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Abstract. QoS-aware service composition aims to maximize overall QoS val-
ues of the resulting composite service. Traditional methods only consider ser-
vice instances that implement one abstract service in the composite service as 
candidates, and neglect those that fulfill multiple abstract services. To over-
come this shortcoming, we present the concept of generalized component ser-
vices to expand the selection scope to achieve a better solution. The problem of 
QoS-aware multi-granularity service composition is then formulated and how to 
discover candidates for each generalized component service is elaborated. A 
genetic algorithm based approach is proposed to optimize the resulting compo-
site service instance. Empirical studies are performed at last. 

1 Introduction 

Service composition is staged at two phases: at first, the abstract composite service, 
consisting of a collection of abstract services orchestrated by kinds of workflow pat-
terns, is defined, and then at running time, it is instantiated and executed by binding 
abstract services to concrete ones. Since many service instances could provide equiva-
lent functionality with different Quality of Service (QoS) values, an efficient optimiza-
tion approach for automatic service composition is required to optimize the overall QoS 
and meet global QoS constraints. This so-called QoS-aware service composition prob-
lem is a hot research topic and a lot of efforts have been devoted to it in recent years. 
Zeng et al. [1] use integer programming to find the optimal solution but the approach 
suffers from poor scalability due to its exponential computational complexity. Canfora 
et al. [2] present a genetic algorithm based approach to enhance the efficiency. The 
overall QoS reflected by the fitness value of the genome increases from generation to 
generation and the best one is returned as the solution. Other technologies are also ap-
plied to tackle this problem such as skyline query [3] and ant colony optimization [4].  

However, current methods mostly lack flexibility of selection. That is, they only 
consider service instances that implement one abstract service in the composite ser-
vice as candidates, and neglect those that fulfill multiple abstract services. To illu-
strate, consider a composite service consisting of three abstract services s1, s2 and s3, 
which are executed in sequence. Assume there are service instances si1, si2 and si3 
which fulfill the functionality of services s1, s2 and s3, respectively, and meanwhile 
there exists another service instance si4, which implements the functionalities of s1 
and s2 in sequence. Current composition approaches will limit candidates to si1, si2 
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and si3, but not consider si4 even if its QoS is better than the aggregated QoS of si1 
and si2, as the process definition of the composite service does not contain a single 
service that can accommodate si4.  

To the best of our knowledge, only a few works have tried to overcome this short-
coming. Barakat et al. [5] utilize the planning knowledge hierarchy to allow the ex-
pression of multiple decompositions of tasks, but how to construct the hierarchy 
among tasks automatically is not mentioned. Zhou et al. [6] present the problem of 
QoS-based multi-granularity service selection, and propose an integer programming 
based method. They only consider composite services orchestrated in the sequence 
pattern and do not explain how to discover candidates in various granularities. Feng et 
al. [7] study how to produce a new service composition plan with better QoS, while 
preserving its original behaviors, by replacing the service with another service or a set 
of services of finer or coarser grain. 

In this paper, we present the concept of generalized component services (GCSs) to 
expand selection scope for service composition to achieve a better solution. The GCS 
is defined in a semantic manner, and the QoS-aware multi-granularity service compo-
sition model is formulated on the basis of this concept. In this model, any service 
instance which can fulfill partial functionality of the composite service with the same 
execution sequence can be discovered and employed for composition. A genetic algo-
rithm based approach is presented to tackle this optimization problem and how the 
proposed approach outperforms the traditional one is described. 

2 QoS-aware Multi-granularity Service Composition Model 

2.1 Preliminaries 

The functionality description of a semantic service can be denoted as a quadruple (I, 
O, P, E), such as in OWL-S1, where: 

(1) I and O are the inputs and outputs of the service. I and O consist of one or 
multiple parameter types and a parameter type is associated to a concept of a shared 
ontology. Two types C1 and C2 can either be equal (C1≡C2), in a subclass relationship 

(C1 ⊑C2) or not related. 
(2) P is the precondition which must hold before service execution and E is the 

effect which holds after service execution. P and E can be expressed by rule syntaxes 
such as SWRL2. 

Apart from the functional description, a service instance3 owns a non-functional 
description: QoS. QoS attributes can be classified into two categories: positive  
and negative (denoted as Q+ and Q-). For the former, larger values indicate better 
performance (e.g. reliability and availability) while for the latter, smaller values indi-
cate better performance (e.g. price and response time).  

                                                           
1 http://www.w3.org/Submission/OWL-S 
2 http://www.w3.org/Submission/SWRL 
3 In our discussion the term service refers to the abstract functionality and the term service can-

didate or instance refers to a concrete service provided to be consumed (e.g. web service). 
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Definition 1: Composite Service. A composite service is a value-added service, 
formed as a number of component services orchestrated according to a set of control-
flow and data-flow dependencies.  

From the view of process orchestration, a composite service can be represented as 
a directed acyclic graph (VG, EG), where, VG is the set of vertices including services, 
gateways, the source and sink vertices, and EG is the set of edges including control 
edges and data edges. Gateways encode the routing logic of control-flow dependen-
cies. A split gateway has a single incoming control edge and multiple outgoing con-
trol edges, while a join gateway has multiple incoming control edges and a single 
outgoing control edge. We assume the process orchestration is structured, i.e., for 
each split gateway, there exists a corresponding join gateway merging the forked 
flows (e.g. XOR-join to XOR-split, AND-join to AND-split). 

Control edges represent logical dependencies between services by specifying the 
order of interactions, and together with gateways, control edges determine the execu-
tion flow of the composite service. At the same time, data edges represent data de-
pendencies between services and a data edge is a 3-tuple (sfrom, sto, C) meaning that 
the service sfrom supplies the concept C to sto. This supply relation holds, iff:  

( . , ) ( . , )from too s O o C i s I C i∃ ∈ ∧ ∃ ∈    

To ensure uniqueness of traversal sequence on the vertices VG in the following sec-
tions, let τ be a topological ordering of VG, which should always be followed during 
traversing. Fig. 1 depicts the process orchestration of a composite service for illustra-
tion and the topological ordering τ can be as follows: s1⊕s2s3⊕s4⊗s5s6⊗ (the source 
and sink vertices are omitted here). 

 

Fig. 1. Process orchestration of a composite service 

Meanwhile, from the view of the functional description, a composite service can 
also be represented as (I, O, P, E) like a common service. Each element of the 
quadruple can be deduced from component services and the process orchestration. 
The data in data edges from the source vertex are the inputs, and the data in data 
edges to the sink vertex are the outputs. P can be deduced by aggregating the precon-
ditions of the first-executed services in the composite service, and E can be deduced 
by aggregating the effects of the last-executed services. For a concrete composite 
service instance, it also has the non-functional attribute QoS and the QoS values are 
determined by QoS values of its concrete components and orchestration patterns. The 
detailed aggregation functions can be found in [2, 8, 9].   
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2.2 Granularity Model for Service Composition 

Definition 2: Generalized Component Service (GCS). A generalized component ser-
vice represents the functionality of a well-formed substructure in the composite ser-
vice and in turn it can be used to compose this composite service as a component. The 
substructure can contain one or more services and it is well-formed if: 

(1) all the services in it are connected via gateways and control edges; 
(2) for each service, all its data edges are included; 
(3) for any split gateway contained by the substructure, its corresponding join ga-

teway is also included and vice versa; furthermore, all the vertices between them are 
included as well. 

The first two requirements are intuitive and the reason to add the third one is to ob-
viate GCSs that can not be used to compose the original composite service due to the 
violation of the control-flow dependencies. Take the substructure of s1 and s2 ex-
ecuted in sequence in Fig. 1 as an example: because of lack of s3, which is also be-
tween the split & join gateways like s2, this substructure is not well-formed. 

GCS can also be expressed as (I, O, P, E), and each element can be deduced from 
the included services and the process orchestration. For example, if the source (sink) 
vertex is in the substructure, the data in data edges from the source (sink) vertex are 
the inputs (outputs). Otherwise, the data in data edges which have no starting (ending) 
vertices are the inputs (outputs). 

For two GCSs from a specific composite service, if their included services are ex-
actly the same, their functionality will be also completely the same according to the 
definition and requirements of GCSs. Thus, for a GCS, its set of services can be uti-
lized as its identity and representation. Examples of GCSs in Fig. 1 are as follows: 
gcs1 = {s2, s3}, gcs2 = {s1, s2, s3}, gcs3 = {s4, s5, s6}, gcs4 = {s1}. There are always 
many ways to decompose a composite service into multiple GCSs. For example, the 
composite service in Fig. 1 can be decomposed into gcs2 and gcs3, or into gcs4, gcs1 
and gcs3, and so on. 

Definition 3: GCS Granularity. The granularity of a GCS is defined as the number of 
services it contains and it is denoted as gra(GCS). For example, gra(gcs1) = 2, 
gra(gcs2) = 3, gra(gcs4) = 1. A GCS is called fine-grained if its granularity is equal to 
1, and otherwise it is called coarse-grained.  

2.3 Problem Formulation 

The target for QoS-aware service composition is to optimize overall QoS of the re-
sulting composite service. The simple additive weighting (SAW) is adopted as the 
QoS utility function to facilitate ranking of composite service instances in terms of 
QoS. According to SAW, the QoS utility of a composite service instance csik can be 
calculated in Eq. 1, where, wt is the preference weight and qt(csik) is the aggregated 
value of the tth QoS attribute of csik, and qt,max, qt,min denote the minimal and maximal 
possible aggregated values of the tth QoS attribute, respectively.  

 
,max ,min

,max ,min ,max ,min

( ) ( )
( ) . .

t t

t t k t k t
k t t

q Q q Qt t t t
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− −
= +

− −       (1) 
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Besides, users may impose global constraints on QoS attributes, e.g., the reliability 
should be larger than 95%. Hence, the QoS-aware multi-granularity service composi-
tion problem can be summarized as a two-step process:  

1. When the user request for a specific composite service is received, the composi-
tion engine first identifies all the GCSs of the composite service, and then starts to 
discover instances for each GCS through the service registry using functional match-
ing based on semantic descriptions;  

2. With a number of service instances available for each GCS, the composition en-
gine instantiate the composite service to a concrete one who is the optimal in terms of 
QoS utility and satisfies user’s global QoS constraints.  

In this context, the traditional QoS-aware service composition problem can be re-
garded as a special kind of our problem, where, granularity of GCSs is limited to 1. 

3 Identification of GCSs and Discovery of Service Instances 

In order to discover service instances in various granularities for the composite ser-
vice CS, all its generalized component services should be first identified. Since in a 
GCS the set of services can be utilized as its indicator, an intuitive method is to enu-
merate all the combinations of services in CS and check whether requirements of 
GCSs are satisfied. However, the time complexity of this method is exponential, as 
the number of all the combinations is 2n provided that the number of services is n. 

Algorithm 1 constructGCS(CS,startId,endId,GCSSet) 
for i=startId; i≤endId; i++ do  
    v1=CS.VG.get(i,τ); 
    if(isService(v1)) then 
       constructRest(CS,i+1,endId,GCSSet,v1); 
    else if(isSplit(v1)) then 
       nestDepth=0; branchStart=i+1; SComb.clear(); 
       for i=i+1; i≤ endId; i++ do 
          v2=CS.VG.get(i,τ); 
          if(isService(v2)) then 
             SComb.append(v2); 
             if(nestDepth==0 && pointToJoin(v2)) then 
                 constructGCS(CS,branchStart,i,GCSSet); 
                 branchStart=i+1; 
             end if 
           else if(isSplit(v2)) then 
               ++nestDepth; 
           else if(isJoin(v2) && nestDepth--==0) then 
               break;  
           end if 
        end for  
        constructRest(CS,i+1,endId,GCSSet,SComb);  
    end if 
end for  



 QoS-Aware Multi-granularity Service Composition Based on GCS 451 

 

Hence, we use the three requirements to construct GCSs, which is shown in Algo-
rithm 1. constructGCS is a recursive function, startId and endId represent the indexes 
of the first and last vertex in CS, respectively, and GCSSet stores the constructed 
GCSs. The function first traverses vertices of CS from startId to endId successively 
following the topological ordering τ. If the vertex v1 is a service, the function con-
structRest is invoked, which constructs GCSs whose initial part is fixed to v1. If it is a 
split gateway, the traverse of vertices is continued in order to find each branch be-
tween this pair of split & join gateways. Inside this pair of gateways there may be 
nested with other split gateways, and thus nestDepth is used to measure the depth of 
nesting. It ascends when another split gateway is encountered and descends when the 
join gateway is encountered. A branch is determined when the outgoing control edge 
from the vertex v2 points to a join gateway and nestDepth is equal to 0, and then the 
function recurs for each branch. When the corresponding join gateway to this split 
gateway is found, this inner traverse breaks. For all the services between this pair of 
split & join gateways, stored in SComb, constructRest is also invoked.  

The function constructRest(CS, startId, endId, GCSSet, SComb) focuses on how to 
construct the rest part of a GCS when its initial part is fixed to the service combina-
tion SComb. Since the current SComb is a well-formed GCS itself, it is added into 
GCSSet first. Then vertex traverse is started from startId to endId successively, also 
following τ. When the vertex is a service, it is appended into SComb, and when the 
depth of nest is equal to 0 and the vertex is a join gateway or a service, SComb is 
added to GCSSet as a well-formed GCS.  

After GCSSet is identified, the composition engine looks up for instances from the 
registry for each GCS in it. A service instance si is categorized as a candidate of a gcs, 
if its functionality exactly matches gcs with respect to logic-based equivalence of 
their formal semantics [10]. The matching in terms of inputs and outputs exploits 
defined semantics of the associated concepts as values of service parameters and the 
exact matching between si and gcs is formally expressed as: 

1 2 1 2 1 2 1 2. , . : . , . :i si I i gcs I i i o gcs O o si O o o∀ ∈ ∃ ∈ ≡ ∧ ∀ ∈ ∃ ∈ ≡  

The relaxed matching levels in terms of inputs and outputs such as subsuming and 
plugging in can be considered depending on the application requirement. Besides, the 
matching in terms of the precondition and effect can also be performed if necessary 
[11]. After service discovery, each GCS has a list of service candidates and cnd(gcsi) 
is used to denote all the discovered instances of gcsi.  

4 Genetic Algorithm for Optimizing Service Composition 

Ahead of optimization, we first present the concept of generalized candidates to asso-
ciate instances for GCSs in various granularities to services in the composite service. 

Definition 4: Generalized candidates. Let gs(si) denote the set of GCSs in GCSSet, 
whose first-traversed service is si. The generalized candidates gcnd(si) of si represents 
the union set of cnd(gcsk) whose GCS gcsk belongs to gs(si). Formally, it is defined as:  

( )
( ) ( )

k igcs
i k

gs s

gcnd s cnd gcs
∈

=   
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Therefore, gcnd(si) contains candidates in varying granularities for si and the gra-
nularity of the candidate determines how many services from si in the composite  
service it can fulfill. Let si,j represent the jth candidate in gcnd(si). For example, if 
gra(si,1) = 1, it indicates si,1 can only fulfill the functionality of si, and if gra(si,1) = 3, 
si,1 can fulfill not only the functionality of si, but also that of si+1 and si+2. Fig. 2 de-
picts services in Fig. 1 associated with their generalized candidates. 
 

 

Fig. 2. Services and their generalized candidates 

4.1 Genetic Encoding and Fitness Function 

A concrete composite service instance is encoded as a genome for our problem. The 
genome is represented by an array with its length equal to the number of component 
services and the ith entry in the array refers to the selection result of the ith service. 
That is to say, given that the value of the ith entry is j, it indicates that si,j is selected to 
execute si.  

When a coarse-grained instance si,j from gcnd(si) with the granularity of k is se-
lected for si, it can not only fulfill the functionality of si, but also fulfill the functional-
ity of si+1, si+2, …, si+k-1. In this case, it is not necessary to select instances for those 
services, and the corresponding genes in the genome are filled with the pound sign 
“#” to indicate that these services have been implemented. Based on this representa-
tion rule, each service in the composite service is implemented by and only by one 
service instance in the composite service instance represented by a valid genome. Fig. 
3 depicts an example of the genome. In the composite service instance represented by 
this genome, there are five service instances: s1,3, s2,9, s4,2, s5,5, s6,4, where s2,9 imple-
ments the tasks of s2 and s3, and s6,4 implements the tasks of s6, s7 and s8.  
 

              

    Fig. 3. An example of the genome                   Fig. 4. An example of crossover 

The fitness function measures the fitness of the represented solution. As clarified in 
Subsection 2.3, the fitness of a composite service instance csik relies on its QoS utili-
ty, and if QoS constraints are satisfied. Thus, it is defined as the sum of QoS utility 
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value and penalty for violations of QoS constraints. Eq. 2 is the fitness function, 
where pnl is negative, representing the penalty value for one violation, and xt is a 
binary value defined in Eq. 3, denoting whether the tth QoS constraint qct is satisfied. 

| |

1
( ) ( )

Q

k k tt
F csi U csi pnl x

=
= + ×                     (2) 

1 ( ) ( )

0
t t k t t t k t

t

if q Q and q csi qc or q Q and q csi qc
x

else

+ − ∈ ≤ ∈ ≥
= 


 (3) 

4.2 Genetic Operators 

To guarantee that the representation rule of coarse-grained instances is always fol-
lowed during the evolution of GA (i.e., to keep the genome valid), we extend each 
genetic operator with special adaptation.  

Initialization Operator: An empty array with the length equal to the number of ser-
vices is initialized and the random assignment is performed from the first gene to the 
last. An instance c from the generalized candidates gcnd(s1) of s1 is randomly selected 
and bound to the first gene. If gra(c) ≥ 2, the following gra(c)-1 genes are assigned 
with “#”. Then the ith gene (i = 1+gra(c)) is selected to be assigned and this process 
loops until the last gene is assigned.  

Crossover Operator: For a genome with a length of n, there are totally n-1 splitting 
points. However, choosing some of them as splitting points will render the resulting 
genome invalid after crossover, and thus in a genome, the genes belonging to the 
same coarse-grained service instance should not be split. Let sp1 be the set of feasible 
splitting points in parent1, and sp2 for parent2. The splitting points the crossover oper-
ator can use are limited to the intersection of sp1 and sp2. For instance, in Fig. 4, sp1 is 
{1, 3, 4, 5, 6}, sp2 is {1, 2, 3, 7}, and thus feasible splitting points is {1, 3}.  

Mutation Operator: Traditionally, each gene in the genome is selected and mutated 
with the same probability and in this case, coarse-grained service instances will be 
more likely to be replaced. Therefore, instead, a service instance is randomly selected 
with the same probability from all the service instances contained in the represented 
solution. The corresponding genes of the selected instance are then reassigned while 
complying with the representation rule.  

4.3 Empirical Studies 

A composite service with n abstract services is simulated and there are m1/n service 
instances for each fine-grained GCS in it, m2 instances totally for all coarse-grained 
GCSs of various granularities. Let λ represent the ratio that the number of  
course-grained candidates divided by that of fine-grained candidates, i.e., λ=m2/m1. 
The QWS dataset [12] is adopted to associate the service candidates. For a candidate 
with the granularity of k, k pieces of QoS data randomly selected from QWS dataset 
are first aggregated and then the aggregated datum is associated to the candidate.  
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Fig. 5. Enhanced utility w.r.t. n 

We evaluate the effectiveness of the proposed GA by comparing it with the tradi-
tional GA from [2], which only considers instances of fine-grained GCSs as candi-
dates. The effectiveness is measured by using the enhanced percentage of the QoS 
utility value in the best solution and it is defined as 1 – utraditionalGA / uGA. Figure 5 de-
picts values of enhanced utilities in three case of λ=0.5, 1 and 2, with n growing from 
8 to 18 and m1 set to 5*n. When λ becomes larger, i.e., the number of service in-
stances for coarse-grained GCSs grows, the enhanced utility ascends. This value also 
goes up with the increase of n. Our approach outperforms the traditional one because 
the selection scope for service composition is expanded.  

5 Conclusions 

Traditional approaches for QoS-aware service composition lacks flexibility of selec-
tion, as only service instances which have corresponding functionality specified in the 
composite service via a single service are considered as candidates. This paper 
presents the concept of generalized component services to expand the choice space 
for QoS-aware service composition, and then proposes GA to solve the problem. The 
effectiveness is shown at last via empirical studies.  
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