sparse recovery of the weight vector.

However, due to large amount of features in a test or training utterance, this
approach sometimes becomes computationally ineffective as sparse recovery has
to be performed for each and every test feature vector. In this paper, we propose
a new method for speaker recognition using sparse representations, via superim-
posed features, which substantially reduces the computational complexity of such
a system. The main assumption behind our approach is, if the testing template
lies in the linear span of the training templates, then so does any linear combina-
tion of the testing templates. Thus, superimposed features can be considered as
test features. This simple but powerful insight can help us in making real-time
template matching systems for speaker recognition which are computationally
much less expensive, with a very little degradation in performance.

The rest of the paper is organized as follows: The sparse representation frame-
work, sparse recovery using OMP, evaluation of confidence scores and superim-
posed features are discussed in Section 2. In Section 3 and Section 4, we discuss
the experimental setup and results, respectively. Finally, Section 5 concludes the
work along with future research directions.

2 Sparse Representation Framework and Superimposed
Features

2.1 Sparse Representation Framework

Suppose that each speaker is being evaluated against K speakers and each
speaker has a set of N training features, which are m-dimensional. Let us define

Ak = [ak1, ak2, .., akN ] ∈ R
m×N , (1)

as a m×N matrix of all the training features of kth speaker concatenated. Here,
akn represents the feature vector extracted from nth frame of the kth speaker.
A universal dictionary can thus be created by concatenating such matrices from
all the K speakers. That is,

A = [A1, A2, .., AK ] ∈ R
m×K·N . (2)

Now, consider a feature vector y, extracted from a test utterance of some speaker.
One can express this feature vector as an approximate linear combination of
columns of matrix A as

y ≈
K∑

k=1

N∑

n=1

xknakn, (3)

where xkn is the weight associated with the column akn. This can be written in
a more compact form as

y = Ax+ n, (4)

where the vector x contains the weights corresponding to the columns of matrix
A, n is the noise vector which accounts for the approximation in (3) and also
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the noise present in the measurements. If y belongs to a particular class, say
the kth class, then it can be said that it will approximately lie in the linear span
of the training vectors of the kth class [6],[7]. In other words, the test vector of
the kth class can be represented as a linear combination of the training vector of
the kth class. In that case, the weight vector should exhibit high sparsity since
most of the weights corresponding to vectors of other classes will be zero and
only vectors from the kth class will have non-zero weights [6],[7].

To find the weights corresponding to the columns of A, we need to solve the
system of linear equations y = Ax. Since m� K ·N , this is an underdetermined
set of equations and there are infinitely many solutions to this system. However,
we know that the weight vector needs to be highly sparse, therefore, we need
to choose the sparsest solution among these infinitely many solutions. In other
words,

min
x
‖x‖0 subject to y = Ax. (5)

This optimization problem is an NP hard problem [9]. However, several greedy
algorithms like matching pursuit [8], Orthogonal Matching Pursuit (OMP) [8],
etc. have been proposed to solve this system. In this work, we will be using OMP
for the sparse recovery of the weight vector x.

2.2 Sparse Recovery Using Orthogonal Matching Pursuit (OMP)

A brief description of the OMP algorithm is given in Box B.1. The algorithm
with its performance guarantees and details can be found in [8].

Box B.1. OMP Algorithm

Initialize: x̂0 = 0, r0 = y and Λ0 = Φ
for i = 1; i := i+ 1 until stopping criterion is met,
Do
Form signal estimate from residual: gi ←− AT ri−1
Add largest residual entry to support: Λi ←− Λi−1 ∪ supp(max(gi))

Update signal estimate using least squares: x̂|Λi = A†Λi
y|Λc

i←−0
Update measurement residual: ri = y−Ax̂i

End for

This algorithm takes the test vector y, the matrix A and returns the approxi-
mated weight vector x̂. In each iteration, it selects the column in A which has
the highest correlation with the residual, adds the column index to the set Λ,
gets the signal estimate by applying least squares to the columns of A indexed in
the set Λ, and updates the residual for the next iteration. The stopping criterion
used here is,

‖ri‖2 < λ‖y‖2. (6)

Therefore, whenever the norm of the residue goes below a certain fraction of
‖y‖2, the algorithm stops. Heuristically, we found that λ = 0.1 best suits the
requirements of this sparse recovery. It should be noted that this value will differ
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for different scenarios. The value of λ must be chosen carefully, since a high value
will not be able to capture the contributions of enough vectors, whereas a very
small value may result into OMP running unnecessarily for a longer duration.

2.3 Confidence Scores

Suppose, we are given a frame extracted from a testing utterance. We can find
the weight vector x̂, using OMP algorithm as described in the previous section.
This vector will be highly sparse as only a few vectors from the genuine class will
contribute to this test frame. The contribution of each speaker to the test frame
can be calculated using class-based residual [3],[6],[7]. The class-based residual
for kth speaker can be computed by retaining the weights corresponding to the
kth class, and putting all other weights to zero. This can be done by defining a
function δk(x̂)as:

δk(x̂) = [0 . . . 0|0 . . . 0| . . . |x̂k1 . . . x̂kN | . . . |0 . . . 0] . (7)

The normalized class-based residual error can be computed as:

rk(y) =
‖y−Aδk(x̂)‖2

‖y‖2 . (8)

The normalized class based residual error always lies between 0 and 1. A residual
error closer to 0 indicates a close match. The confidence score for kth speaker
for test frame y can be computed as:

ck(y) = exp (−rk(y)) . (9)

This is the confidence score of the kth speaker, for a single frame y, extracted
from the test utterance. Suppose there are Z frames in the testing utterance.
Confidence scores are calculated for all the Z frames and a mean confidence
score is generated for the kth speaker. That is,

Ck =
1

Z

Z∑

i=1

ck (yi) . (10)

This process can be repeated for all the K speakers to get speaker-specific con-
fidence scores for the given test utterance.

2.4 Superimposed Features

If we have a frame from a test utterance belonging to the kth class, it approx-
imately lies in the linear span of the training vectors of that class [6],[7]. Let
y1 and y2 be two frames which come from a testing utterance of kth speaker.
Both y1 and y2 can be approximately written as a linear combination of training
vectors of the kth class.

y1 ≈ α11ak1 + α12ak2 + · · ·+ α1NakN , (11)
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y2 ≈ α21ak1 + α22ak2 + · · ·+ α2NakN , (12)

y1 + y2 ≈ (α11 + α21)ak1 + (α12 + α22)ak2 + · · ·+ (α1N + α2N )akN . (13)

It follows that, any combination of y1 and y2 should also approximately lie in
the linear span of training vectors of the kth class. Let us call the combination
of y1 and y2 as the ‘superimposed vector ’. If this ‘superimposed vector ’ is used
to calculate the weights, the weight vector x̂ will still be sparse, as ideally, only
the vectors from the genuine class should contribute to the test frame (13). This
weight vector after class-based residual should give identical results, as in the
case of y1 or y2 alone. The entire argument can be extended for superposition
of more than two frames as well. Let us call any such combination of multiple
test frames as the ‘superimposed vector ’ and define ‘level of superposition’ as the
number of feature vectors that are superimposed.

One can see that, using a superimposed feature, with level of superposition
‘L’, implies that we are clubbing L features together and feeding it to OMP.
Consequently, the number of times OMP is invoked is reduced by L times. This
in turn reduces the computational complexity of the system, and can help us
in making such systems real time. It should be noted that, though the weight
vector is still sparse, its sparsity will change after superimposed test frames are
given. OMP can be similarly used for the sparse recovery of the weight vector,
however, the stopping criterion on the residual may need to be changed. For our
experiments, we have used the same threshold for stopping OMP.

3 Experimental Setup

3.1 Speech Corpus

The proposed approach is applied on all the 630 speakers in the TIMIT corpus.
In the corpus, each speaker has 10 waveforms, which are divided into ‘sx ’, ‘sa’
and ‘si ’ sections, containing 5, 2 and 3 files per speaker, respectively [10]. The
features, from the waveforms in the section ‘sx ’ and ‘sa’ are taken for training
purpose, whereas the features from the waveforms in ‘si ’ section are taken for
testing purposes. Thus, there are 630 test trials. Each test is evaluated against
20 speakers, which are randomly selected. However, the correct speaker is always
present in the 20 claimants.

3.2 Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCC) [11] were used as features to rep-
resent speaker-specific characteristics. The speech signal is pre-emphasized and
then divided into frames of 20 ms with an overlap of 10 ms. Each frame is
first multiplied by a Hamming window and then 26 Mel-scaled triangular filters
are used to extract a 19 -dimensional MFCC vector. This vector is appended by
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delta cepstral coefficients which are computed over a span of ±2 frames, thus
producing a 38 -dimensional feature vector. Voice Activity Detector (VAD) is also
used to discard frames with low energy. Cepstral Mean Subtraction (CMS) and
normalization were also performed on the feature vectors to cancel the channel
effects.

3.3 Performance Measures

The performance of the proposed technique can be tested using various parame-
ters. We have used Equal Error Rate (EER) [12], % Identification rate (%ID) and
computational complexity as the standard measures for performance analysis.

3.3.1. % Equal Error Rate (EER)
The confidence score obtained by evaluating test speaker with genuine speaker
is called as true (genuine) score and all other confidence scores are called im-
postor scores. For speaker verification, an operating threshold score can be set
for making decisions. In the decision making process, errors are encountered and
the system may face 2 types of errors, viz., false acceptance (false alarm) and
false rejection (miss detection). For one particular operating threshold, both the
errors are equal and the corresponding error value (false alarm or miss detection)
is called as Equal Error Rate (EER). % EER is very useful evaluation metric in
the speaker verification task [12].

3.3.2. % Identification Rate
Let NC be the total number of correct hits (i.e., number of correctly identified
speakers) using the algorithm and NT be total number of test trials (i.e., total
number of speakers). % Identification (%ID) rate is defined as following.

%ID =
NC

NT
× 100. (14)

3.3.3. Computational Complexity
Computational complexity is one of the most important constraints when real-
time systems are deployed. The major complexity step in the mentioned scheme
is the OMP step. Therefore, the computational complexity can either be mea-
sured by number of OMP invocations or the average time it takes to process one
query. All experiments were conducted on Intel Xeon (R), CPU E5-2420 @ 1.90
GHz machine.

4 Experimental Results

Table 1 gives a detailed description of the effect of various levels of superposition
on the performance of system.

It is evident from Table 1 that with increase in level of superposition, there is
a very minor deterioration in the values of % EER and % ID. Comparing to the
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Fig. 1. Average execution time per query, in seconds, for different level of super position

Table 1. % EER, % ID and execution time for different levels of superposition on
TIMIT database

Level of % EER % ID Execution
superposition time (sec)

1 0.45 99.84 530
2 0.45 99.84 265
3 0.7 99.67 211
4 0.97 99.51 176
5 1.3 99.17 156

baseline results, superposition level 5 results in a minor EER increase of 0.85
% and the % ID decreases by just 0.67 %. On the other hand, the numbers of
OMP invocations are reduced to one-fifth of the original value. Consequently,
the execution time per query is also reduced, which is also depicted by Figure
1. Hence, one can significantly reduce the computational cost of the system,
with a little deterioration in EER and identification rate. This experiment can
be conducted for higher level of superposition as well. It is natural that the
% ID rate and EER performance will be deteriorated as level of superposition
increases. This is because, the approximation depicted in (13) grows more and
more inaccurate with increasing level of superposition. Therefore, a trade-off
exists between computational complexity and EER and % ID rate performance.
If one goes on increasing the level of superposition, one will reach a point when
the EER and % ID performance is no longer acceptable. That should be the
optimal level of superposition for the system. The optimal level of superposition
will differ from system to system and has to be experimentally determined. In
this paper, we have considered %ID > 99 % as acceptable performance. Thus,
we have limited ourselves to superposition level of 5.
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5 Summary and Conclusions

In this paper, we have proposed a new technique for speaker recognition, us-
ing sparse representations via superimposed features, which greatly reduce the
complexity cost with a minor deterioration in EER and % ID rate performance.
However, the proposed method does not take into account the increased sparsity
of the weight vector when superimposed vectors are fed to OMP. Presently, we
are running OMP using the same stopping criterion every time. OMP might
need to run a few more iterations, as the sparsity has been decreased. Work
can be done which adaptively determines the number of iterations needed for
a particular level of superposition. The robustness of this scheme can also be
checked against noise with varying SNR.
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