

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 446–455, 2013.
© Springer-Verlag Berlin Heidelberg 2013

QoS-Aware Multi-granularity Service Composition
Based on Generalized Component Services

Quanwang Wu, Qingsheng Zhu, and Xing Jian

Computer College, Chongqing University, Chongqing, China
{wqw,qszhu,jx}@cqu.edu.cn

Abstract. QoS-aware service composition aims to maximize overall QoS val-
ues of the resulting composite service. Traditional methods only consider ser-
vice instances that implement one abstract service in the composite service as
candidates, and neglect those that fulfill multiple abstract services. To over-
come this shortcoming, we present the concept of generalized component ser-
vices to expand the selection scope to achieve a better solution. The problem of
QoS-aware multi-granularity service composition is then formulated and how to
discover candidates for each generalized component service is elaborated. A
genetic algorithm based approach is proposed to optimize the resulting compo-
site service instance. Empirical studies are performed at last.

1 Introduction

Service composition is staged at two phases: at first, the abstract composite service,
consisting of a collection of abstract services orchestrated by kinds of workflow pat-
terns, is defined, and then at running time, it is instantiated and executed by binding
abstract services to concrete ones. Since many service instances could provide equiva-
lent functionality with different Quality of Service (QoS) values, an efficient optimiza-
tion approach for automatic service composition is required to optimize the overall QoS
and meet global QoS constraints. This so-called QoS-aware service composition prob-
lem is a hot research topic and a lot of efforts have been devoted to it in recent years.
Zeng et al. [1] use integer programming to find the optimal solution but the approach
suffers from poor scalability due to its exponential computational complexity. Canfora
et al. [2] present a genetic algorithm based approach to enhance the efficiency. The
overall QoS reflected by the fitness value of the genome increases from generation to
generation and the best one is returned as the solution. Other technologies are also ap-
plied to tackle this problem such as skyline query [3] and ant colony optimization [4].

However, current methods mostly lack flexibility of selection. That is, they only
consider service instances that implement one abstract service in the composite ser-
vice as candidates, and neglect those that fulfill multiple abstract services. To illu-
strate, consider a composite service consisting of three abstract services s1, s2 and s3,
which are executed in sequence. Assume there are service instances si1, si2 and si3
which fulfill the functionality of services s1, s2 and s3, respectively, and meanwhile
there exists another service instance si4, which implements the functionalities of s1
and s2 in sequence. Current composition approaches will limit candidates to si1, si2

 QoS-Aware Multi-granularity Service Composition Based on GCS 447

and si3, but not consider si4 even if its QoS is better than the aggregated QoS of si1
and si2, as the process definition of the composite service does not contain a single
service that can accommodate si4.

To the best of our knowledge, only a few works have tried to overcome this short-
coming. Barakat et al. [5] utilize the planning knowledge hierarchy to allow the ex-
pression of multiple decompositions of tasks, but how to construct the hierarchy
among tasks automatically is not mentioned. Zhou et al. [6] present the problem of
QoS-based multi-granularity service selection, and propose an integer programming
based method. They only consider composite services orchestrated in the sequence
pattern and do not explain how to discover candidates in various granularities. Feng et
al. [7] study how to produce a new service composition plan with better QoS, while
preserving its original behaviors, by replacing the service with another service or a set
of services of finer or coarser grain.

In this paper, we present the concept of generalized component services (GCSs) to
expand selection scope for service composition to achieve a better solution. The GCS
is defined in a semantic manner, and the QoS-aware multi-granularity service compo-
sition model is formulated on the basis of this concept. In this model, any service
instance which can fulfill partial functionality of the composite service with the same
execution sequence can be discovered and employed for composition. A genetic algo-
rithm based approach is presented to tackle this optimization problem and how the
proposed approach outperforms the traditional one is described.

2 QoS-aware Multi-granularity Service Composition Model

2.1 Preliminaries

The functionality description of a semantic service can be denoted as a quadruple (I,
O, P, E), such as in OWL-S1, where:

(1) I and O are the inputs and outputs of the service. I and O consist of one or
multiple parameter types and a parameter type is associated to a concept of a shared
ontology. Two types C1 and C2 can either be equal (C1≡C2), in a subclass relationship

(C1 ⊑C2) or not related.
(2) P is the precondition which must hold before service execution and E is the

effect which holds after service execution. P and E can be expressed by rule syntaxes
such as SWRL2.

Apart from the functional description, a service instance3 owns a non-functional
description: QoS. QoS attributes can be classified into two categories: positive
and negative (denoted as Q+ and Q-). For the former, larger values indicate better
performance (e.g. reliability and availability) while for the latter, smaller values indi-
cate better performance (e.g. price and response time).

1 http://www.w3.org/Submission/OWL-S
2 http://www.w3.org/Submission/SWRL
3 In our discussion the term service refers to the abstract functionality and the term service can-

didate or instance refers to a concrete service provided to be consumed (e.g. web service).

448 Q. Wu, Q. Zhu, and X. Jian

Definition 1: Composite Service. A composite service is a value-added service,
formed as a number of component services orchestrated according to a set of control-
flow and data-flow dependencies.

From the view of process orchestration, a composite service can be represented as
a directed acyclic graph (VG, EG), where, VG is the set of vertices including services,
gateways, the source and sink vertices, and EG is the set of edges including control
edges and data edges. Gateways encode the routing logic of control-flow dependen-
cies. A split gateway has a single incoming control edge and multiple outgoing con-
trol edges, while a join gateway has multiple incoming control edges and a single
outgoing control edge. We assume the process orchestration is structured, i.e., for
each split gateway, there exists a corresponding join gateway merging the forked
flows (e.g. XOR-join to XOR-split, AND-join to AND-split).

Control edges represent logical dependencies between services by specifying the
order of interactions, and together with gateways, control edges determine the execu-
tion flow of the composite service. At the same time, data edges represent data de-
pendencies between services and a data edge is a 3-tuple (sfrom, sto, C) meaning that
the service sfrom supplies the concept C to sto. This supply relation holds, iff:

(. ,) (. ,)from too s O o C i s I C i∃ ∈ ∧ ∃ ∈ 

To ensure uniqueness of traversal sequence on the vertices VG in the following sec-
tions, let τ be a topological ordering of VG, which should always be followed during
traversing. Fig. 1 depicts the process orchestration of a composite service for illustra-
tion and the topological ordering τ can be as follows: s1⊕s2s3⊕s4⊗s5s6⊗ (the source
and sink vertices are omitted here).

Fig. 1. Process orchestration of a composite service

Meanwhile, from the view of the functional description, a composite service can
also be represented as (I, O, P, E) like a common service. Each element of the
quadruple can be deduced from component services and the process orchestration.
The data in data edges from the source vertex are the inputs, and the data in data
edges to the sink vertex are the outputs. P can be deduced by aggregating the precon-
ditions of the first-executed services in the composite service, and E can be deduced
by aggregating the effects of the last-executed services. For a concrete composite
service instance, it also has the non-functional attribute QoS and the QoS values are
determined by QoS values of its concrete components and orchestration patterns. The
detailed aggregation functions can be found in [2, 8, 9].

 QoS-Aware Multi-granularity Service Composition Based on GCS 449

2.2 Granularity Model for Service Composition

Definition 2: Generalized Component Service (GCS). A generalized component ser-
vice represents the functionality of a well-formed substructure in the composite ser-
vice and in turn it can be used to compose this composite service as a component. The
substructure can contain one or more services and it is well-formed if:

(1) all the services in it are connected via gateways and control edges;
(2) for each service, all its data edges are included;
(3) for any split gateway contained by the substructure, its corresponding join ga-

teway is also included and vice versa; furthermore, all the vertices between them are
included as well.

The first two requirements are intuitive and the reason to add the third one is to ob-
viate GCSs that can not be used to compose the original composite service due to the
violation of the control-flow dependencies. Take the substructure of s1 and s2 ex-
ecuted in sequence in Fig. 1 as an example: because of lack of s3, which is also be-
tween the split & join gateways like s2, this substructure is not well-formed.

GCS can also be expressed as (I, O, P, E), and each element can be deduced from
the included services and the process orchestration. For example, if the source (sink)
vertex is in the substructure, the data in data edges from the source (sink) vertex are
the inputs (outputs). Otherwise, the data in data edges which have no starting (ending)
vertices are the inputs (outputs).

For two GCSs from a specific composite service, if their included services are ex-
actly the same, their functionality will be also completely the same according to the
definition and requirements of GCSs. Thus, for a GCS, its set of services can be uti-
lized as its identity and representation. Examples of GCSs in Fig. 1 are as follows:
gcs1 = {s2, s3}, gcs2 = {s1, s2, s3}, gcs3 = {s4, s5, s6}, gcs4 = {s1}. There are always
many ways to decompose a composite service into multiple GCSs. For example, the
composite service in Fig. 1 can be decomposed into gcs2 and gcs3, or into gcs4, gcs1
and gcs3, and so on.

Definition 3: GCS Granularity. The granularity of a GCS is defined as the number of
services it contains and it is denoted as gra(GCS). For example, gra(gcs1) = 2,
gra(gcs2) = 3, gra(gcs4) = 1. A GCS is called fine-grained if its granularity is equal to
1, and otherwise it is called coarse-grained.

2.3 Problem Formulation

The target for QoS-aware service composition is to optimize overall QoS of the re-
sulting composite service. The simple additive weighting (SAW) is adopted as the
QoS utility function to facilitate ranking of composite service instances in terms of
QoS. According to SAW, the QoS utility of a composite service instance csik can be
calculated in Eq. 1, where, wt is the preference weight and qt(csik) is the aggregated
value of the tth QoS attribute of csik, and qt,max, qt,min denote the minimal and maximal
possible aggregated values of the tth QoS attribute, respectively.

,max ,min

,max ,min ,max ,min

() ()
() . .

t t

t t k t k t
k t t

q Q q Qt t t t

q q csi q csi q
U csi w w

q q q q− +∈ ∈

− −
= +

− −  (1)

450 Q. Wu, Q. Zhu, and X. Jian

Besides, users may impose global constraints on QoS attributes, e.g., the reliability
should be larger than 95%. Hence, the QoS-aware multi-granularity service composi-
tion problem can be summarized as a two-step process:

1. When the user request for a specific composite service is received, the composi-
tion engine first identifies all the GCSs of the composite service, and then starts to
discover instances for each GCS through the service registry using functional match-
ing based on semantic descriptions;

2. With a number of service instances available for each GCS, the composition en-
gine instantiate the composite service to a concrete one who is the optimal in terms of
QoS utility and satisfies user’s global QoS constraints.

In this context, the traditional QoS-aware service composition problem can be re-
garded as a special kind of our problem, where, granularity of GCSs is limited to 1.

3 Identification of GCSs and Discovery of Service Instances

In order to discover service instances in various granularities for the composite ser-
vice CS, all its generalized component services should be first identified. Since in a
GCS the set of services can be utilized as its indicator, an intuitive method is to enu-
merate all the combinations of services in CS and check whether requirements of
GCSs are satisfied. However, the time complexity of this method is exponential, as
the number of all the combinations is 2n provided that the number of services is n.

Algorithm 1 constructGCS(CS,startId,endId,GCSSet)
for i=startId; i≤endId; i++ do
 v1=CS.VG.get(i,τ);
 if(isService(v1)) then
 constructRest(CS,i+1,endId,GCSSet,v1);
 else if(isSplit(v1)) then
 nestDepth=0; branchStart=i+1; SComb.clear();
 for i=i+1; i≤ endId; i++ do
 v2=CS.VG.get(i,τ);
 if(isService(v2)) then
 SComb.append(v2);
 if(nestDepth==0 && pointToJoin(v2)) then
 constructGCS(CS,branchStart,i,GCSSet);
 branchStart=i+1;
 end if
 else if(isSplit(v2)) then
 ++nestDepth;
 else if(isJoin(v2) && nestDepth--==0) then
 break;
 end if
 end for
 constructRest(CS,i+1,endId,GCSSet,SComb);
 end if
end for

 QoS-Aware Multi-granularity Service Composition Based on GCS 451

Hence, we use the three requirements to construct GCSs, which is shown in Algo-
rithm 1. constructGCS is a recursive function, startId and endId represent the indexes
of the first and last vertex in CS, respectively, and GCSSet stores the constructed
GCSs. The function first traverses vertices of CS from startId to endId successively
following the topological ordering τ. If the vertex v1 is a service, the function con-
structRest is invoked, which constructs GCSs whose initial part is fixed to v1. If it is a
split gateway, the traverse of vertices is continued in order to find each branch be-
tween this pair of split & join gateways. Inside this pair of gateways there may be
nested with other split gateways, and thus nestDepth is used to measure the depth of
nesting. It ascends when another split gateway is encountered and descends when the
join gateway is encountered. A branch is determined when the outgoing control edge
from the vertex v2 points to a join gateway and nestDepth is equal to 0, and then the
function recurs for each branch. When the corresponding join gateway to this split
gateway is found, this inner traverse breaks. For all the services between this pair of
split & join gateways, stored in SComb, constructRest is also invoked.

The function constructRest(CS, startId, endId, GCSSet, SComb) focuses on how to
construct the rest part of a GCS when its initial part is fixed to the service combina-
tion SComb. Since the current SComb is a well-formed GCS itself, it is added into
GCSSet first. Then vertex traverse is started from startId to endId successively, also
following τ. When the vertex is a service, it is appended into SComb, and when the
depth of nest is equal to 0 and the vertex is a join gateway or a service, SComb is
added to GCSSet as a well-formed GCS.

After GCSSet is identified, the composition engine looks up for instances from the
registry for each GCS in it. A service instance si is categorized as a candidate of a gcs,
if its functionality exactly matches gcs with respect to logic-based equivalence of
their formal semantics [10]. The matching in terms of inputs and outputs exploits
defined semantics of the associated concepts as values of service parameters and the
exact matching between si and gcs is formally expressed as:

1 2 1 2 1 2 1 2. , . : . , . :i si I i gcs I i i o gcs O o si O o o∀ ∈ ∃ ∈ ≡ ∧ ∀ ∈ ∃ ∈ ≡

The relaxed matching levels in terms of inputs and outputs such as subsuming and
plugging in can be considered depending on the application requirement. Besides, the
matching in terms of the precondition and effect can also be performed if necessary
[11]. After service discovery, each GCS has a list of service candidates and cnd(gcsi)
is used to denote all the discovered instances of gcsi.

4 Genetic Algorithm for Optimizing Service Composition

Ahead of optimization, we first present the concept of generalized candidates to asso-
ciate instances for GCSs in various granularities to services in the composite service.

Definition 4: Generalized candidates. Let gs(si) denote the set of GCSs in GCSSet,
whose first-traversed service is si. The generalized candidates gcnd(si) of si represents
the union set of cnd(gcsk) whose GCS gcsk belongs to gs(si). Formally, it is defined as:

()
() ()

k igcs
i k

gs s

gcnd s cnd gcs
∈

= 

452 Q. Wu, Q. Zhu, and X. Jian

Therefore, gcnd(si) contains candidates in varying granularities for si and the gra-
nularity of the candidate determines how many services from si in the composite
service it can fulfill. Let si,j represent the jth candidate in gcnd(si). For example, if
gra(si,1) = 1, it indicates si,1 can only fulfill the functionality of si, and if gra(si,1) = 3,
si,1 can fulfill not only the functionality of si, but also that of si+1 and si+2. Fig. 2 de-
picts services in Fig. 1 associated with their generalized candidates.

Fig. 2. Services and their generalized candidates

4.1 Genetic Encoding and Fitness Function

A concrete composite service instance is encoded as a genome for our problem. The
genome is represented by an array with its length equal to the number of component
services and the ith entry in the array refers to the selection result of the ith service.
That is to say, given that the value of the ith entry is j, it indicates that si,j is selected to
execute si.

When a coarse-grained instance si,j from gcnd(si) with the granularity of k is se-
lected for si, it can not only fulfill the functionality of si, but also fulfill the functional-
ity of si+1, si+2, …, si+k-1. In this case, it is not necessary to select instances for those
services, and the corresponding genes in the genome are filled with the pound sign
“#” to indicate that these services have been implemented. Based on this representa-
tion rule, each service in the composite service is implemented by and only by one
service instance in the composite service instance represented by a valid genome. Fig.
3 depicts an example of the genome. In the composite service instance represented by
this genome, there are five service instances: s1,3, s2,9, s4,2, s5,5, s6,4, where s2,9 imple-
ments the tasks of s2 and s3, and s6,4 implements the tasks of s6, s7 and s8.

 Fig. 3. An example of the genome Fig. 4. An example of crossover

The fitness function measures the fitness of the represented solution. As clarified in
Subsection 2.3, the fitness of a composite service instance csik relies on its QoS utili-
ty, and if QoS constraints are satisfied. Thus, it is defined as the sum of QoS utility

 QoS-Aware Multi-granularity Service Composition Based on GCS 453

value and penalty for violations of QoS constraints. Eq. 2 is the fitness function,
where pnl is negative, representing the penalty value for one violation, and xt is a
binary value defined in Eq. 3, denoting whether the tth QoS constraint qct is satisfied.

| |

1
() ()

Q

k k tt
F csi U csi pnl x

=
= + × (2)

1 () ()

0
t t k t t t k t

t

if q Q and q csi qc or q Q and q csi qc
x

else

+ − ∈ ≤ ∈ ≥
= 


 (3)

4.2 Genetic Operators

To guarantee that the representation rule of coarse-grained instances is always fol-
lowed during the evolution of GA (i.e., to keep the genome valid), we extend each
genetic operator with special adaptation.

Initialization Operator: An empty array with the length equal to the number of ser-
vices is initialized and the random assignment is performed from the first gene to the
last. An instance c from the generalized candidates gcnd(s1) of s1 is randomly selected
and bound to the first gene. If gra(c) ≥ 2, the following gra(c)-1 genes are assigned
with “#”. Then the ith gene (i = 1+gra(c)) is selected to be assigned and this process
loops until the last gene is assigned.

Crossover Operator: For a genome with a length of n, there are totally n-1 splitting
points. However, choosing some of them as splitting points will render the resulting
genome invalid after crossover, and thus in a genome, the genes belonging to the
same coarse-grained service instance should not be split. Let sp1 be the set of feasible
splitting points in parent1, and sp2 for parent2. The splitting points the crossover oper-
ator can use are limited to the intersection of sp1 and sp2. For instance, in Fig. 4, sp1 is
{1, 3, 4, 5, 6}, sp2 is {1, 2, 3, 7}, and thus feasible splitting points is {1, 3}.

Mutation Operator: Traditionally, each gene in the genome is selected and mutated
with the same probability and in this case, coarse-grained service instances will be
more likely to be replaced. Therefore, instead, a service instance is randomly selected
with the same probability from all the service instances contained in the represented
solution. The corresponding genes of the selected instance are then reassigned while
complying with the representation rule.

4.3 Empirical Studies

A composite service with n abstract services is simulated and there are m1/n service
instances for each fine-grained GCS in it, m2 instances totally for all coarse-grained
GCSs of various granularities. Let λ represent the ratio that the number of
course-grained candidates divided by that of fine-grained candidates, i.e., λ=m2/m1.
The QWS dataset [12] is adopted to associate the service candidates. For a candidate
with the granularity of k, k pieces of QoS data randomly selected from QWS dataset
are first aggregated and then the aggregated datum is associated to the candidate.

454 Q. Wu, Q. Zhu, and X. Jian

Fig. 5. Enhanced utility w.r.t. n

We evaluate the effectiveness of the proposed GA by comparing it with the tradi-
tional GA from [2], which only considers instances of fine-grained GCSs as candi-
dates. The effectiveness is measured by using the enhanced percentage of the QoS
utility value in the best solution and it is defined as 1 – utraditionalGA / uGA. Figure 5 de-
picts values of enhanced utilities in three case of λ=0.5, 1 and 2, with n growing from
8 to 18 and m1 set to 5*n. When λ becomes larger, i.e., the number of service in-
stances for coarse-grained GCSs grows, the enhanced utility ascends. This value also
goes up with the increase of n. Our approach outperforms the traditional one because
the selection scope for service composition is expanded.

5 Conclusions

Traditional approaches for QoS-aware service composition lacks flexibility of selec-
tion, as only service instances which have corresponding functionality specified in the
composite service via a single service are considered as candidates. This paper
presents the concept of generalized component services to expand the choice space
for QoS-aware service composition, and then proposes GA to solve the problem. The
effectiveness is shown at last via empirical studies.

References

1. Zeng, L., et al.: QoS-aware middleware for Web Services Composition. IEEE Transactions
on Software Engineering 30(5), 311–327 (2004)

2. Canfora, G., et al.: An approach for QoS-aware service composition based on genetic algo-
rithms. In: Proceedings of GECCO 2005, pp. 1069–1075 (2005)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service
composition. In: Proceedings of WWW 2010, pp. 11–20 (2010)

4. Wu, Q., Zhu, Q.: Transactional and QoS-aware dynamic service composition based on ant
colony optimization. Future Generation Computer Systems 29(4), 1112–1119 (2013)

5. Barakat, L., Miles, S., Poernomo, I., Luck, M.: Efficient multi-granularity service compo-
sition. In: 2011 IEEE International Conference on Web Services, ICWS (2011)

6. Zhou, B., Yin, K., Jiang, H., Zhang, S., Kavs, A.J.: QoS-based selection of multi-
granularity web services for the composition. Journal of Software 6(3), 366–373 (2011)

 QoS-Aware Multi-granularity Service Composition Based on GCS 455

7. Feng, Z., et al.: QoS-aware and multi-granularity service composition. Information Sys-
tems Frontiers 15(4), 553–567 (2013)

8. Jaeger, M.C., et al.: Qos aggregation for web service composition using workflow patterns.
In: International Enterprise Distributed Object Computing Conference, pp. 149–159 (2004)

9. Xia, Y., Luo, X., Li, J., Zhu, Q.: A Petri-Net-Based Approach to Reliability Determination
of Ontology-Based Service Compositions. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems 43(5), 1240–1247 (2013)

10. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service mat-
chmaker for OWL-S services. Web Semantics: Science, Services and Agents on the World
Wide Web 7(2), 121–133 (2009)

11. Bartalos, P., Bieliková, M.: Qos aware semantic web service composition approach consi-
dering pre/postconditions. In: IEEE International Conference on Web Services (ICWS),
pp. 345–352 (2010)

12. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: Pro-
ceeding of WWW 2008, pp. 795–804 (2008)

	QoS-Aware Multi-granularity Service Composition
Based on Generalized Component Services
	1 Introduction
	2 QoS-aware Multi-granularity Service Composition Model
	2.1 Preliminaries
	2.2 Granularity Model for Service Composition
	2.3 Problem Formulation

	3 Identification of GCSs and Discovery of Service Instances
	4 Genetic Algorithm for Optimizing Service Composition
	4.1 Genetic Encoding and Fitness Function
	4.2 Genetic Operators
	4.3 Empirical Studies

	5 Conclusions
	References

