Automatic Generation of Test Models
for Web Services Using WSDL and OCL

Macias Lépez!, Henrique Ferreiro?,

Miguel A. Francisco?, and Laura M. Castro?

1 MADS Group, University of A Corufia, Spain
{macias.lopez,henrique.ferreiro,laura.castro}@madsgroup.org
2 Interoud Innovation S.L, Spain
miguel.francisco@interoud.com

Abstract. Web services are a very popular solution to integrate com-
ponents when building a software system, or to allow communication
between a system and third-party users, providing a flexible, reusable
mechanism to access its functionalities.

To ensure these properties though, intensive testing of web services
is a key activity: we need to verify their behaviour and ensure their
quality as much as possible, as efficiently as possible. In practise, the
compromise between effort and cost leads too often to smaller and less
exhaustive testing than it would be desirable.

In this paper we present a framework to test web services based on
their WSDL specification and certain constraints written in OCL, follow-
ing a black-box approach and using property-based testing. This com-
bination of strategies allows us to face the problem of generating good
quality test suites and test cases by automatically deriving those from
the web service formal description. To illustrate the use of our frame-
work, we present an industrial case study: a distributed system which
serves media contents to customers’ TV screens.

Keywords: Property-Based Testing, Web Services, WSDL, OCL.

1 Introduction

The need to provide access to different kind of systems across the web has be-
come critical. The usual way to do it is through web services, which aim to
provide a means for interaction among software systems, or systems and final
users over the network. There are multiple ways for describing these interactions,
one commonly used being WSDL (Web Services Description Language) [5], an
XML-based language to specify the operations offered by a web service. The
WSDL standard operates at the syntactic level and does not represent the re-
quirements or operational constraints of the web service. Thus, in order to add
semantic information to web service description, the WSDL description must be
completed. A number of choices have been proposed to do this, such as WSDL-
S (Web Services Semantics) [6], SWRL (Semantic Web Rule Language) [4], or
OCL (Object Constraint Language) [2].

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 483-ff90] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



484 M. Lépez et al.

To ensure the quality of a web service [13], we need to guarantee that the
operations work as their specification require, this is, that the semantic informa-
tion is not violated. Based on previous work [I6] which used UML descriptions
together with OCL properties to perform automatic testing of software compo-
nents, we propose to apply property-based testing (PBT) [12] to perform auto-
matic testing of web services. When using PBT, testers have to write properties
that the system under test (SUT) needs to satisfy, rather than specific test cases.
From the properties description, tools can produce the specific test cases auto-
matically. Using this technique, we have a black-box model which describes the
functional properties of the SUT and use it for testing purposes. In particular,
given a WSDL description of a web service and its OCL semantic definition, we
generate the model instead of writing it manually.

2 Property-Based Testing and QuickCheck

As an alternative to manually producing tests from a high-level natural-language
specification, or writing a formal model to describe a system or component,
PBT uses declarative statements to specify properties that the software needs
to satisfy according to its specification. Using this approach, test cases can then
be generated from those properties, a process that can be automated, allowing
to run many tests for each written property.

In our work, we have used QuickCheck, a PBT tool that automates generation,
execution and evaluation of test cases. This allows us to run lots of tests with
very little effort, checking whether the defined properties hold or not.

For testing complex systems, however, isolated properties are not expressive
nor powerful enough. Instead of sequences of independent test cases, we want to
test sequences of calls which modify the state of the service, checking that some
conditions hold before and after each interaction, and that the global state of
the service remains coherent with its expected behaviour call after call.

3 Test Approach: From WSDL+OCL to Properties

The requirements of a system represent the needs that it must fulfil, and they
are usually specified in an abstract way, without technical details. As we want
to use PBT to test the web services behind the WSDL specification, we need
to have the appropriate properties which describe the requirements of the SUT.
To do that, we get information both from the WSDL and the OCL constraints,
and the combination of both allows us to automatically build our test model,
composed by properties. Depending on the requirements of the web service, the
test model can differ: for stateless web services, universally quantified properties
are generated; for stateful ones, the requirements are modelled into a state ma-
chine. Either from the properties or from the state machine modelling the web
service, QuickCheck derives the specific test cases, and then, using an HTTP



Test Models for Web Services with WSDL and OCL 485

adapter (generated from the WSDL specification), we feed the SUT. Thus, using
our framework, the testers do not need to know any specific details about web
services implementation languages.

In addition, if the same API is pre- sut
served, different implementations of a web
service can be tested with the same test / \
properties. The general architecture of our WSDL ocL
framework is shown in Figure [Il file constraints
Firstly, we need to retrieve informa- 1
tion from the WSDL file, so a WSDL o

parser has been developed. We decided to
implement our own because we need to
integrate the semantic information pro-
vided as OCL constraints, writing it as
an easy-to-manage structure to transform
into properties. For instance, from the
WSDL for a calculator we need: the name
of the web service from the service tag;
the name of each operation from the et .
operation tag, contained in interface;
the name of input and output tags for
each operation; the types referred by each
input and output elements; the endpoint and the operation from the binding
tag to get the URL; and the modelReference attribute referring the OCL file.

Then, we have to parse the referred OCL file and check if there is semantic
information associated to any of the operations retrieved in the second item
before. As in the previous case, we found several tools to parse OCL files, but in
all cases the parsing functionality has to be executed associating a UML model
to the OCL. This led us to develop our own OCL parser, taking advantage from
the work made by the OCLNL project [3]: a labelled BNF grammar [I5] for
OCL. This grammar was fed to the BNF compiler (BNFC) [1] to produce the
abstract syntax tree, lexer and parser which we used.

Finally, when the required information from the WSDL and OCL file is re-
trieved, it is time to build the properties for testing.

Type information Semantic information
(data + services) (services)

QuickCheck
properties/model

Fig. 1. Proposed testing architecture

3.1 Stateless web Services

Stateless services or systems do not have an internal state that affects the out-
come of a sequence of calls to their API, so the response returned by a specific
call is independent of the specific moment when it is executed. In this case, the
name of the operation to be tested and the type of its result and arguments is
parsed from the WSDL file; in turn, the test oracle is built out of the constraints
specified in the OCL file.

For the calculator example, we could generate the following property:

prop_pow() ->
?FORALL({A, B}, {ocl_gen:int(), ocl_gen:nat()},
mathUtils:pow(A, B) == ocl_seq:iterate(fun (I, Acc) -> Acc * A end, 1, ocl_seq:new(l, B))).



486 M. Lépez et al.

QuickCheck can run this property and produce specific test cases; this way,
instead of specifying input data manually, data generators are used to gener-
ate data of the corresponding data type. This approach leads to a significant
improvement over traditional tests [21] and most of the research in the state
of the art [RHITLI7[19,22124], since instead of specific values, we define types,
ranges, and conditions that the input data has to meet, which are then produced
automatically instead of manually listed. So, for each pair of an integer and a
natural number that is generated, they are used by the HT'TP adapter to make
a call to the web service under test, getting the URL from the WSDL file. The
value returned by the web service is finally checked in the property body.

With QuickCheck we can not only generate a large amount of specific test
cases derived from properties and executed against the real SUT. Another very
interesting QuickCheck feature is that, when a failing test case is found, the
tool automatically shrinks it to the smallest equivalent counterexample it can
find, making it easier to understand the reason of the failing case [23], and thus
improving also the debugging process.

3.2 Stateful Web Services

In opposition to stateless components, in which each action is independent of
each other, many systems have a behaviour that depends on which actions were
previously performed. In order to test these systems, the internal state has to be
taken into account in the test process. QuickCheck has support for testing this
kind of systems by using state machines. Instead of specifying general properties,
the state machine behaviour is specified by defining an initial state and a state
transition function. Additionally preconditions and postconditions are used to
verify state-related properties in each step. The generated tests cases consist
in random sequences of state transitions where, at each state, both pre- and
postconditions are checked [7]. Our case study, explained in the next section,
falls in this category of stateful web services.

4 Case Study: VoDKATV

VoDKATYV is an IPTV/OTT middleware that provides end-users access to dif-
ferent services on a TV screen, tablet, smartphone, PC, etc., allowing an ad-
vanced multi-screen media experience. Architecturally, it is a distributed system
composed by several components, which are integrated through web services.

Among other things, VODKATYV stores information about the users and de-
vices that can access the system. Devices are identified by a MAC address, and
they are associated to a household (room, in VoODKATV nomenclature). Thus,
when a new user is registered, a new household must be created and the devices
of that user must be registered to that household. This particular subset of VoD-
KATYV functionalities is offered by one single administration web service, which
we have chosen as case study. The web service offers, among others, operations
to create, modify, update and delete households and devices.



Test Models for Web Services with WSDL and OCL 487

The operation used to create a new household is specified in WSDL as:

<wsdl:operation name="CreateRoom"
pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri" wsdlx:safe="true">
<wsdl:input element="msg:createRoomParams"/>
<wsdl:output element="msg:createRoomResponse"/>
</wsdl:operation>

where createRoomParams specifies the parameters received by the web service
(roomId and description):

<xsd:element name="createRoomParams">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="roomId" type="xsd:string" />
<xsd:element name="description" type="xsd:string" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

and createRoomResponse is the response returned by the web service:

<xsd:element name="createRoomResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="roomId" type="xsd:string" />
<xsd:element name="description" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="error" type="tns:error" minOccurs="0" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="error">
<xsd:sequence>
<xsd:element name="code" type="xsd:string" />
<xsd:element name="params" type="tns:errorParams" minOccurs="0" maxOccurs="1"/>
<xsd:element name="description" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="errorParams">
<xsd:sequence>
<xsd:element name="param" type="tns:errorParam" minOccurs="1" maxOccurs="unbound"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="errorParam">
<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute name="value" type="xsd:string" />
</xsd:complexType>

Our approach requires to specify the behaviour of the web service so that the
test cases can be generated automatically. The specification of the CreateRoom
operation is:

— if the specified household identifier (roomId) is empty, the web service must
return a required error;

— if the specified household identifier (roomId) already exists in the VoODKATV
system, the web service must return a duplicated error;

— otherwise, the household must be created, and its identifier (roomId) and
description (description) must be returned by the web service.



488 M. Lépez et al.

This specification is written using OCL pre- and postconditions. For instance,
the specification for the CreateRoom operation can be written in OCL with the
following code, where state_rooms represents the internal test state:

context VoDKATVInterface::CreateRoom(roomId:String, description:String): CreateRoomResponse
post CreateRoom:
if ((roomId = ’’) or (roomId = null)) then
(self.state_rooms = self.state_rooms@pre and
result.errors->size() = 1 and
result.errors->at(0).code = ’required’)
else if (self.state_rooms->select(room | room.roomId = roomId)->notEmpty()) then
(self.state_rooms = self.state_rooms@pre and
result.errors->size() = 1 and

result.errors->at(0) .code = ’duplicated’)
else self.state_rooms = self.state_rooms@pre->including(
Tuple {

roomId:String = roomld,
description:String = description
}) and
result.roomId = roomId and
result.description = description
endif
endif

This OCL specification, together with the WSDL, is used by our framework to
generate QuickCheck properties. To do that, we use the same approach described
n [16], but using WSDL and OCL to generate QuickCheck code. In addition,
during test execution, the newly generated QuickCheck model uses the HTTP
adapter, which is also generated by our tool from the WSDL. Thus, when an
operation is executed, the corresponding web service operation will be invoked,
and the result is analysed by the corresponding postcondition. For example, this
is part of the code generated to check that a required error is returned when
the household identifier is empty:

postcondition(PreState, AfterState,
{call, vodkaTV, createRoom, [RoomId, Description]}, Response) ->
case RoomId of
neo—>
ocl_seq:eq(AfterState#tstate_rooms, PreState#state_rooms)
andalso ocl_string:eq(ocl_datatypes:get_property(code, Response), "required")
end;

where ocl_seq, etc. are ancillary modules that implement utility functions.

Therefore, as a result, we have a QuickCheck test model automatically gen-
erated by our tool from the WSDL and the OCL constraints. This test model
checks that the web service described by the WSDL satisfies the constraints
specified with OCL.

4.1 Analysis of Results

QuickCheck generates specific test cases from the generated test model, i.e.,
random sequences of commands with random parameter values that satisfy the
preconditions. As a second step, QuickCheck executes these commands, invoking
the corresponding operations of the web service, and checks if the SUT fulfils
the postconditions.



Test Models for Web Services with WSDL and OCL 489

Although we have not found any errors in the web service used as case study
(which, considering the system has been in production for a number of years,
was to be expected), we have introduced a number of errors to empirically verify
the effectiveness of our methodology. We have real error reports of VODKATV
as source of inspiration, thus demonstrating that all of them were exposed imme-
diately using the generated QuickCheck model and proposed test architecture.
Besides, thanks to QuickCheck shrinking capabilities, the counterexamples found
were qualified, when shown to the developers who fixed the error corresponding
reports, as very valuable, had it been in place when they had to diagnose them.

5 Conclusions and Future Work

In this paper we have presented a test framework to build test models for web
services using a PBT tool, where semantics are added to WSDL using OCL con-
straints. Using this black-box approach, properties are automatically generated
from one WSDL specification, and specific test cases are automatically gener-
ated and executed. Our framework can generate properties for both stateless
and stateful web services, using declarative statements in the first case and state
machines models in the second. In all cases, the test model produced by the
framework can be used as an updated specification of the SUT with the shape
of an executable model.

One of the main advantages of our approach is the use a PBT tool like
QuickCheck to generate and run the test cases, because it automatically gen-
erates complex testing sequences which stress-test the real system in a more
objective and efficient way than any human tester could [14L[18,20]. We remove
the need to think of specific test cases, rather the general behavioural properties.
Another important aspect of QuickCheck is its shrinking and counterexample
capabilities, a very valuable asset to fault debugging.

We have used a standard specification language, OCL, so testers need not
learn a specification language to write test cases, because properties are auto-
matically generated from the OCL specification. Another advantage of using
PBT instead of hand-written tests is that properties are independent of the im-
plementation details of the SUT. This means that an evolving code base does not
force rewriting the test model, maintaining an intact, updated and executable
specification of the SUT.

As future work, we should be able to trace back the conditions that have
failed when QuickCheck generates a counterexample, showing the specific piece
of OCL code that has produced the error. Furthermore, nowadays a particular
kind of web services is most popular: RESTful web services; we plan to extend our
framework to adapt specifically to the intrinsic properties of these web services.

References

1. BNFC, http://bnfc.digitalgrammars.com/
2. Object Constraint Language (OCL), http://www.omg.org/spec/0CL/2.3.1/


http://bnfc.digitalgrammars.com/
http://www.omg.org/spec/OCL/2.3.1/

490

I

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Lépez et al.

OCLNL, http://www.key-project.org/oclnl/

Semantic Web Rule Language (SWRL), http://www.w3.org/Submission/SWRL/
Web Services Description Language (WSDL), http://www.w3.org/TR/wsd1l/
Web Services Semantics (WSDL-S), http://www.w3.org/Submission/WSDL-S/
Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with
Quviq QuickCheck. In: ACM SIGPLAN Workshop on Erlang., pp. 2-10 (2006)
Askarunisa, A., Abirami, A., Mohan, S.: A test case reduction method for semantic
based web services. In: International Conference on Computing, Communication
and Networking Technologies, pp. 1-7 (2010)

Bai, X., Lee, S., Tsai, W., Chen, Y.: Ontology-based test modeling and partition
testing of web services. In: IEEE International Conference on Web Services, pp.
465-472 (2008)

Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: WS-TAXI: A WSDL-based
testing tool for web services. In: International Conference on Software Testing,
Verification, and Validation, pp. 326-335 (2009)

Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 141-150 (2009)

Derrick, J., Walkinshaw, N.; Arts, T., Benac Earle, C., Cesarini, F., Fredlund, L.-
A., Gulias, V., Hughes, J., Thompson, S.: Property-based testing - the ProTest
project. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 250-271. Springer, Heidelberg (2010)
Emmerich, W.: Managing web service quality. In: International Workshop on Soft-
ware Engineering and Middleware, pp. 1-1 (2006)

Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. SIGSOFT Software Engineering Notes 22(4), 74-80 (1997)

Forsberg, M., Ranta, A.: Labelled BNF: a highlevel formalism for defining well-
behaved programming languages. Estonian Academy of Sciences: Physics and
Mathematics 52, 356-377 (2003)

Francisco, M.A., Castro, L.M.: Automatic generation of test models and properties
from UML models with OCL constraints. In: International Workshop on OCL and
Textual Modelling, pp. 49-54 (2012)

Lampropoulos, L., Sagonas, K.F.: Automatic WSDL-guided test case generation
for proper testing of web services. In: International Workshop on Automated Spec-
ification and Verification of Web Systems, vol. 98, pp. 3-16 (2012)

Mouchawrab, S., Briand, L.C., Labiche, Y., Di Penta, M.: Assessing, comparing,
and combining state machine-based testing and structural testing: A series of ex-
periments. IEEE Transactions Software Engineering 37(2), 161-187 (2011)
Noikajana, S., Suwannasart, T.: An improved test case generation method for web
service testing from WSDL-S and OCL with pair-wise testing technique. In: Inter-
national Computer Software and Applications Conference, pp. 115-123 (2009)
Farrell-Vinay, P.: Managing Software Testing. Auerbach Publishers (2008)
Petrenko, A.: Why automata models are sexy for testers (Invited talk). In: Vir-
bitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 26-26. Springer,
Heidelberg (2007)

Timm, J., Gannod, G.: Specifying semantic web service compositions using UML
and OCL. In: IEEE International Conference on Web Services, pp. 521-528 (2007)
Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183-200 (2002)

Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for
web services. Journal of Software 2(3), 64-77 (2007)


http://www.key-project.org/oclnl/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/wsdl/
http://www.w3.org/Submission/WSDL-S/

	Automatic Generation of Test Models
for Web Services Using WSDL and OCL
	1 Introduction
	2 Property-Based Testing and QuickCheck
	3 Test Approach: From WSDL+OCL to Properties
	3.1 Stateless web Services
	3.2 Stateful Web Services

	4 Case Study: VoDKATV
	4.1 Analysis of Results

	5 Conclusions and Future Work
	References




