Multi-Objective Service Composition
Using Reinforcement Learning

Ahmed Moustafa and Minjie Zhang

School of Computer Science and Software Engineering
University of Wollongong, Gwnneville, NSW 2500, Australia
{aase995,minjie}Ouowmail . edu.au
http://www.uow.edu.au

Abstract. Web services have the potential to offer the enterprises with
the ability to compose internal and external business services in order
to accomplish complex processes. Service composition then becomes an
increasingly challenging issue when complex and critical applications are
built upon services with different QoS criteria. However, most of the
existing QoS-aware compositions are simply based on the assumption
that multiple criteria, no matter whether these multiple criteria are con-
flicting or not, can be combined into a single criterion to be optimized,
according to some utility functions. In practice, this can be very difficult
as utility functions or weights are not well known a priori. In this paper,
a novel multi-objective approach is proposed to handle QoS-aware Web
service composition with conflicting objectives and various restrictions
on quality matrices. The proposed approach uses reinforcement learning
to deal with the uncertainty characteristic inherent in open and decen-
tralized environments. Experimental results reveal the ability of the pro-
posed approach to find a set of Pareto optimal solutions, which have the
equivalent quality to satisfy multiple QoS-objectives with different user
preferences.

Keywords: Web services, multi-objective optimization, reinforcement
learning.

1 Introduction

Web service composition is an important and effective technique that enables
individual services to be combined together to generate a more powerful service,
composite service. When conducting service composition, certain Quality of Ser-
vice (QoS) constraints have to be considered, namely, QoS-aware Web service
composition. This usually refers to the problem of composing a set of appropri-
ate services into a richer service that follows application logics while satisfying
certain QoS requirements.

QoS-aware Web service composition has been widely researched in the areas
of Service Oriented Architecture (SOA) and Service Oriented Computing (SOC)
[4IT0/19]). However, existing approaches assume simple service composition mod-
els. Also, they give a single objective semi-optimal solution rather than a set of

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 298-BT2] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.uow.edu.au

Multi-Objective Service Composition Using Reinforcement Learning 299

Pareto optimal solutions that exhibit the trade-offs among different objectives.
For example, it becomes complex if a client wants to make sure of receiving a ser-
vice which meets a specific performance within a given cost level and a minimum
time delay, but within a higher availability. This is because different dimensional
qualities may conflict with one another in the real world. A typical example is
the time and cost pair. QoS-aware service composition is then a multi-objective
optimization problem, which requires simultaneous optimization of multiple and
often competing criteria. Finding the optimal solutions for QoS-aware Web ser-
vice composition with conflicting objectives and various restrictions on quality
matrices is an NP-hard problem.

In the literature, linear weight sum method is employed, and single-objective
algorithms are used to solve this problem [22]. However, linear weight sum
method has the following problems: 1) solutions are sensitive to the weight vec-
tor and stronger prior awareness is required before solving the problem; 2) its
number of solutions is small and the distribution of solutions is poor; 3) its time
complexity increases exponentially with the increasing problem space size; 4)
it will fail to find Pareto optimal solutions which lie in concave regions of the
Pareto front.

On the other hand, linear weight sum method offers the user only one solution,
while in reality, the user might prefer to see several good solutions, i.e., Pareto
optimal, and decide which one is the best for himself. It is more natural to let
the user decide the importance of each objective than aggregating the objectives
and ask the user to specify a priori his/her preferences which is a demanding
task. By using multi-objective optimization, it is no longer necessary for the user
to define a priori an aggregation function.

Reinforcement learning (RL) [I5] originally stems from the studies of ani-
mal intelligence, and has been developed as a major branch of machine learning
for solving sequential decision-making problems. RL is concerned with how an
agent ought to take actions in an environment so as to maximize some notion
of long-term reward. RL has primarily been limited in its applicability to solve
only single objective problems. However, many industrial and scientific prob-
lems are inherently complex and cannot be expressed in terms of just a single
objective. Multi-objective Reinforcement Learning (MORL) combines advances
in multi-objective optimization and techniques from reinforcement learning, thus
extending RL techniques into the realms of multi-objective problems.

In this paper, an approach based on (MORL) is proposed for multi-objective
service composition and adaptation in dynamic uncertain environments. Within
the proposed approach, two algorithms are devised to handle different compo-
sition scenarios based on user preferences. Experiments have shown the ability
of the proposed approach to provide scalable results especially in compositions
with multiple quality attributes. The rest of this paper is organized as follows.
The problem formulation and basic definitions are introduced in Section 2. Sec-
tion 3 presents the multi-objective service composition approach. In Section 4,
some experimental results are presented for evaluating the proposed approach.

300 A. Moustafa and M. Zhang

Section 5 gives a brief review of related work and discussions. Finally, the paper
is concluded in Section 6.

2 Problem Formulation

In this section, we describe the problem of service composition and give basic
definitions related to our approach. In this approach, we employ the concept of
Markov Decision Process (MDP) to schematically describe the process of ser-
vice composition and adaptation. MDP is an AI method to model sequential
decision processes under uncertainty and has also been used in different applica-
tions [12]. We use Multi-objective Markov Decision Process (MOMDP) to model
multi-objective service composition in uncertain dynamic environments. The key
concepts used in our approach are formally defined as follows.

In general, Web services can be described in terms of their service ID and
QoS. A Web service can be formally defined by Definition 1.

Definition 1: (Web Service). A Web Service WS is defined as a tuple W.S =<
ID, QoS >, where ID is the identifier of the Web service, QoS is the quality of
the service represented by a n-tuple < Q1;Q2;...; @, >, where each Q; denotes
a QoS attribute of W S.

Generally, a single objective Markov Decision Process (MDP) can be defined
defined as follows.

Definition 2: (Markov Decision Process (MDP)). An MDP is defined as
a 4-tuple MDP =< S, A, P, R >, where

— S is a finite set of states of the world;

— A(s) is a finite set of actions depending on the current state s € S;

— P is a probability value, i.e., when an action a € A is performed, the world
makes a probabilistic transition from its current state s to a resulting state
s’ according to a probability distribution P(s’ | s,a); and

— Risareward function. Similarly, when action a is performed the world makes
its transition from s to s’ , the composition receives a real-valued reward 7,
whose expected value is » = R(s' | s,a).

By extending the single-objective Markov decision process, the multi-objective
Markov decision process is defined as follows.

Definition 3: (Multi-Objective Markov Decision Process (MOMDP)).
An MOMDP is defined where

— There is an environment and an agent which takes an action at discrete time
t=1,2,3, .

— The agent receives a state s € S from the environment, where S is the finite
set of states.

— The agent takes an action a € A at state s, where A is the finite set of
actions that the agent can select.

Multi-Objective Service Composition Using Reinforcement Learning 301

— The environment gives the agent the next state s’ € S. The next state is
determined with the state transition probability P(s,a,s’) for state s, action
a and the next state s’. The state transition probability can be defined by
the mapping:

P:SxAxS—[01] 1)

— There are (M > 1) objectives which the agent wants to achieve, and the
agent gains the following reward vector from the environment when it moves
to the next state.

r(s,a,8') = [ri(s,a,8),m2(s,a,8), -, ra(s,a,8)]" (2)

MOMDP involves multiple actions and paths for each agent to choose. By
using MOMDP to model service compositions, the composition agent will be
able to find a set of Pareto optimal workflows satisfying the trade-offs among
multiple QoS objectives. For each agent i, we call our service composition model
as Multi-Objective Markov Decision Process based Web Service Composition
(MOMDP —W S(C), which simply replaces the actions in a MOMDP with Web
services.

Definition 4: (MOMDP-Based Web Service Composition (MOMDP-
WSC)). An MOMDP-WSC is defined as a 6-tuple MOMDP — WSC =<
St sb, St Ai(), Pt R >, where

— S%is a finite set of world states observed by agent

— sb € S is the initial state and any execution of the service composition
usually starts from this state;

— S! C S is the set of terminal states. Upon arriving at one of those states, an
execution of the service composition terminates;

— Ai(s) is the set of Web services that can be executed in state s € S° , a Web
service ws belongs to A?, only if the precondition ws” is satisfied by s;

— P?is the probability when a Web service ws € A%(s) is invoked when agent i
makes a transition from its current state s to a resulting state s’, where the
effect of ws is satisfied. For each s, the transition occurs with a probability
Pi(s'|s,ws); and

— R'is a reward function when a Web service ws € A’(s) is invoked, agent
¢ makes a transition from s to s’, and the service consumer receives an
immediate reward r, whose expected value is R*(s’|s, ws). Consider selecting
Web service ws with multiple QoS criteria, agent i receives the following
reward vector:

Q(Sa ws, S/) = [Ql(sv ws, Sl)v QQ(Sa ws, S/)v Tt QM(Sa ws, S/)]Tv (3)
where each @Q); denotes a QoS attribute of ws.
The solution to an MOMDP-WSC is a decision policy, which is defined as a

procedure for service selection ws € A by agent i in each state s. These policies,
represented by 7, are actually mappings from states to actions, defined as:

302 A. Moustafa and M. Zhang

T: 85 — A (4)

Each policy of MOMDP-WSC can define a single workflow, and therefore, the
task of our service composition model is to identify the set of Pareto optimal
policies that gives the best trade-offs among multiple QoS criteria.

3 Multi-Objective Reinforcement Learning for Service
Composition

In order to solve the above mentioned MOMDP, we propose an approach based
on Multi-Objective Reinforcement Learning (MORL). The goal of MORL is to
acquire the set of Pareto optimal policies in the MOMDP model. The set 7P of
the Pareto optimal policies is defined by:

P = {77” € II|#r e I, s.t. V™ (s) >, V™ (s),Vs € S} , (5)
where II is the set of all policies and >, is the dominance relation. For two
vectors a = (a1, a2, --,a,) and b = (b1, b2, -, by), @ >, b means that a; > b;
is satisfied for all ¢ and a; > b; is satisfied for at least one i. Moreover, V7™ (s) =
(V7 (s), VI (s), -, VI(s)) is the value vector of state s under policy 7 and it is

defined by:
V7(s) = Ex {Z'Ykrt+k+l St = 3}) (6)

k=0

where E, is the expected value provided that the agent follows policy m, s;
is the state at time ¢, r, is the reward vector at ¢ and v is the discount rate
parameter. We also define the Q-learning [20] vector by:

oo

Qw(&a) =E, {Z'}/krt+k+l

k=0

st:s,at:a}, (7)

where a; is the action at time ¢.

The MORL agent works to find the set of Pareto optimal policies under the
condition that the agent does not know the state transition probability P(s, a, s")
and the expected reward vector E{r(s,a,s’)}.

Current MORL approaches can be divided into two classes based on the num-
ber of policies that they learn [I1]. The first class aims to learn the single policy
that best satisfies a set of preferences between objectives as derived from the
problem structure. We will refer to theses as single policy approaches. The sec-
ond class seeks to find the set of policies which approximate the Pareto optimal
front of all possible user preferences. We will refer to these as multiple policy
approaches. Inspired by recent works in MORL [I1], we propose two algorithms
to address multi-objective composition in Web service environments. The first
algorithm handles the case of single policy multi-objective service composition

Multi-Objective Service Composition Using Reinforcement Learning 303

and the second algorithm handles the case of multiple policy multi-objective
service composition.

3.1 Single Policy Multi-objective Service Composition

In the first algorithm, each QoS-objective is implemented as a separate Q-
learning agent. Web services and their relative importance to these objectives are
learned rather than predefined and the deployment of multiple QoS-objectives
is enabled. At every state s, each agent i selects the candidate web service ws;
that optimizes its relative QoS-objective, then the agents negotiate together to
decide which candidate service to execute in this state.

The agents learn to cooperate by negotiation and the agent that wins is the
agent that would suffer the most if it did not. Given a state s, the agents suggest
their Web service selections with strengths or weights W;(s). The agent with the
largest W values is then allowed to deploy its preferred Web service in this state
such that:

Wi(s) = Mazier,.. nWi(s) (8)

Therefore, agent k is then a winner and executes Web service wsi. We call
agent k the leader in competition for state s at the moment. The agents then
modify their w;(s) values based on whether they were obeyed, and what hap-
pened if they weren’t, so the next round there may be a new winner.

Algorithm 1. Single Policy Algorithm
Observe state s
initialize leader k with a random integer between 1 and N
Wk +~—0
ak < argmaz.Qr(s,a)
repeat
for all agents i except k£ do
Wi < maz.Qi(s,a) — Qi(s,ar)
if the highest W; > W}, then
Wk — W;
ay < argmazrq,Q;i(s,a)
k<1
end if
end for
until converges
return ay

W values build up on the difference between predicted reward P, which rep-
resents what is predicted if the agent was obeyed, and actual rewards A, which
represents what actually happened. Therefore, W is calculated by:

W=P-—A, 9)

304 A. Moustafa and M. Zhang

where p is the anticipated Q-vector if this agent’s suggested Web service is
executed, and A is the received Q-vector of the execution of another agent’s
suggested Web service. (P — A) is the loss that the other agent causes to this
one by being obeyed in its place. Consider the Q-learning process, when agent k
is the winner and has its Web service executed, all other agents except k update
their W values as follows:

Wi(z) = (Qi(z, ai) = (ri + ymazpeaQi(y, b)), (10)

where the reward 7; and the next state y are caused by the agent k£ than by
this agent itself. This process is described by Algorithm 1.

3.2 Multiple Policy Multi-objective Service Composition

In the second algorithm, the multiple policy service composition problem is
solved by introducing the concept of the convex hull into Q-learning based Web
service composition [§]. The convex hull is defined as the smallest convex set
that contains all of a set of points. In this case, we mean the points that lie
on the boundary of this convex set, which are of course the extreme points, the
ones that are maximal in some direction. This is somewhat similar to the Pareto
front, since both are maxima over trade-offs in linear domains. The proposed
algorithm exploits the fact that the Pareto optimal set of the Q-vectors is the
same as the convex hull of these Q-vectors.

In order to acquire the set of Pareto optimal service selection policies for all
the QoS objectives, the set of the vertices in the convex hull of the Q-vectors at
state s is updated by the value iteration method:

Qs0) = (1= Qo)+ rls0) + it Q)| (1)

where Q(s, a) is the vertices of the convex hull of all possible Q-value vectors
for taking action a at state s, « is the learning rate, y is the discount value, r is
the immediate reward, the operator hull means to extract the set of the vertices
of the convex hull from the set of vectors.

Algorithm 2. Multiple Policy Algorithm

initialize Q(s, a) arbitrarily Vs, a
while not converged do
for all s € S;a € A do

Q(s,a) =(1- a)Q(s, a) + a|r(s,a) +yhull |, Q(s’, a)

end for
end while

Multi-Objective Service Composition Using Reinforcement Learning 305

Given these definitions, now we can rewrite the Q-learning based Web service
composition algorithm [§] in terms of operations on the convex hull of Q-values.
In the proposed algorithm, an action is selected based on the dominance relation
between Q-vectors following the e-greedy exploration strategy. This algorithm
can be viewed as an extension to [8], where instead of repeatedly backing up
maximal expected rewards, it backs up the set of expected rewards that are
maximal for some set of linear preferences. The proposed multiple policy Web
service composition algorithm is illustrated in Algorithm 2.

4 Simulation Results and Analysis

Two simulation experiments have been conducted to evaluate the proposed algo-
rithms from different perspectives. The first experiment examines the ability of
the single policy algorithm in composing Web services with Multiple QoS criteria
and unknown user preferences. The second experiment examines the efficiency of
the second algorithm in learning the set of Pareto optimal compositions consid-
ering the trade-offs among QoS objectives, simultaneously. Note that terms such
as criteria and objectives, qualities and characteristics, solutions and workflows
are used interchangeably unless otherwise specified.

We consider using four abstract services (i.e. the typical travel scenario) in
both experiment. We assume there are a number of concrete Web services avail-
able for each abstract service. The detailed task is to choose the optimal concrete
services to achieve better composition results that satisfy three QoS objectives
which are availability, response time and cost.

4.1 Experiment Setting

Since there is not any sizable Web service test case that is in the public domain
and that can be used for experimentation purposes, we focus on evaluating the
proposed algorithms by using synthetic Web services. We assigned each concrete
Web service in the simulated MOMDP-WSC model with random QoS vector.
The values of the quality parameters in this vector followed normal distribution.

The proposed algorithms run in successive iterations/episodes till reaching
a convergence point. Each algorithm converges to a near optimal policy once
it receives the same approximate value of average accumulative rewards for a
number of successive episodes, those average accumulated rewards are compared
episode by episode and the difference is projected against a threshold. For both
algorithms, this threshold value is set to 0.001, and the number of successive
episodes is set to 1000

To ensure the highest learning efficiency, a number of parameters are set up for
both experiments as follows. The learning rate « is set to 1, the discount factor
v is set to 0.8 and the e-greedy exploration strategy value is set to 0.7. These
parameter settings are shown in Table 1. The two experiments are conducted on
3.33 GHz Intel core 2 Duo PC with 3 GB of RAM.

306 A. Moustafa and M. Zhang

Table 1. Parameter Settings

Parameter Meaning Value
@ Learning rate 1
y Discount factor 0.8

€ Exploration strategy 0.7

4.2 Result Analysis

The results of the two experiments are demonstrated and analyzed in details in
the following subsubsections

Experiment 1: Single Policy Algorithm

The purpose of the first experiment is to examine the ability of the single policy
algorithm in composing web services with multiple QoS criteria and with no
predefined user preferences. The algorithm’s ability is measured in terms of the
average accumulated reward the composition agent receives when it converges
to an optimal policy. This reward value represents the aggregate QoS of the
optimal workflow.

For this end, we ran the experiment multiple times and changed the envi-
ronment scale in every run. The environment scale represents the number of
concrete Web services assigned to each abstract service. The average accumu-
lated reward of the single policy algorithm is recorded accordingly and compared
with the average accumulated reward of the linear weight Q-learning approach
[18]. The linear weight Q-learning approach assumes a predefined user prefer-
ences encoded as a weight vector over the multiple QoS attributes. This weight
vector is set, in this experiment, to w = (0.3,0.3,0.3)

Fig. 1 depicts the relationship between the average accumulated rewards ob-
tained by running the single policy algorithm and the linear weight Q-learning
approach multiple times with various number of concrete Web services.

As shown in Fig. 1, the proposed single policy algorithm yields higher rewards
than the linear weight Q-learning approach, every run, apart from the number
of concrete Web services. This proves the capability of the single policy algo-
rithm to find higher quality compositions considering multiple QoS objectives.
The reward difference becomes more significant as the number of web services
increases, i.e., goes beyond 200. This is explained by the ability of the single
policy algorithm to better explore the Pareto front. While the linear weight Q-
learning approach fails to explore solutions lie on concave regions of the Pareto
front, the proposed algorithm is able to scale well with the spread of Pareto front
as the environment scale increases. Also, the linear-weight Q-learning approach
assumes the usage of a predefined user preferences represented by a given weight
vector w. This weight vector might trip the search process into suboptimal re-
gions of the Pareto surface as the composition agent is biased towards the user

Multi-Objective Service Composition Using Reinforcement Learning 307

preferences. In contrast, the proposed algorithm builds upon the composition
structure to derive the relative weights among different QoS preferences. This
feature allows the proposed algorithm to adapt efficiently to the dynamics of
open environments where many Web services join or leave during run-time.

90 T T T T
= -8 Single Policy Algorithm
g0 | # - Linear Weight Q-learning]
S panaar 8

- 70} o T 1
= -
'Qccs 60 | /,I‘ T ST e 5
] s il
B 5 -
E 50t G |
=] F -
g & e
< g o
o 40 - _K R
-
§ l/’.a
< 30F]

20 1

1? 1 | 1 1 |

00 200 300 400 500 600 700

Num of Web Services

Fig. 1. Single Policy Algorithm

Experiment 2: Multiple Policy Algorithm
The purpose of the second experiment is to assess the ability of the proposed
multiple policy algorithm in learning the set of Pareto optimal workflows consid-
ering the trade-offs among different QoS criteria. Totally three tests are carried
out in this experiment. In the first two tests, each abstract service has been
assigned 50 and 100 candidate Web services, respectively. Consequently, this
creates an 4 x 50 matrix and 4 x 100 matrix for each quality attribute, respec-
tively. The proposed multiple policy algorithm is implemented and tested with
the parameters given above. The proposed algorithm runs till convergence and
the number of non-dominated solutions/workflows are calculated accordingly.
As shown in Fig. 2, the experimental results indicate that the proposed al-
gorithm is capable of guiding the search towards the Pareto-optimal front effi-
ciently. As the initial attribute matrix data are created randomly, we have no
idea where the true Pareto optimal front is. However, we understand that better
solutions would be the ones with lower cost, lower response time, but higher
availability. The search process should converge towards this direction.

308 A. Moustafa and M. Zhang

Fig. 2a clearly shows that the optimal solutions have achieved lower cost and
response time, but greater availability, which are centered between 0.4, 0.2, and
0.8, respectively. Fig. 2b also supports this statement, regardless of the bigger
number of concrete services assigned to each abstract service, as the optimal
solutions continue showing the same trend with lower cost and response time,
but greater availability, which are centered between 0.3, 0.4, and 0.6, respectively.

a) 50 Services b) 100 Services
[1.0
10
0.8
08
06
L]
L] 06
- Cost 1 ot
05
° 0.4 C
0.4
o®
o
o e
.CQ' ° 02
° o8
[]
10 0.0
08
06 02 0.0
‘%,) 04 o
aér./_ 0 a’(\ﬁ‘
4. 0010 &po®

Fig. 2. (a) Results of composition with 50 services in each state; (b) Results of com-
position with 100 services in each state

The next test is performed to display the convergence property with the pres-
ence of different environment scales and various concrete services. Still, four
abstract services are considered. We experiment three different cases with the
number of concrete Web services varying from 100 to 400 for each abstract ser-
vice. As shown in Fig. 3, it takes longer to find a set of optimal solutions with
the increase of the number of concrete services. For example, in the case of 100
services, the algorithm converges at 400 episodes, while for the cases of 200 ser-
vices and 400 services, the algorithm finds the non-dominated solutions at 800
episodes and 1000 episodes, respectively. The same tendency is anticipated to
continue for any other bigger number of concrete services. As a matter of fact,
the three cases generated the same number of non-dominated solutions, 25, at
episode 400. The reason for this is currently unknown and is set for future re-
search. In short, the proposed multiple policy algorithm is able to provide a set
of Pareto-optimal solutions for service composition problems with different QoS
criteria.

Multi-Objective Service Composition Using Reinforcement Learning 309

180 T T T T T
+~ -+ 100 services
1601 = = 200 services 1
e @ 400 services
140} 1
2
2120} ® S el 4
5
3
2100} . |
@ 5
m
E 80 [4
o
=)
S 60} ‘ 1
Z 3 o -
a0t]
o BT E O —-———— F————h———— =
| e)]
T
% 200 400 600 800 1000 1200 1400

Episodes

Fig. 3. Multiple Policy Algorithm

5 Related Work and Discussion

The problem of QoS-aware Web service composition is well known in SOC do-
main and various solutions are proposed based on different approaches[922/TOJT].
Zeng et al. [22] introduced a QoS model in which aggregation functions are de-
fined in order to aggregate and measure constraints into a single objective func-
tion. The major issues of the QQoS-driven service selection approach presented in
[22] are scaling (amongst objectives) and weighting. Its weighting phrase requires
the selection of proper weights to characterize the users preferences, which can
be very difficult in practice. Furthermore, the method from [22] cannot always
guarantee the the fulfillment of global constraints, since Web service composition
is not separable. Wang et al. [19] proposed an efficient and effective QoS-aware
service selection approach. It employs cloud model to compute the QoS uncer-
tainty for pruning redundant services while extracting reliable services. Then,
Mixed Integer Programming (MIP) is used to select optimal services. Lin [10]
aims at enhancing the credibility of service composition plan, taking advantage
of a Web services QoS history records, rather than using the tentative QoS val-
ues advertised by the service provider, but at last the composition optimization
problem is also instantiated into an Integer Programming (IP) problem. How-
ever, as pointed out by Berbner et al. in [I], the IP approach is hardly feasible
in dynamic real-time scenarios when a large number of potential Web services
are concerned. Canfora et al. [2] proposed the use of Genetic Algorithms (GAs)
for the problem mentioned above. It has shown that GAs outperform integer

310 A. Moustafa and M. Zhang

programming used in [22] when a large number of services are available. More-
over, GAs are more flexible than the MIP since GAs allow the consideration
of nonlinear composition rules. Apparently, traditional GAs have some inherent
limitations in solving QoS-aware composition problems as the the selection of
the weights of characteristics is required in order to aggregate multi-objectives
into a single objective function in GAs.

All the above mentioned approaches, however, cannot solve Web service selec-
tion with multiple QoS objectives and multi-constrain. They all assume multiple
criteria, no matter whether they are competing or not, can be combined into a
single criterion to be optimized, according to some utility functions. When mul-
tiple quality criteria are considered, users are required to express their preference
over different, and sometimes conflicting, quality attributes as numeric weights.
This is a rather demanding task and an imprecise specification of the weights
could miss user desired services.

Despite the fact that the QoS optimization problem is multi-objective by na-
ture few approaches based on multi-objective algorithms can be found in the
literature [L7U6/T6]. Yu and Lin [21] studied multiple QoS constraints. The com-
position problem is modelled as a Multi-dimension Multi-choice 0-1 Knapsack
Problem (MMKP). A Multi-Constraint Optimal Path (MCOP) algorithm with
heuristics is presented in [21]. However, the aggregation of parameters using the
Min function is neglected. Maximilien and Singh [I3] describe the Web Service
Agent Framework (WSAF) to achieve service selection by considering the pref-
erences of several service consumers as well as the trustworthiness of providers.

Evolutionary Algorithms (EAs) are suitable to solve multi-objective optimiza-
tion problems because they are able to produce a set of solutions in paral-
lel. A growing interest in the application of EAs to the multi-objective Web
service composition in recent years is evident. Claro et al. [B] discussed the
advantages of Multi-Objective Genetic Algorithms (MOGA) in Web service
selection and a popular multi-objective algorithm, NSGA-II [7], is used to find
optimal sets of Web services. Other EAs that have been proposed to solve multi-
objective service composition include, Multi-Objective Particle Swarm Opti-
mizer (MOPSO) [3], and Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA /D) [14]. These EAs propose mathematical improvements to
solve multi-objective service composition problems. However, as the dimensional-
ity of problems increases, the performance of these EAs significantly deteriorates,
since they cannot find a wide range of alternative solutions. In addition, MOGA
and MOPSO cannot solve the optimization problems with concave Pareto fronts
which are commonly encountered in the real world. In contrast, the proposed
MORL based approach is able explore well the Pareto front of multi-objective
service composition problems and deliver optimal solutions.

On the other hand, EAs require a level of awareness of the problem domain
to setup the initial population through encoding the available combinations as
genomes. In contrast, the proposed MORL based approach can learn how to
best select Web services in complex environments based on multiple QoS criteria

Multi-Objective Service Composition Using Reinforcement Learning 311

without any prior knowledge regarding the nature or the dynamics of these
environment. Up to our knowledge, this is the first approach that uses MORL
to solve this problem.

6 Conclusion

This paper proposes a novel approach to facilitate the QoS-aware service compo-
sition problem. By using multi-objective reinforcement learning, we devise two
algorithms to enable Web service composition considering multiple QoS objec-
tives. The first algorithm addresses the single policy composition scenarios, while
the second algorithm addresses the multiple policy composition scenarios. The
simulation results have shown the ability of the proposed approach to efficiently
compose Web services based on multiple QoS objectives, especially in scenar-
ios where no prior knowledge of QoS data is available and no predefined user
preferences are given. The future work is set to study the performance of the
proposed approach in large scale service compositions scenarios.

References

1. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
qos-aware web service composition. In: International Conference on Web Services,
ICWS 2006, pp. 72-82 (2006)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation GECCO 2005, pp. 1069-1075.
ACM, New York (2005)

3. Cao, J., Sun, X., Zheng, X., Liu, B., Mao, B.: Efficient multi-objective services
selection algorithm based on particle swarm optimization. In: 2010 IEEE Asia-
Pacific Services Computing Conference (APSCC), pp. 603-608 (2010)

4. Chiu, D., Agrawal, G.: Cost and accuracy aware scientific workflow composition
for service-oriented environments. IEEE Trans. Services Computing (2012)

5. Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for optimal composition.
In: SDWP 2005, pp. 32-45 (2005)

6. de Campos, A., Pozo, A.T.R., Vergilio, S.R., Savegnago, T.: Many-objective evolu-
tionary algorithms in the composition of web services. In: 2010 Eleventh Brazilian
Symposium on Neural Networks (SBRN), pp. 152-157 (2010)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182-197 (2002)

8. Dehousse, S., Faulkner, S., Herssens, C., Jureta, 1.J., Saerens, M.: Learning opti-
mal web service selections in dynamic environments when many quality-of-service
criteria matter. Machine Learning, InTech., 207-229 (2009)

9. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Trans. Parallel and Distributed Systems 18(7), 907-918 (2007)

10. Lin, W., Dou, W., Luo, X., Chen, J.: A history record-based service optimization
method for qos-aware service composition. In: 2011 IEEE International Conference
on Web Services (ICWS), pp. 666-673 (2011)

312

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

A. Moustafa and M. Zhang

Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews PP(99), 1-13 (2013)

Mastronarde, N., Kanoun, K., Atienza, D., Frossard, P., van der Schaar, M.:
Markov decision process based energy-efficient on-line scheduling for slice-parallel
video decoders on multicore systems. IEEE Trans. Multimedia 15(2), 268-278
(2013)

Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services
selection. IEEE Internet Computing 8(5), 84-93 (2004)

Suciu, M., Pallez, D., Cremene, M., Dumitrescu, D.: Adaptive moea/d for qos-
based web service composition. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013.
LNCS, vol. 7832, pp. 73-84. Springer, Heidelberg (2013)

Sutton, R.S., Barto, A.G.: Reinforcement learning: Introduction (1998)

Taboada, H.A., Espiritu, J.F., Coit, D.W.: Moms-ga: A multi-objective multi-state
genetic algorithm for system reliability optimization design problems. IEEE Trans-
actions on Reliability 57(1), 182-191 (2008)

Wada, H., Suzuki, J., Yamano, Y., Oba, K.: E3: A multiobjective optimization
framework for sla-aware service composition. IEEE Transactions on Services Com-
puting 5(3), 358-372 (2012)

Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service
composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92-107. Springer, Hei-
delberg (2010)

Wang, S., Zheng, Z., Sun, Q., Zou, H., Yang, F.: Cloud model for service selection.
In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 666-671 (2011)

Watkins, C.: Learning from Delayed Rewards. PhD thesis, Cambridge University,
England (1989)

Yu, T., Lin, K.-J.: Service selection algorithms for composing complex services with
multiple gos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 130-143. Springer, Heidelberg (2005)

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311-327 (2004)

	Multi-Objective Service Composition
Using Reinforcement Learning
	1 Introduction
	2 Problem Formulation
	3 Multi-Objective Reinforcement Learning for Service Composition
	3.1 Single Policy Multi-objective Service Composition
	3.2 Multiple Policy Multi-objective Service Composition

	4 Simulation Results and Analysis
	4.1 Experiment Setting
	4.2 Result Analysis

	5 Related Work and Discussion
	6 Conclusion
	References

