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Abstract. In today’s process engines, instances of a process usually run inde-
pendently to each other. However, in certain situations a synchronized execution
of a group of instances of the same process is necessary especially to allow the
comparison of business cases or to improve process performance. In this paper,
we introduce the concept of batch activities to process modeling and execution.
We provide the possibility to assign a batch model to an activity for making it
a batch activity. As opposed to related approaches, the batch model has several
parameters with which the process designer can configure individually the batch
execution. A rule-based batch activation is used to enable a flexible batch han-
dling. Our approach allows that several batches can run in parallel in case of
multiple resources. The applicability of the approach is illustrated in a case study.
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1 Introduction

In today’s organizations, modeling of business processes and their execution based on
process-oriented systems has a high relevance. Business operations are usually specified
by process models with focus on the single business case. A process model describes a
set of activities jointly realizing a business goal and the execution constraints between
them [16]. At runtime, for each business case, a process instance is created. When
designing a process, it is typically assumed that process instances are completely in-
dependent from each other [4]. Also in process engines, instances are usually executed
individually. Nevertheless, certain dependencies between process instances may require
a synchronization. In this paper, we introduce an approach for coordinating the activity
execution of different process instances motivated by the following example.

Fig. 1 shows the Train ticket refund process of a train company in which passenger
claims are received and checked. When a passenger experienced a delay of more than
one hour, the company provides a voucher card with an amount of 50% of the train ticket
price. A process instance is started when a claim for refund is received from a passenger
. Then, for each activity in the process model, an activity instance is created as soon as
a process runs. Usually, activity instances are executed independently from each other.
For instance, the company enters the data of each claim individually and checks whether
the claim is correct. However, activities in process models can be observed for which it
is beneficial or even required to synchronize the execution of a group of business cases,
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Fig. 1. Train ticket refund process

e.g., the activity Produce voucher card. The train company activates the machine for
producing the voucher cards only when 15 cards are requested in order to save setup
costs. Such a type of activity, we call batch activity which is defined as an activity
clustering a set of active activity instances together and synchronizing their execution
according to pre-defined rules [4, 13]. Currently, the batch activation rule is informally
noted as comment on the respective activity (cf. Fig. 1). The goal of this paper is to
formalize the design of batch activities and to give a blue print for them. Two types of
use cases for which a batch activity is needed, can be differentiated [2]:

– Achieving an increased process performance: A process may have an activity
with high setup costs, i.e., preparation costs to start an activity (e.g., setups of ma-
chines, familiarization periods for a type of work or traveling distances). In our
example, we have the setup costs of the voucher card machine. By synchronizing
the activity enactment of several cases, the train company can save those costs and
can be more efficient in their process execution.

– Comparing business cases: A process may have an activity where business cases
are ranked according to specific criteria. In order to be able to compare them, sev-
eral cases have to be grouped together, e.g., a ranking of application candidates.

A common assumption is that batch requirements can be solved with multi-instance
patterns [14] which are supported by several modeling languages. For example, the
widely applied process modeling language BPMN (Business Process Modeling Nota-
tion) provides the concept of multi-instance activities. When a multi-instance activity
is started in the context of a process instance, multiple activity instances are initialized
simultaneously running independently from each other. Synchronization may be orga-
nized with regards to starting the subsequent activity, but their execution is not aligned.
Since multi-instance activities have an opposite execution paradigm which splits one in-
stance as opposed to synchronize multiple existing instances, a new concept for a batch
handling needs to be developed.

Also, most process modeling languages do not support the design and configuration
of batch activities; they are often enacted as batch manually or by special software. Or-
ganized manually by human resources, the rules of a batch activity can be unclear or
the batch execution may simply be forgotten resulting in lower process performance.
Otherwise, a batch activity may be controlled by specific software. Since the batch con-
figurations are then not traceable for the process owner and the participants, the batch
activity settings cannot be controlled by them and adaptations result in high efforts.
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In this paper, we propose a concept to integrate batch activities in process modeling
and execution. The integration has the advantages that (i) rules are clear for the process
owner, the participants, and the process engineer, (ii) no manual implementation is re-
quired, (iii) batch activities can be included into potential process simulations, and (iv)
monitoring as well as analysis of executed batches can be done based on process logs.

The paper is structured as follows. In Section 2, we discuss requirements for inte-
grating the concept of batch activities into process modeling and execution. Then, we
present our approach to enable the design, configuration and execution of batch activi-
ties in Section 3, where we also discuss the applicability of our approach in a case study.
In Section 4, related work is discussed followed by a conclusion in Section 5.

2 Requirements of Integrating Batch Activities

In the following, we present several requirements to integrate batch activities in process
modeling and execution, summarized and related to each other in Fig. 2. On the one
hand, they arise due to the different execution semantics of a batch activity (cf. path (b)
in Fig. 2) in comparison to the regular one (cf. path (a) in Fig. 2) (R1). On the other hand,
we collect them based on descriptions of the batch service problem. The batch service
problem was investigated by the queuing research, e.g., in [8–10], and is described as
follows: “Customers arrive at random, form a single queue in order of arrival and are
served in batches” [1], whereby the basic object of investigation is when to start a batch
(R2). Queuing researchers investigated it for different configurations of queue (R3) and
server (R4-6). In the following, we will discuss the identified requirements in detail.

Server 
(i.e. task executor)

Enabled 
activity 

instance

Batch of
activity instances

Queue of waiting 
activity instances

(a) regular activity execution

(b) batch activity execution

(R2) Activation rule

(R4) Single vs. multiple 
server(s)

(R3) Homogenous 
vs. heterogenous

requirements

(R1) Different 
execution semantics

(R6) Maximum 
capacity

(R5) Parallel vs. 
sequential enactment

Fig. 2. Requirements regarding integration of batch activities

Requirement R1 - Different execution semantics: A usual activity instance passes differ-
ent states during its lifetime [16]. In a simplified version, these are init, ready, running,
and terminated. With the start of a process, the activity instance enters the init state and
changes to the ready state when all pre-conditions for the activity are fulfilled. Then, it
is immediately offered by the process engine to the respective task executor (cf. path (a)
in Fig. 2). The task executor can be either a software service, a human, or a non-human
resource. When a resource or service starts the work of the activity instance, it enters
the running state and with completion, it is in the terminated state.
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In contrast, the offer of a batch activity instance has to be delayed by the process
engine in order to provide the task executor a group of instances being executed as
batch. Here, it is required that the process engine collects all enabled activity instances
according to a queue discipline, e.g., first-come first-served (FCFS) or last-come first-
served (LCFS), and assigns them to a batch as depicted in Fig. 2. In this paper, we
choose FCFS as queuing system, because it is a commonly applied policy [8].

Requirement R2 - Activation rule: With a batch activity, the control of starting a group
of instances is allocated to the process engine to achieve an increased process perfor-
mance or to enable the comparison of business cases. The larger the size of a batch, the
lower are the average setup costs per activity instance, but the higher are the waiting
time per instance. So, costs can be reduced, when the train company waits at minimum
for 30 instead of 15 claims for which a voucher card is produced. However, the risk
for the train company increases to lose passengers, because of dissatisfaction regarding
the service time. Rules have to be specified and enforced in order to achieve an optimal
trade-off between setup costs and waiting time. As stated, this optimization problem
– when to activate a batch service and provide it to the server – is investigated by the
queuing research for which they propose different optimization policies. In this paper,
we want to present two often discussed rules [10]:

– Threshold rule: Originally called the general bulk service rule, it states that a batch
is started, when the length of the waiting queue with customers is equal or greater
than a given threshold (i.e., a value between one and the maximum server capacity)
and the server is free [9]. Several studies investigate how to determine an optimal
value for the threshold under varying assumptions concerning the distribution of
arrival and service times as well as capacity constraints of server and queue (an
overview is for example given by Medhi [8]). In this paper, we assume that the
threshold value is given by the process designer who may derive it from expert
knowledge, simulations, or statistical evaluations. This rule can be extended by a
maximum waiting time so that a group of less than the threshold is also served,
when a certain waiting time of the longest paused one is exceeded [9].

– Cost-based rule: Originally called the derivation policy, it states that a batch is
started, when the total waiting costs of all customers in the waiting queue is equal
or greater then the total service costs and the server is free [15]. The total waiting
costs are the sum of costs for each waiting customer based on the given penalty
costs per time period. The total service costs can be either a constant value or they
are a function considering the number of customers.

Besides these two, other types of activation rules exist. Thus, it should be possible to
provide different types of activation rules from which a process designer can select one
for a batch activity and fill it with required user inputs.

Requirement R3 - Homogeneous vs. heterogeneous requirements: In studies from queu-
ing research, it is discussed that arrived customers may be homogeneous or heteroge-
neous in their demand [10]. If they are heterogeneous, different types of batches have
to be formed. Also activity instances can be heterogeneous regarding their inputs re-
spectively required outputs. In our train example, all Produce voucher card-instances
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are currently homogeneous. The activity instances will become heterogeneous concern-
ing their output requirements, for example, if the train company produces two types of
voucher cards; white colored ones for amounts lower e150 and better protected once
in silver for amounts equal or greater than e150. In this case, two different batch types
have to be created. However, we assume in this work that all activity instances are ho-
mogeneous.

Requirement R4 - Single vs. multiple server(s): Often, studies from queuing research as-
sume that only a single server is available [8]. Hereby, it is assumed that the availability
of the server is controlled and the activation of a batch depends on it. Business pro-
cess management differentiates between the control flow perspective, where the batch
activity is part of, and the resource perspective concentrating on the modeling of re-
sources and the allocation of work. Russell et al. [11] present several resource patterns
for offering, allocating, and detouring work after an activity was enabled (e.g., the role-
based allocation). We require that the batch activity execution should not interfere with
the concepts of the resource perspective. Therefore, we assume the general case that a
batch can be provided to multiple available resources. Here, the engine should be able
to run several batches in parallel when they are needed.

Requirement R5 - Parallel vs. sequential enactment: Batch processing occurs in two
versions: parallel and sequential execution [7]. In parallel batch execution, the activity
instances of a batch are processed by the task executor simultaneously, because the server
capacity is greater than one. An example for it is the voucher card machine of the train
company which can produce more than one card in a run. In sequential batch execution,
the task executor enacts the activity instances one after another. They are processed as
batch, because they share the same setup, e.g., the setup of a machine, a traveling dis-
tance. An example is the task of controlling exams where the examiner needs a certain
familiarization phase for each examination question and then checks the answers of all
students for one question.

Requirement R6 - Maximum capacity: An often discussed constraint of the batch ser-
vice problem is the maximum capacity of the task executor respectively the maximum
number of cases that the executor can handle in a sequence [8]. For instance, the voucher
card machine may be able to produce at maximum 25 cards in a run. This capacity de-
termines the maximum size of a batch, which is 25 for the Train ticket refund example.
If a batch is activated and offered to its executor, but not yet started, because the ex-
ecutor is not available, it should be still possible to add further activity instances until
the maximum is achieved or the batch is started. This leads to an increased process
performance.

3 Integrate Batch Activities in Process Modeling and Execution

In this section, a general approach to model and configure a batch activity in process
modeling languages is presented. The de facto standard BPMN is used to illustrate
it. For the approach, we augmented the process meta model by Weske [16] with the
required concepts for batch activities which is explained in detail in Section 3.1. For
the enactment of batch activities in a process engine, an enhanced engine architecture
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and execution semantics is proposed in Section 3.2. We evaluate the applicability of our
approach based on a case study in Section 3.3.

3.1 Modeling and Configuration of a Batch Activity

In this work, we want to provide the possibility to design and configure a specific ac-
tivity as batch activity in order to synchronize the execution of its instances. Therefore,
we extended the process meta model by Weske [16]. The meta model describes that
a process model consists of nodes and edges. A process model acts as blueprint for a
set of process instances which are related to exactly one process model. A node in a
process model can represent an event, a gateway, or an activity model. Similar as the
node, the activity model is associated to an arbitrary number of activity instances (see
Fig. 3(a)) for which it describes the key characteristics, e.g., resource assignment, input
and output data. An activity model can be a system, user interaction, or manual activity.

Activity ModelActivity Instance 1*

-activationRule
-sequentialExecution
-maxBatchSize
-waitingQueue

Batch Model

1

0..1

Batch Instance0..1

*

1*

1..maxBatchSize

(a) Batch activity meta-model

-UserInput
-Event
-Condition

Activation Rule

Threshold Rule Cost-based Rule

-maxBatchSize
-sequentialExecution
-waitingQueue

Batch Model

1 1

(b) Rule-based initialization concept

Fig. 3. Extension of process meta model for batch activities. In (a), we show that a batch activity
can be designed by assigning a batch model with several configuration parameters to an activity
model. In (b), we show that each batch model gets assigned an activation rule which can be from
different types (here from type threshold or cost-based) to enable a rule-based batch initialization.

We extend these concepts by the batch model (see class diagram of Fig. 3(a)); an
activity becomes a batch activity, if its activity model is associated to a batch model
which in turn can only be associated with exactly one activity model. A batch model
describes the conditions for batch execution and can be configured based on the param-
eters activationRule, sequentialExecution, and maxBatchSize by the process designer.

– The activationRule provides the possibility to specify a policy when a batch is
enabled and offered to the task executor. Therefore, the process designer selects an
activation rule type (e.g., threshold rule) and provides required user inputs (see R2).

– The sequentialExecution is of type boolean. In case of false, all instances of a batch
are provided at once to task executor for parallel execution. In case of true, instances
are provided one after another to the executor for sequential execution (see R5).

– The maxBatchSize is of type integer and represents the maximum capacity of the
task executor. It specifies the number of instances which can be at maximum in a
batch. It can be limited by user input or unlimited without user input (see R6).
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In Fig. 4, we show an exemplary configuration by means of the batch activity B in the
example process P. In this context, we illustrate a batch activity in BPMN by a double
framed activity. For the batch activity B, the process designer selected the threshold rule
as activation rule with a threshold of two and a maximum waiting time of one hour (i.e.,
the batch is offered to the task executor latest after an hour). The batch activity was
configured such that at maximum three instances of B can be in a batch and they are all
executed in parallel, because the sequentialExecution is set to false.

A B C

activat ionRule =  ThresholdRule(2 cases, 1h)
sequentialExecut ion =  false
maxBatchSize =  3

B

Fig. 4. Example process P with three activities whereby A and C are usual single case activities
and B is a batch activity illustrated here with a double border

In summary, a batch model associated to an activity model describes with its config-
urations the behavior for an arbitrary set of batch instances. A batch instance represents
one batch and is responsible for its initiation and execution. Several batch instances
being associated to exactly one batch model can exist simultaneously to allow the par-
allel execution of batches (see R4). Thus, when a batch instance is currently executed,
another instance can already be initiated when it is required, and can be allocated, e.g.,
to an alternative resource. We will give more details on how the parallel run of batch
instances can be organized and implemented in the next section.

Enabled activity instances are associated to a batch instance. Each batch instance
has its own waiting queue where all its assigned activity instances are collected in order
of their arrival (see R1). At minimum, the queue has the size of one, because a batch
instance is only initialized when it is required by at least one instance, and at maximum
it has a size of the user-specified maxBatchSize. A batch instance also passes the states
init, ready, running and terminated. Thereby, a batch instance changes from the init
to ready state as soon as the predefined activation rule is fulfilled. Then, the batch of
activity instances is offered to the task executor. When a resource accepts it, the batch
instance enters the running state and as soon as the batch work is completed, it changes
into the terminated state. Additionally, we extended the life cycle for batch instances
so that they can also be in state maxloaded after being ready and before being running
when it reaches the specified maximum size of a batch. After a batch instance is initial-
ized and as long as it does not enter the maxloaded or running state, activity instances
can be bound to it. So, we ensure that an optimal number of activity instances is added
to a batch instance.

As described, the process designer selects an activation rule type for a batch model
and configures it with the required user inputs. Thus, each batch model is associated
with an activation rule as shown in Fig. 3(b). We assume that process engine suppliers
provide different types of activation rules in advance, e.g., the threshold rule or cost-
based rule from queuing research presented in Section 2. In general, an activation rule
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relies on the concept of ECA (Event Condition Action) rules. Basic elements of an ECA
rule are an event E triggering the rule, a condition C which has to be satisfied, and an
action A being executed in case of fulfillment of the condition [3].

Thus, we define an activation rule as a tuple E × C × A, whereby the action A
is always the enablement of the associated batch instance. An event E is either an
atomic event (e.g., a state change of the batch waiting queue or a specific time event)
or a composite event being a composition of atomic events through logical operators,
as for instance AND or OR. A condition C is a boolean function. The input elements
to such a function can be system parameters (e.g., actual length of waiting queue),
user inputs (e.g., THRESHOLD), or a combination of both (e.g., total service costs =
(VARIABLE COSTS ∗ actual length of waiting queue) + CONSTANT COSTS) connected
by a relational expression. The composition of several atomic conditions with logical
operators is called composite condition.

An example for the threshold rule is given below. In this activation rule, the user
inputs are indicated by capitals and the system parameters are italicized. It consists of
a composite event saying that the rule is triggered when a new activity instance was
added to the waiting queue of the associated batch instance b or when no new one was
added for a specific period, i.e., the user-specified maximum waiting time divided by
ten. With triggering the rule, the given composite condition is checked. It states that
either the length of the waiting queue has to be equal or greater than the user-specified
threshold or the lifetime of b has to be equal or greater than the user-specified maximum
waiting time. If the condition evaluates to true, b gets enabled.

ActivationRule Threshold rule

On Event (Instance added to b.waitingQueue) OR

(No instance since MAXWAITINGTIME/10)

If Condition (b.waitingQueue.length ≥ THRESHOLD)OR

(b.lifetime ≥ MAXWAITINGTIME)

Do Action Enable batch instance b

End ActivationRule

We enable the integration of batch activities into process modeling with few extensions
on the existing process meta model. In the next section, we propose an architecture and
execution semantics for batch activities.

3.2 Execution of a Batch Activity

In Fig. 5, we present an abstract architecture of a usual process engine (cf. white ele-
ments). Process models are saved in a repository on which the process engine has read
access. As soon as a start event occurs for a process, the engine initializes an instance
of this process. Thereby, the process instance controls the initialization and enablement
of each of its activity instances based on the control flow specification in the process
model. Exemplary, we show in Fig. 5 process instances of our example process P with
its activity instances. The process engine is able to offer and allocate the work of activity
instances to task executors. For service activities, the respective service is invoked by
the engine. User interaction activities are provided via a task management component
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with a graphical interface to the process participants. This approach aims at relating a
batch configuration to any activity type (i.e., system, user interaction, or manual activ-
ity). Thus, we abstract from the service invocation and task management components.

Batch
Instance
batch1 of B

Batch
Factory

Process Model
Repository

Process
Engine

Task
Executor

Process
Instance p1

of P

Activity instances of p1
a1 of A c1 of Cb1 of B

Fig. 5. Process engine architecture (white ele-
ments) with extensions for batch activity execu-
tion (shaded elements)

In order to execute a batch activity,
the architecture is extended with batch in-
stances and a batch factory (cf. shaded el-
ements in Fig. 5 for the example batch
activity B). For each batch activity, a
batch factory exists which is responsible
for mapping activity instances to batch
instances and for initializing new batch
instances when required. Thus, activity
instances request the batch factory – in
Fig. 5 the instances of the batch activity B
– for being associated to a batch instance.
A batch instance in turn communicates
with one or more associated activity in-
stances as well as with the process engine
which can offer the batch to the executor.

allocate(batch1)

getInstance()

terminate()

b2:B

b1:B

bdF:batchFactory

addToBatch(b2)

batch1:Batch

t:taskExecutor

IN
IT

ProcessEngine

getInstance()
addToBatch(b1)

initialize()

IN
IT

READY

addInstance(b2)

RU
N complete(batch1)terminate()

start()start()

p1:Process
initialize()

start()

terminate()

READY
IN
IT

initialize()

addInstance(b1)
getState()

checkActivationRule

RU
N

offer(batch1)
accept

checkActivationRule

enable()

request()

enable()

initialize()
READY

RU
N

Fig. 6. Execution semantics of a batch activity

An example scenario of the activity instance b1 of the batch activity B being part of
the process instance p1 and associated to the batch instance batch1 is represented in the
sequence diagram of Fig. 6. It illustrates the execution semantics of an activity instance
of a batch activity which is a refinement (cf. shaded box in Fig. 6) of the common
activity instance execution. The main difference is that instead of offering the activity
directly to the task executor after its enablement, it is added to a batch instance which
then controls its start and termination. In the sequence diagram, we label the activation
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line of the activity instance and batch instance entities with the states they are currently
in. Next, we discuss the sequence diagram in detail.

As usual, the process engine initializes the instance p1 of the process P and the
instance initializes all its activity instances including b1. Based on the control flow
specification, the process instance enables b1 as soon as the preceding activity A was
terminated. Differently to the usual activity instance, b1 requests the batchFactory for
being added to a batch instance with the function addToBatch. We propose to imple-
ment the batchFactory class as singleton for having only one responsible object for the
mapping of activity instances to batch instances. It decides whether it can add an activ-
ity instance to a still not maxloaded, running, or terminated batch instance or whether
it has to initialize a new batch instance. Thereby, the requests by the activity instances
are sequentialized such to prevent an inconsistent state of the system. We developed the
following algorithm for the batchFactory class:

Algorithm 1. Algorithm for the function addToBatch
Require: i:activity instance

if availBatch not null then
if availBatch.getState ! = INIT || READY then

availBatch= initialize new batch();
end if

else
availBatch= initialize new batch();

end if
availBatch.addInstance(i);

The batchFactory class has an attribute availBatch where the potential batch instance
to which activity instances can be still added, is saved. When the algorithm is called with
an activity instance i and the availBatch is empty, a new batch instance is initialized
and set as availBatch. If it is not empty, the state of the corresponding batch instance is
checked with the getState-function. In case, it is not in state init or ready, a new batch in-
stance is initialized and set as availBatch. After these checks, the given activity instance
is added to the current availBatch. With the algorithm, we ensure that a maximal load
of a batch can be achieved, but if a batch instance has reached its maximum capacity or
is already executed, no new instances are added to it.

In our example, the threshold rule with a threshold of two was selected as activation
rule for the batch activity B (cf. Fig. 4). When the activity instance b1 was added to
the waiting queue of batch1, its activation rule is checked, because it is an event which
triggers to check the condition. Due to the waiting queue length of one, the condition is
evaluated to false and the action is not executed. For reason of complexity reduction, we
represent the activation rule in Fig. 6 as function and not as own object. With the second
added activity instance b2, batch1 enters the ready state, because now the condition that
the waiting queue length is greater or equal to the threshold is fulfilled. Then, the process
engine is requested to offer batch1 to the task executor. With acceptance of the task
executor, the engine allocates the work of all associated activity instances at once and
starts the batch instance. Having entered the running state, the batch starts all its activity
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instances of its waiting queue. At some time, the task executor completes the batch.
Then, the engine terminates the batch and batch1 in turn terminates its activity instances
b1 and b2. In case that the sequential execution was selected for a batch activity, the
engine acts slightly different compared to the parallel execution: After the batch was
accepted by a resource, the engine starts the batch instance. The batch instance provides
in a loop its associated activity instances one after another over the engine to the task
executor. The currently provided activity instance is then started and terminated by it.

After we presented the architecture and execution semantics of a batch activity, we
will illustrate our approach using a case study in the next section.

3.3 Case Study

We already provided some insights into the Train ticket refund process in the introduction
on which we will focus in our case study. Fig. 7 shows a variant of it as BPMN model.
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Fig. 7. Train ticket refund process with manual claim check

After a claim by a passenger is received in a form, the data of the form is entered
into the process system of the train company. We assume that our company receives
150 claims per day on average. Based on the entered data, the process system runs an
automatic check whether the passenger claim is accepted or rejected. Some claims – in
average 5% – are classified as borderline cases where the system check could not result
in a clear decision, e.g., when a passenger experienced a delay of 56 minutes instead of
an hour. An employee has to check them manually a second time.

We assume that the employee needs a familiarization phase of approximately four min-
utes for this task to get afresh familiar with proceeding guidelines and rules. In order to
save setup time, the employee shall process at minimum a set of five cases. The employee
can organize this for her-/himself. However, the employee may get disturbed from each
case arriving in the work list while working on other tasks. We propose to install a batch
activity so that the employee gets offered the work only when necessary. The require-
ments are that at minimum five cases should be processed in a sequence, but not more
than 20 cases due to the risk of decreased motivation, and no case should wait longer than
one day until being provided to task executor to ensure short response time for passengers.
We capture them in our batch activity (cf. Check refund claim manually in Fig. 7).
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Table 1. Activity instance log of Check refund claim manually: Each row presents an activity
instance, i.e., when it entered a certain state and its relating batch instance

id init ready running terminated batch

... ... ... ... ...
i31 13/03/11 09:31 am 13/03/11 10:20 am 13/03/11 03:40 pm 13/03/11 03:51 pm 11
i37 13/03/11 09:58 am 13/03/11 11:01 am 13/03/11 03:51 pm 13/03/11 03:57 pm 11
i40 13/03/11 12:01 am 13/03/11 12:17 am 13/03/11 03:57 pm 13/03/11 04:02 pm 11
i48 13/03/11 02:33 pm 13/03/11 02:46 pm 13/03/11 04:02 pm 13/03/11 04:09 pm 11
i51 13/03/11 02:54 pm 13/03/11 03:14 pm 13/03/11 04:09 pm 13/03/11 04:16 pm 11
i59 13/03/11 03:07 pm 13/03/11 03:32 pm 13/03/12 04:16 pm 13/03/12 04:23 pm 11
i64 13/03/11 04:02 pm 13/03/11 04:13 pm 14/03/12 04:13 pm 14/03/12 04:25 pm 12
i76 14/03/12 10:21 am 14/03/12 10:45 am 14/03/12 04:25 pm 14/03/12 04:31 pm 12
i83 14/03/12 02:40 pm 14/03/12 02:49 pm 14/03/12 04:31 pm 14/03/12 04:36 pm 12
... ... ... ... ... ..

In Tables 1 and 2, we show exemplary extracts of the activity and batch log of Check
refund claim manually in order to illustrate the batch activity execution. A new activ-
ity instance i31 initialized at 9:31 am gets enabled at 10:20 am and requests the batch
factory for being added to a batch. Base on its algorithm, the batch factory initializes a
new batch instance b11, because the current availBatch b10 is already maxloaded. The
batch factory sets b11 as availBatch and adds i31 to its waiting queue. As time proceeds,
new enabled instances (i37, i40, i48) are added to b11. For each, the activation rule of
the batch instance is triggered, because the number of waiting instances is increased,
but it does not evaluate to true. With activity instance i51, the waiting queue length is
equal to the threshold of five. The activation rule evaluates its condition to true and the
action to enable the batch instances is executed. With b11 being in the ready state (at
3:14 pm), it is offered to the task executor which are all employees having the role of
claim inspector.

Table 2. Batch instance log: Each row
presents moment of state change by a
batch instance

id state time

... ... ...
b10 maxloaded 13/03/11 10:18 am
b10 running 13/03/11 10:50 am
b10 terminated 13/03/11 11:45 am

b11 init 13/03/11 10:20 am
b11 ready 13/03/11 03:14 pm
b11 running 13/03/11 03:40 pm
b11 terminated 13/03/11 04:23 pm

b12 init 13/03/11 04:13 pm
b12 ready 14/03/12 04:13 pm
b12 running 14/03/12 04:17 pm
b12 terminated 14/03/12 05:05 pm
... ... ...

A new enabled instance i59 arrives which is as-
signed to b11 by the batch factory, because b11
is still in the ready state and so still the avail-
Batch. At 3:40 pm, a claim inspector accepts the
batch and starts it. The batch instance b11 changes
into the running state. Due to the choice of se-
quential batch execution, b11 triggers the state
change of the first assigned activity instance i31
and provides it over the process engine to the
claim inspector. When i31 is terminated, the batch
instances starts the next instance. For the newly
enabled activity instance i64, a new batch instance
b12 is created, because b11 is running already.
With completion of i59 at 4:23 pm – the last one
in the waiting queue of b11 –, the batch instance
changes into terminated.

On the next day, only few enabled activity instances for manual claim check arrive.
The activation rule is triggered, because instances are not added to the waiting queue of
b12 for a longer time period. At 4:13 pm, the condition that the lifetime of b12 is equal
or greater than the maximum waiting time of one day is fulfilled and the enablement of
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b12 is conducted. Few minutes later at 4:17 pm, the batch is accepted by a claim inspec-
tor. Again, the activity instances are started one after another and the batch instance b12
terminates at 4:36 pm with the end of its last activity instance i83.

The batch activity Produce voucher card in the process of Fig. 7 is an example
for parallel batch execution. As we already discussed parallel execution in detail in
Section 3.2, we will omit the discussion here due to space requirements.

4 Related Work

In an early work, Barthelmess and Wainer distinguish activities in work-case based ac-
tivities acting exclusively on particular business cases and batch activities for which a
set of cases have to be bought together [2]. They argue that batch activities are needed
to improve process performance or to compare business cases. Since than, only few at-
tempts to integrate batch activities into process modeling and execution were proposed.
In Table 3, we show them with respect to their coverage of the requirements of Section 2.

Table 3. Evaluation of related work

Aalst et al. [13] Sadiq et al. [12] Liu et al. [4] Mangler et al. [6] This

R1: Different execution semantics + + + + +
R2: Activation rule - - o + +
R3: Homog. vs. heterog. requirements - - + + -
R4: Single vs. multiple server(s) + + - o +
R5: Parallel vs. sequential enactment - - - - +
R6: Maximum capacity + + + - +

fully satisfied (+), partially satisfied (o), not satisfied (-)

One of them is the proclet framework by van Aalst et al. [13]. It defines a process
as a set of interacting proclets representing process fragments via channels. A batch
activity can be realized by a proclet which receives a predefined number of messages
by instances of a cooperating proclet, enacts the batch task and sends back messages to
the corresponding instances (R1). The other proclet may cover all single-case activities
of the process. A sequential batch execution is not possible. Proclets allow different
resource allocations (R4), but the size of a batch has to be explicitly given at design
time (R6) leading to a inflexible batch execution: The number of cases for comparison
cannot be defined dynamically and waiting for specific number of instances can result
in decreased process performance. In this work, we provide a flexible batch execution
approach by giving the possibility to select an activation rule for a batch activity.

Sadiq et al. [12] propose to establish compound activities in workflow systems with
a grouping- and ungrouping-function generating one activity instance based on several
ones and splitting it after task execution (R1). This activity instance could be provided
based on different resource patterns to task executors (R4). The grouping-function can
be either auto-invoked with a predefined number of required instances (R6), which has
similar drawbacks as proclets, or user-invoked, creating a batch with user-selected in-
stances. The user-invocation means a manual batch organization where rules are not
explicitly defined and errors can occur. In contrast, our approach offers the possibility
to explicitly define the batch execution rules with automatic enforcement of those.
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Also, Liu et al. [4] want to integrate a new type of activity for batch execution into
workflow systems which is called batch processing activity (BPA). As the BPA is lim-
ited to the threshold rule (R2), the process designer defines a threshold and the maximal
capacity for a BPA as well as a grouping characteristic. Based on this characteristic, a
grouping and selection algorithm (GSA) groups activity instances arrived in the central
waiting queue of the BPA and selects a group to submit it to a server (R3). The func-
tionality of the GSA is not further discussed in this work; a proposal can be found in a
later work [5]. The authors limit their approach such that each BPA has only one server
available. Liu et al. [4] establish a scheduling algorithm for the GSA which observes
the state of BPA’s waiting queue as well as server and initializes it when the server is
idle and the threshold rule is fulfilled. With this algorithm, only one specific case of a
direct allocation to one resource is covered. In our work, we allow that several batches
can run in parallel so that all patterns of the resource perspective can still be used.

Mangler and Rinderle-Ma [6] provide an approach for a rule-based activity synchro-
nization of instances of the same process as well as of instances of different processes.
The synchronization is organized before or after specific rendezvous points. They pro-
pose that an external synchronization service can subscribe itself for being informed
about the progress of certain process instances. This service can trigger to stop their
execution as well as their continuation due to predefined ECA rules. According to their
approach, a batch activity can be organized as follows: Before certain process instances
start with a specified activity, the subscriber stops them and the references to them are
saved in a buffer (R1). When a certain condition is met, the subscriber triggers the con-
tinuation of the respective process instances (R2). With several subscribers focusing on
same rendezvous points, but different types of instances, also heterogeneous demands
by activity instances can be served (R3). However, the authors do not discuss, how this
batch of instances is provided to the task executor (R4). Furthermore, advanced techni-
cal knowledge is requested for the implementation of the synchronization service and
its ECA rules. In this paper, we provided an approach with which a batch activity can
be designed without any technical background and then automatically be executed.

5 Conclusion

In this work, we propose an approach to integrate the concept of batch activities into
process modeling and execution. Therefore, we first defined several requirements based
on the batch service problem in queuing research and the different execution seman-
tics of a batch activity compared to a regular one. Next, we extended the process meta
model so that a batch model can be optionally associated to an activity making it a batch
activity. With its different parameters, a process designer can configure the batch execu-
tion by selecting an activation rule and defining the maximum batch size as well as the
way of execution (i.e., parallel vs. sequential). With these configuration parameters, the
rules for a batch activity are explicitly documented which facilitates the communication
with process stakeholders. The batch model describes the behavior for a set of batch in-
stances where each batch instance manages one batch execution in order to allow that
several batches can run in parallel in case of multiple available resources. We presented
an architecture and execution semantics to show how the parallel batch execution can
be organized and implemented in a process engine. The applicability of our approach



Batch Activities in Process Modeling and Execution 297

was illustrated based on a case study. The study demonstrated that an automatic exe-
cution of batch activities by a process engine removes effort from process participants
to organize it manually. Furthermore, it improves monitoring and analysis of a batch
activity which results can be also used for enhancing batch configurations.

Our approach covers all defined requirements except that activity instances can be
heterogeneous in their demands and may have to be grouped into different types of
batches. This may be solved by developing an additional configuration parameter for
the batch model to express grouping characteristics. Furthermore, our approach assumes
that only activity instances of the same process can be grouped into a batch. The BPMN
concept of call activities can provide a possibility for bringing activity instances of
different processes together. When the batch activities are part of the process model, the
process designer has an increased responsibility for their correct configuration. In order
to support that, further validation and verification techniques should be developed which
take into account batch activities. In future work, we want to address these limitations.
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