
Cryptanalysis of HMAC/NMAC-Whirlpool

Jian Guo1, Yu Sasaki2, Lei Wang1, and Shuang Wu1

1 Nanyang Technological University, Singapore
2 NTT Secure Platform Laboratories, Japan

ntu.guo@gmail.com, sasaki.yu@lab.ntt.co.jp, {wang.lei,wushuang}@ntu.edu.sg

Abstract. In this paper, we present universal forgery and key recovery
attacks on the most popular hash-based MAC constructions, e.g., HMAC
and NMAC, instantiated with an AES-like hash function Whirlpool. These
attacks work with Whirlpool reduced to 6 out of 10 rounds in single-key
setting. To the best of our knowledge, this is the first result on “original”
key recovery for HMAC (previous works only succeeded in recovering the
equivalent keys). Interestingly, the number of attacked rounds is com-
parable with that for collision and preimage attacks on Whirlpool hash
function itself. Lastly, we present a distinguishing-H attack against the
full HMAC- and NMAC-Whirlpool.

Keywords: HMAC, NMAC, Whirlpool, key recovery, universal forgery.

1 Introduction

AES (Advanced Encryption Standard) [6] is the probably most used block cipher
nowadays, and it also inspires many designs for other fundamental primitives of
modern cryptography, e.g., hash function. As cryptographic algorithms for secu-
rity applications, AES and AES-like primitives should receive continuous security
analysis under various protocol settings. This paper discusses the security evalu-
ation of these primitives in one notable setting; the MAC (Message Authentication
Code) setting.

A MAC is a symmetric-key construction to provide integrity and authenticity
for data. There are two popular approaches to build a MAC. The first approach
is based on a block cipher or a permutation, e.g., the well-known CBC (Cipher
Block Chaining) MAC [1]. Such designs with an AES-like block cipher (or permuta-
tion) include CMAC-AES [28], PC-MAC-AES [19], ALPHA-MAC [7] and PELICAN-MAC [8].
A series of analysis results have been published on these AES-like block ciphers
(or unkeyed permutations) under the CBC MAC setting. Refer to [12,13,32,4,9].
From a high-level view, cryptanalysts have managed to extend several analysis
techniques devised on block cipher itself to also work in the CBC MAC setting,
e.g., [32,9] use the impossible differential attack. The second approach is based
on a hash function. Such designs with an AES-like hash function include HMAC-
Whirlpool and HMAC-Grøstl. Surprisingly, there is NO algorithmic analysis re-
sult yet on these AES-like hash functions in the MAC setting to our best knowledge,
though a side-channel attack was published on HMAC-Whirlpool [33].

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013, Part II, LNCS 8270, pp. 21–40, 2013.
c© International Association for Cryptologic Research 2013

22 J. Guo et al.

Fig. 1. Comparison of attack models

We briefly discuss the difficulty of applying the analysis techniques, which are
devised to analyze public AES-like hash functions or to analyze AES-like block
ciphers in the CBC MAC setting, to evaluate AES-like hash functions under the
hash-based MAC setting. More precisely, we make a comparison of their model
from an attacker’s view by focusing on the underlying iterated small primitives;
compression function of a hash function and block cipher of CBC MAC, which is
also explained in Figure 1. A few new notations are introduced here: x is an
internal state after processing previous message blocks, m is a current message
block, y is an updated internal state, k is a secret key of block cipher, F is a
compression function, and E is a block cipher.

For a hash function in public setting and in MAC setting, the main difference
from an attacker’s view is that x and y are public in the former setting, but are
secret in the latter setting. Note that the effective analysis techniques rebound
attack [18] and splice-and-cut preimage attack [25] on AES-like hash functions
in public setting use a start-from-the-middle approach, which requires to know
and to control the internal values of the compression function, and thus requires
that x is public to the attacker. Therefore these techniques cannot be applied
trivially in MAC setting.

For CBC MAC and hash-based MAC, the main difference is how a message block
is injected to an internal state. CBC MAC uses a simple XOR sum x ⊕m, while
hash-based MAC usually compresses x and m in a complicated process, e.g., the
Miyaguchi-Preneel (MP) scheme Ex(m) ⊕ m ⊕ x. It affects the applicability
of differential cryptanalysis. The attacker is able to derive the internal state
difference Δx in the CBC MAC setting (i.e., randomize message block m to find
a pair m and m′ that leads to a collision on the input to E detectable from
the colliding MAC outputs, and derive Δx = m ⊕ m′). On the other hand, the
internal state difference cannot be derived in the hash-based MAC setting except
the collision case Δx = 0, which sets a constraint on the differentials of the
underlying block cipher that can be exploited by an attacker.

This paper gives the first step on the algorithmic security evaluation of AES-
like hash functions in the hash-based MAC setting. The main attack target is the
Whirlpool hash function in the HMAC setting, which is motivated by the fact
that both schemes are internationally standardized.

Whirlpool [24] was proposed by Barreto and Rijmen in 2000. Its compression
function is built from an AES-like block cipher following Miyaguchi-Preneel mode.

Cryptanalysis of HMAC/NMAC-Whirlpool 23

Whirlpool has been standardized by ISO/IEC, and has been implemented in
many cryptographic software libraries such as FreeOTFE and TrueCrypt. Its se-
curity has been evaluated and approved by NESSIE [20]. The first cryptanalysis
result was published by Mendel et al. in 2009 [18], which presented a collision
attack on 4-round Whirlpool hash function (full version: 10 rounds). Later Lam-
berger et al. extended the collision attack to 5 rounds [16]. After that, Sasaki
published a (second) preimage attack on 5-round Whirlpool hash function in
2011 [25], and the complexity of his attack was improved byWu et al. in 2012 [31].
Later Sasaki et al. extended the preimage attack to 6 rounds [27]. In addition to
hash function attacks, several cryptanalysis results on the compression function
of Whirlpool have also been published [16,27], and particularly a distinguisher
on the full compression function was found [16].

HMAC [2] was proposed by Bellare et al. in 1996. It has been standardized by
ANSI, IETF, ISO and NIST, and widely deployed in SSL, TLS and IPsec. HMAC
based on a hash function H takes a secret key K and a message M as input and
is computed by

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖M)),

where ipad and opad are two different public constants. HMAC is always viewed
as a single-key variant of NMAC [2]. NMAC based on a hash function H takes two
keys; the inner key Kin and the outer key Kout, and a message M as input, and
is computed by

NMAC(Kout,Kin,M) = HKout(HKin(M)),

where the function HKin(·) stands for the hash funtion H with its initial value
replaced by Kin, and similarly for HKout(·). The internal states F (IV,K⊕opad)
and F (IV,K ⊕ ipad) of HMAC is equivalent to the Kout and the Kin of NMAC
respectively, where F is the compression function and IV is the public initial
value of H . This paper refers F (IV,K ⊕ opad) and F (IV,K ⊕ ipad) to as the
equivalent outer key and the equivalent inner key respectively. Note that if these
two equivalent keys are recovered, the attacker will be able to forge any message,
resulting in a universal forgery attack on HMAC.

Our Contribution. We present universal forgery (i.e., recover the two equiva-
lent keys) and key recovery attacks on HMAC based on round-reduced Whirlpool,
and a distinguishing-H attack on HMAC based on full Whirlpool. These attacks
are also applicable to NMAC based on Whirlpool. All the results are summarized
in Table 1. Interestingly, our attacks on the Whirlpool hash function in HMAC

and NMAC setting reach attacked round numbers comparable to that in the public
setting (even with respect to classical security notions; forgery and key recovery
in MAC setting and collision and preimage attacks in public setting).

For HMAC and NMAC based on 5-round Whirlpool, we generate a structured
collision on the first message block of the first call of hash function, which can
be detected from the MAC output collisions and verified by the length extension

24 J. Guo et al.

property. For the structured collision, we know the differential path inside the
block cipher EKin . Based on it, we apply a meet-in-the-middle attack to recover
the value of Kin. After that, we apply two attacks. One is to recover the value of
Kout, which results in a universal forgery attack on HMAC and a full-key recovery
attack on NMAC. The attack of recovering Kout is similar with that of recovering
Kin, except the procedure of finding target pairs. Instead of generating colli-
sions as for recovering Kin, we will first recover the values of an intermediate
chaining variable of the outer hash function, and then find a near collision on
this intermediate chaining variable. The other attack is to recover the key of
HMAC. Recall that Kin = F (IV,K ⊕ ipad), recovering K from Kin is similar to
inverting F (IV, ·) to find a preimage of Kin. Thus we apply an attack similar
with the splice-and-cut preimage attack to recover K from Kin. To our best
knowledge, this is the first result of recovering the (original) key of HMAC, while
previous results [11,22,23,29] only succeeded in recovering the equivalent keys.

We investigate the extension by one more round, namely 6-round Whirlpool,
and find an interesting observation. More precisely, Kout can be recovered if a
value of an intermediate chaining variable in the first call of hash function is re-
covered or leaked. Differently from the above attacks on 5 rounds, the procedure
is based on generating a multi-near-collision on an intermediate chaining variable
of the outer hash function. After Kout is recovered, we apply two attacks. One is
to recover Kin, which results in a universal forgery attack on HMAC and a full-key
recovery attack on NMAC. The other attack is to recover the key of HMAC. From a
high-level overview, our observation reduces the problem of breaking the classi-
cal security notions (with significant impacts) universal forgery and key recovery
to the problem of breaking a weak security notion (usually with rather limited
impacts) internal-state recovery for HMAC and NMAC based on 6-round Whirlpool.
We stress that such a reduction is not trivial. As an example, an internal-state
recovery attack was published on HMAC/NMAC-MD5 in the single-key setting back
to 2009 [30], but no universal forgery or key recovery attack is published on
HMAC/NMAC-MD5 in the single-key setting yet to our best knowledge. Moreover,
very recently Leurent et al. find a generic single-key internal-state recovery at-
tack on HMAC and NMAC [17]. Combing their attack with our observation, we get
universal forgery and key recovery attacks on HMAC and NMAC based on 6-round
Whirlpool.

We would like to point out that the above universal forgery and key recovery
attacks on round-reduced Whirlpool are also applicable in other hash-based
MAC setting. More precisely, we can attack LPMAC and secret-suffix MAC with
6-round Whirlpool and Envelop MAC with 5-round Whirlpool, all in the single-
key setting.

Lastly, we find a distinguishing-H attack on HMAC and NMAC with full
Whirlpool, which in fact has wide applications besides Whirlpool. Recall HMAC
and NMAC make two calls of hash function, and the outer hash function takes
the inner hash outputs as input messages. Thus the outer hash function always
processes n bits long messages, where n is the bit size of hash digests. Note that
usually the length and the value of the padding bits are solely determined by

Cryptanalysis of HMAC/NMAC-Whirlpool 25

Table 1. Summarization of our results. These results are based on the minimization
of max{data, time, memory}. More tradeoffs towards minimizing each parameter of
data, time and memory are provided in the paper.

Our Result Summarization

Attack Target #Rounds Attack mode
Complexity

Reference
Time Memory Data

HMAC-Whirlpool 5 universal forgery 2402 2384 2384 Section 3
5 key recovery 2448 2377 2321 Section 3
6 universal forgery 2451 2448 2384 Section 4
6 key recovery 2496 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

NMAC-Whirlpool 5 key recovery 2402 2384 2384 Section 3
6 key recovery 2451 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

Previous best results on Whirlpool hash function

Whirlpool 5 collision attack 2120 264 − [16]
6 preimage attack 2481 2256 − [27]

the bit size of an input message. Therefore it is possible that the last block of
the outer hash function of HMAC and NMAC contains fully padding bits and thus is
with a constant value, and indeed this is the case for HMAC- and NMAC-Whirlpool.
Our distinguishing-H attack can be applied with a complexity 2n/2 (n is 512 for
Whirlpool). Our distinguisher has two advantages compared with Leurent et
al.’s generic attack [17]. One is that our queried messages have practical length.
The other one is that the complexity of our attack is significantly lower as long
as the specification of the n-bit hash function restricts the input message with
a block length shorter than 2n/2. Our distinguishing-H attack on HMAC- and
NMAC- Whirlpool has a complexity of 2256, while Leurent et al.’s attack has a
complexity of at least 2384.

Note that we focus on HMAC-Whirlpool using a 512-bit key and producing 512-
bit MAC outputs in this paper. One may doubt the large size of the key and the
tag. We would like to point out that besides pure theoretical research interests,
evaluating such an instance of HMAC-Whirlpool also has practical impacts. This
is due to the fact that ever since HMAC was designed and standardized, it has been
widely implemented beyond the mere MAC applications. For example, the above
instance of HMAC-Whirlpool will be used in HMAC-based Extract-and-Expand
Key Derivation Function (HKDF) [15] if one instantiates this protocol with
Whirlpool hash function, providing that Whirlpool is a long-stand secure hash
function and has been implemented in many cryptographic software library.
Based on these facts, HMAC-Whirlpoolmay have more applications in industry in
the future, and thus deserves a careful security evaluation from the cryptography
community in advance.

26 J. Guo et al.

In the rest of the paper, Section 2 gives the specifications. Section 3 presents
our attacks on HMAC and NMAC with 5-round Whirlpool. Section 4 describes our
results on one more round. Section 5 provides a distinguishing-H attack on HMAC

and NMAC with full Whirlpool. Finally we give conclusion and open discussions
in Section 6.

2 Specifications

2.1 Whirlpool Hash Function [24]

The Whirlpool hash function follows the Merkle-Damg̊ard structure and pro-
duces 512-bit digests. The input message M is padded by a ‘1’, a least number
of ‘0’s, and 256-bit representation of the original message length, such that the
padded message becomes a multiple of 512 bits.

The padded message is divided into 512-bit blocks and used in the itera-
tion of compression functions. The compression function F is constructed based
on a block-cipher E in Miyaguchi-Preneel mode (MP mode), i.e., F (C,M) =
EC(M) ⊕ C ⊕M . Starting from a constant initial value C0 = IV , the chain-
ing value is updated for each of the message block Ci+1 = F (Ci,Mi). After all
message blocks are processed, the final chaining value is used as the hash value.

The underlying block cipher uses an AES-like structure with an 8 × 8 byte
matrix. The round function of the key schedule consists of four operations, i.e.,

Ki+1 = AC ◦ MR ◦ SC ◦ SB(Ki), for i ∈ {0, 1, . . . , 9}.
• SubBytes(SB): apply an Sbox to each byte.
• ShiftColumns(SC): cyclically rotate the j-th column downwards by j bytes.
• MixRows(MR): multiply the state by an 8× 8 MDS matrix.
• AddRoundConstant(AC): XOR a 512-bit round constant to the key state.

We denote the key state after SB, after SC and after MR in the (i + 1)-th round
of the key schedule by KSB

i , KSC
i , KMR

i respectively.
The round function of the encryption is almost the same as the key schedule,

except for the AddRoundKey(AK) operation, which XORs the key state to the
data state, i.e., the initial state is the XOR sum of the whitening key and the
plaintext S0 = K0 ⊕M and

Si+1 = AK ◦ MR ◦ SC ◦ SB(Si), for i ∈ {0, 1, . . . , 9}.
The final state S10 is used as the ciphertext. We denote the state after SB, after
SC and after MR in the (i+1)-th round of the round encryption function by SSB

i ,
SSC
i and SMR

i respectively.

2.2 HMAC and NMAC [2]

NMAC replaces the initial vector (IV) of a hash function H by a secret key K to
produce a keyed hash function HK . NMAC uses two secret key Kin and Kout and
is defined by

NMACKout,Kin(M) = HKout(HKin(M)).

Cryptanalysis of HMAC/NMAC-Whirlpool 27

Kin and Kout are usually referred to as the inner and the outer keys. Corre-
spondingly HKin and HKout are referred to as the inner and the outer hash
functions. HMAC is a single-key variant of NMAC. Denote the compression function
by F .

HMACK(M) = NMACF (IV,K⊕ipad),F (IV,K⊕opad)(M).

3 Attacks of HMAC and NMAC Based on 5-Round Whirlpool

In this section, we use one block long messages M to present our attack. Fig. 2
shows how HMAC/NMAC-Whirlpool processes M . Note that both M and T ′′ are
one full block long, and thus an extra padding block P is appended in both the
two calls of the hash function.

The attack starts with recovering value of (equivalent) Kin. We generate a
structured collision on the internal state T ′. Then for the collision, we get the
differential path inside EKin , and recover some internal value of EKin by a
meet-in-the-middle (MitM) attack approach. Finally Kin is derived by a simple
backward computations. Once Kin is recovered, we have two directions: 1) re-
cover the value of (equivalent) Kout to amount a universal forgery for HMAC or
to amount a full-key recovery for NMAC, and 2) recover the key of HMAC.

For the Kout recovery, note that T ′′ is public to the attacker now since Kin

is recovered. We firstly derive the values of T ′′′ with a technique similar to [26],
and then obtain the values of EKout ⊕ Kout: T

′′ ⊕ T ′′′. Given that Kout has
no difference, we search for a pair of messages that satisfies a pre-determined
difference constraint on the outputs of EKout , and get the inside differential path.
Finally we recover an internal value of EKout , and backwards compute the value
of Kout.

For the key recovery of K, from Kin = F (IV,K ⊕ ipad), we observe that
K ⊕ ipad is a preimage of Kin regarding the Whirlpool compression function
with a fixed chaining value F (IV, ·). Note that the problem of inverting the
compression function of Whirlpool has already been solved in [31] and [27] with
splice-and-cut MitM approach. We use a similar approach to recover the value
of K ⊕ ipad and then derive the value of K.

Moreover, we provide time-memory-data tradeoffs for recovering Kin and
Kout.

3.1 How to Recover (Equivalent) Kin

In this section, we demonstrate the Kin recovery attack with optimizing its
complexity for the key recovery of HMAC, and introduce the time-memory-data
tradeoff in the next section.

Our attack is based on a 5-round differential path of the compression function,
which is shown in Fig. 3. Each cell in this figure stands for a byte of the key or the
state. Blank cells are non-active and cells with a dot inside are active. If the value
of a byte is unknown, the cell is in white color. Red bytes are initially known
from the message, tag or the recovered chaining value. Blue and green bytes

28 J. Guo et al.

ipadK�IV E E

E E TopadK�

M

inK

outK

IV

T �

EP T ��

T ���

EP

Fig. 2. HMAC/NMAC based on Whirlpool

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

● ●
● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

S 2
MR

S '1
SC S 2

SB

SB SC MR

SC MR AC

SB SC MR

SC MR AC SB

SB SC MR

SC MR AC SB

SB

SB

SB SC

SC AC' SB

MR

MR

#diff=224 for
each row

initially known

backward guess
forward guess

colors legends difference value
zero unknown

non-zero unknown
known unknown
known known

zero known

Step D: 384-bit filter Guess 6 diagonals (384 bits)

Guess value and difference for 5
rows: 5(64+24) = 440 bits

Differntial form:
MR(3 diagonals)

SC MR

SC MR AC

Fig. 3. Differential path for recovering Kin for HMAC and NMAC with 5-round Whirlpool

are the guessed bytes in the forward and backward directions of the MitM step.
Moreover, some round functions are illustrated in equivalent expressions in this
figure. The new operation AC′ XORs the constant MR−1(RCi) to the key state,
where RCi is used in the original AC operation, and it implies AC ◦ MR = MR ◦ AC′.

Produce a Structured Collision on T ′. We use a structure of chosen mes-
sages in which any two messages satisfy a constraint of the differential form in
Fig. 3. First we choose a set of 2192 values {M1,M2, . . . ,M2192} such that the
value of three specific rows of the messages take all possible 2192 values and all
other bytes are chosen as constants. The positions of the three active rows are
the top three rows in Fig. 3. Then, update the set by Mi ← MR ◦ SC(Mi) for
i = 1, 2, . . . , 2192. This requires about 2192 computations. Note that for any two
distinct indexes i1 and i2, SC

−1 ◦ MR−1(Mi1 ⊕Mi2) has three active rows in the
pre-specified positions. Query the messages and obtain the corresponding tags
Ti = MAC(K,Mi), for i = 1, 2, . . . , 2192. Check if there is a collision of the tags. If
a collision is found, we need to verify if it collides on T ′ by the length extension

Cryptanalysis of HMAC/NMAC-Whirlpool 29

attack (i.e., append a random message block M to each of the colliding messages
Mi1 and Mi2 , and query Mi1‖M and Mi2‖M to see whether their tags collide).
For a collision on T ′, it is ensured that the output difference of EKin converted
by SC−1 ◦ MR−1 has three active rows.

For a structure of 2192 messages generated by applying MR ◦ SC for each, we
query them to MAC, store the corresponding tags and search for a collision. So
it requires 2192 queries, 2192 computations, and 2192 memory. For one structure,

we can make
(
2192

2

)
= 2383 pairs. After repeating the process for 2129 structures

with different chosen constants, one collision is expected. The total number of
queries is 2192+129 = 2321, the computational complexity is 2321 and the required
memory is 2192.

Recover Kin. Recall T ′ = F (Kin,M) = EKin(M) ⊕M ⊕ Kin. For an inner
collision on T ′, we know �T ′ = 0. In the single-key attacks, the difference of
Kin is also zero: �Kin = 0. Thus the difference of the output of the block
cipher can be computed as �EKin(M) = �T ′⊕�M ⊕�Kin = �M . So we get
�S5 = �M , and thus SC−1 ◦ MR−1(�S5) has three active rows. It ensures that
the number of differences at each row of SMR

2 is at most 224. Now we describe
the attack step by step.

Step A. Guessing in the forward direction
Guess the values of m diagonals of Kin (264m values) which are marked in
blue, as in Fig. 3. Then we can determine the value of corresponding m
diagonals in S′SC

1 . Now there are m known diagonals on the left side of the
matching point - the MR operation in the second round. All the candidates
are stored in a lookup table T1.

Step B. Guessing in the backward direction
Guess the values and differences of n rows of SMR

2 (2(64+24)n candidates)
which are marked in green, as in Fig. 3. Then we can determine the value of
corresponding n (reverse) diagonals in S2. Now there are n known diagonals
on the right side of the matching point. All the candidates are stored in
another lookup table T2.

Step C. MitM matching across the MR operation
The technique of matching across an MDS transformation is already pro-
posed and well-discussed in [25,31,27]. Here we directly give the result. For a
64-byte state, the bit size of the matching point is calculated as 64(m+n−8),
where m and n are the number of known diagonals in both sides. Because
we can match both of the value and difference on a 64-byte state, the bit size
of the matching point is 128(m+ n− 8). Therefore, the number of expected
matches between T1 and T2 is 264m+(64+24)n−128(m+n−8) = 2−64m−40n+1024.
Note that the matching candidate is a pair of (S′SC

1 , S2) where all bytes are

fully determined. Then, the corresponding K ′AC
1 is also fully determined.

We use a pre-computation of complexity 265 to build a table of size 265,
which is used for (S′SC

1 , S2) to determine the remaining two diagonals of the
corresponding Kin by just a table lookup. More precisely, for all values of
each unguessed diagonal of Kin, compute the corresponding diagonal values

30 J. Guo et al.

in S′SC
1 , and store them in a lookup table. The number of remaining candi-

dates is also the number of suggested keys. The correctness of each suggested
keys can be verified by the differential path from S3 to S5.

The total complexity of the attack is

264m + 2(64+24)n + 2−64m−40n+1024.

When m = 6 and n = 5, we get the complexity of about 2384 + 2440 + 2440 ≈
2441 computations. The sizes of T1 and T2 are 2384 and 2440 respectively. Since
we only need to store one of them and leave the calculations of other direction
“on the fly”, the memory requirement is 2384. Taking into account the phase
to find the inner collision, the total time complexity for recovering Kin is 2441

time and 2384 memory, along with 2321 chosen queries. Recall that we chose the
attack parameters by considering that the original key recovery attack on HMAC

will require 2448 computations as we later show in Section 3.4. We balanced the
time complexity and then reduced the memory and queries as much as possible.

3.2 Time-Memory-Data Tradeoff for Kin Recovery

For the differential path in Fig. 3, the number of active rows does not have to be
three. Indeed, this derives a tradeoff between data (the number of queries) and
time-memory. Intuitively, the more data we use, the more restricted differential
path we can satisfy and thus time and memory can be smaller. On the other
hand, data can be minimized by spending more time and memory. Let r be the

number of active rows in Fig. 3. For a single structure,
(
264r

2

)
= 2128r−1 pairs

can be constructed with 264rqueries. In the end, a collision can be found with
2513−64r queries.

Then, the MitM phase is performed. The time complexity for the forward com-
putation does not change, which is 264m, while the complexity for the backward
computation is dependent on r, which is 2(64+8r)n. We can further introduce the
tradeoff between time and memory, where their product takes a constant value.
For simplicity, let us assume that 264m < 2(64+8r)n. The simple method com-
putes the forward candidates with 264m computations and stores them. Then, the
backward candidates are computed with 2(64+8r)n. Hence, the time is 2(64+8r)n

and the memory is 264m. Here, we divide the free bits for the forward computa-
tion into two parts; 64m− t and t. An attacker firstly guesses the value of t bits,
and for each guess, computes the 264m−t forward candidates and stores them in a
table with 264m−t entries. The backward computation does not change. Finally,
the attack is iterated for 2t guesses. In the end, the memory complexity becomes
264m−t while the time complexity becomes 2(64+8r)n+t computations.

Let us demonstrate the impact of the time-memory-data tradeoff. In section
4.1, we aimed to achieve the time complexity of 2448, and chose the parameter
(r,m, n, t) = (3, 6, 5, 0) which resulted in (data, time, memory) = (2321, 2441,
2384). By choosing parameters (r,m, n, t) = (3, 6, 5, 7), memory can be saved
by 7 bits, i.e., (data, time, memory)= (2321, 2448, 2377). Then let us consider

Cryptanalysis of HMAC/NMAC-Whirlpool 31

the optimization from different aspects. First, we minimize the value max{data,
time,memory}. We should choose (r,m, n, t) = (2, 6, 5, 0), which results in (data,
time, memory)= (2384, 2400, 2384). Next, we try to minimize each of time, data,
and memory complexities. If we minimize the time complexity, we should choose
(r,m, n, t) = (1, 6, 5, 0), which results in (data, time, memory)= (2448, 2384, 2360).
If we minimize the data complexity, we should choose (r,m, n, t) = (4, 7, 5, t)
which results in (data, time, memory)= (2257, 2480+t, 2448−t). If we minimize the
memory complexity, we should choose (r,m, n, t) = (1, 6, 5, 144) which results in
(data, time, memory)= (2449, 2504, 2240).

3.3 How to Recover Kout

With the knowledge of Kin, we can calculate the value of T ′′ for any M at offline
(refer to Fig. 2). Moreover, we can recover the value of T ′′′ using a technique
similar to [26]. Thus we are able to get the output value of EKout ⊕Kout: T

′′ ⊕
T ′′′. For a pair of outputs of EKout ⊕ Kout that has a difference satisfying the
constraint on the output difference of EKin in Fig. 3, more precisely SC−1 ◦
MR−1(Δ(T ′′ ⊕ T ′′′)) has r active rows, the exactly same procedure of recovering
Kin described in Section 3.1 can be applied to recoverKout in a straight-forward
way. This section mainly describes the procedure of finding such a pair. Moreover,
we provide a time-memory-data tradeoff for recovering Kout.

It is interesting to point out the difference for finding a target pair of recovering
Kin and that of recovering Kout. For recovering Kin, we can freely choose the
input M , but cannot derive the output differences of EKin unless a collision
occurs on the compression function. For recovering Kout, we cannot control the
input T ′′, but can compute the output differences of EKout easily since we know
the values of both T ′′ and T ′′′.

Produce (8−r)-row Near Collision on SC−1◦MR−1(T ′′⊕T ′′′). We need to
recover the value of T ′′′, which is as follows. Firstly, choose 2x different random
values Xi, calculate Yi = F (Xi, P) and store (Xi, Yi) in a lookup table T1 at
offline. Secondly, choose 2y different random values of Mi, query them to MAC,
obtain Zi = MAC(K,Mi) and store (Mi, Zi) in another lookup table T2. Finally
we match Yi in T1 and Zj in T2, and get 2x+y−511 matches on average. For each
match, the internal state T ′′′ of Mj is equal to Xi with a probability 1/2. We
stress that in fact we need to store only one of T1 and T2, and generate the other
on the fly.

Next, we continue to search for a target pair. For each match of Yi and Zj ,
we compute the value of T ′′ of Mj, then compute W = SC−1 ◦ MR−1(T ′′ ⊕Xi),
and store them in a lookup Table T3 to find (8 − r)-row near collisions on W .
Recall the recovered value of T ′′′ of a message is correct with a probability of
1/2. Thus we need to generate 4 near collisions to ensure that one is a target
pair. It implies 22(x+y−511)−1 = 4× 264(8−r), and thus 2x+ 2y + 64r = 1537.

In total, the data complexity is 2y queries, the time complexity is 2x +
2x+y−511, and the memory requirement is min{2x, 2y}.

32 J. Guo et al.

Time-memory-data Tradeoff. The attack contains two tradeoffs. The first
one is for finding a target pair, which is described above. The second one is for
MitM phase, which is described in Section 3.2. Note that the MitM has to be
applied to all the 4 near collisions, and so the time complexity of the tradeoff
for MitM phase is increased by 4 times. Both tradeoffs depend on the parame-
ter r, and thus we first determine the value of r, and analyze the two tradeoffs
together. We provide the parameters that minimize the time complexity, the
data complexity, or the memory complexity. Note that recovering Kout needs
to recover Kin first, and so we should also take the tradeoff results on recov-
ering Kin into account. Let us minimize the value max{data, time,memory}.
Considering that the same MitM procedure of recovering Kin is used for re-
covering Kout, we just need to minimize that of recovering Kin, and obtain
that (data, time,memory) = (2384, 2402, 2384). If we minimize the time com-
plexity, we should choose parameters (r,m, n, t) = (1, 6, 5, 0) for recovering
Kin and (x, y, r,m, n, t) = (360, 397, 1, 6, 5, 0) for recovering Kout, which results
in (data, time,memory) = (2448, 2386, 2360). If we minimize the data complex-
ity, we should choose parameters (r,m, n, t) = (4, 7, 5, t) for recovering Kin

and (x, y, r,m, n, t) = (448, 225, 3, 6, 5, 0) for recovering Kout, which results in
(data, time,memory) = (2257, 2480+t, 2448−t). If we minimize the memory com-
plexity, then the time and data are dominated by the Kin recovery, and thus
(data, time,memory) = (2449, 2504, 2240) by choosing the parameters given in
Section 3.2.

3.4 Key Recovery for HMAC

As previously mentioned, we will recover the key of HMAC based on the splice-and-
cut preimage attacks on the compression function with a fixed input chaining
variable F (IV, ·).

The attack model for the preimage attack on hash functions and the one for
the key recovery attack on HMAC are slightly different. For a given hash value,
there are two possibilities: 1) there exists one or more preimages; 2) no preim-
age exists. For the first case, the aim of the attacker is to find any one of the
preimages, instead of all of them. The second case may occur when the size
of input is restricted. In our sub-problem, i.e., for a compression function with
fixed chaining value, the sizes of the input message and the hash digest are the
same. Thus for a random output, the probability that no preimage exists is not
negligible: about e−1.

For a key recovery attack, the solution (the secret key) always exists. However,
the attacker has to go over all possible preimages to ensure that the correct key
is covered. In the process of the MitM attack, sometimes there is some entropy
loss in the initial structure, i.e., the attacker only looks for the preimage in a
subspace. When the size of the input space is bigger than the output space, a
preimage attack is still possible with entropy loss. If such a preimage attack is
used for key recovery, the real key could be missed.

In the preimage attacks of [31] and [27], no entropy is lost and all the possi-
ble values of the state can be covered. Thus the key recovery attack based on

Cryptanalysis of HMAC/NMAC-Whirlpool 33

this preimage attack can always succeed. The complexity is 2448 time and 264

memory.
Recall the discussion in Section 3.1, where Kin is recovered with (data, time,

memory) = (2321, 2448, 2377). Together with the preimage attack on the compres-
sion function, the original key for HMAC with 5-round Whirlpool is recovered
with (data, time,memory) = (2321, 2448, 2377).

3.5 Summary

In short, we have solved three sub-problems: (1) Recover Kin with 2384 chosen
queries, 2400 time and 2384 memory. Then with the knowledge of Kin, we can
solve another two sub-problems:(2) Recover Kout with 2303 known message-tag
pairs, 2402 time and 2384 memory; and (3) Recover the key of HMAC from Kin

with 2448 time and 264 memory. The time-memory-data tradeoff exists in (1),
and we can optimize its complexity depending on the final goal; (2) or (3).

Combining (1) and (2) with optimized trade-off, we have a key recovery attack
on NMAC and a universal forgery attack on HMAC with 2384 chosen queries, 2402

time, and 2384 memory. Combining (1) and (3) with optimized trade-off, we
have a key recovery attack on HMAC with 2321 chosen queries, 2448 time, and 2377

memory.

4 Analysis of HMAC and NMAC Based on 6-Round Whirlpool

This section presents how to extend an attack of recovering an intermediate
chaining variable of the inner hash function to universal forgery and key recovery
attacks for HMAC and NMAC with 6-round Whirlpool. Note that a generic single-
key attack of recovering such an intermediate chaining variable for HMAC and NMAC

has been published by Leurent et al. [17]. It takes around a complexity of 2384

blocks for all queries to recover an internal state value of a short message, e.g.
one block long. Thus combining their results with our analysis, we get universal
forgery and key recovery attacks on HMAC with 6-round Whirlpool.

In the rest of this section, we denote by M1 the message whose intermediate
chaining value is recovered by the attacker. We start with recoveringKout, which
is depicted in Fig. 4.

Produce a 3-near-collision on MR−1(T ′′ ⊕ T ′′′). We append random mes-
sages M ′ to M1, and query them to MAC. Note that we are able to compute
their values of T ′′ at offline. We recover the values of T ′′′ for those messages
in the same way as we did for 5-round Whirlpool. After that, we compute
W = MR−1(T ′′ ⊕ T ′′′), and search three messages that all collide on specific 56
bytes of W as shown in Fig. 4. We call such three messages 3-near-collision.

With 2x online queries and 2y offline computations, 2x+y−511 values of T ′′′

are recovered, and the same number of W are collected. Note that around 3
√
3! ·

2
2
3 448 ≈ 2300 values of W are necessary to find a target 3-near-collision [10].

Moreover, we need to generate 8 such 3-near-collisions to ensure one is indeed

34 J. Guo et al.

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

SC

SC

SB SC MR

SC MR AC SB

SB SC MR

SC MR AC SB

SB

SB AC' SC

SC MR

#diff=264

MR

MR AC

SB

SB SC

SC

SC

SC

MR

MR AC

SB

SB AC'

MR

MR

SB SC MR

SC MR AC SB

SB

SB

512-bit filter in total Guess 7 diagonals (448 bits)

Guess 3 rows of differences and values (384 bits)

Fig. 4. How to recover Kout for HMAC and NMAC with 6-round Whirlpool

our target, since each value of recovered T ′′′ is correct with a probability 1/2.
So we get 2x+y−511 = 2303, which implies that x+ y = 814.

Recover Kout. A pair of messages from a 3-near-collision follows the differential
path in Fig. 4 such that only one (reversed) diagonal of S4 is active. Thus the
number of possible differences in SSB

3 is 264. Denote three messages of a 3-near-

collision as m1,m2 and m3. Denote the values of the states S′SC
1 and S2 as Li

and Ri for mi. We will apply the meet-in-the-middle attack two times, one for
the pair (m1,m2) and the other for the pair (m2,m3).

Step A. Guessing in the forward direction
Guess the values of m diagonals of K0 as shown in Fig. 4 (264m values,
marked in blue) and determine the value of corresponding m diagonals in

K ′SC
1 and S′SC

1 .
Step B. Guessing in the backward direction

Guess the values and differences of n diagonals of S2 (2
128n values) which are

marked in green. Then we can determine the value of corresponding n rows
in SMR

2 . After the injection of K3, we only know the difference in S3. Since
the number of possible differences of SSB

3 is only 264. According to rebound
attack, we expect 264 solutions for each guess of S2. XOR 264 values of S3

and the guessed value of SMR
2 , and obtain 264 values for the top n rows of

K3 and n diagonals of K2. In total, the number of candidates on the right
side of the MitM part is 2128n+64.

Step C. MitM matching across MR on both the key and the state
For the differential path between m1 and m2, the value and difference of
S2 are in fact R1 and R1 ⊕ R2. Once we have matched the value and dif-
ference of the state, i.e., MR(L1) = R1 and MR(L1 ⊕ L2) = R1 ⊕ R2, it is

Cryptanalysis of HMAC/NMAC-Whirlpool 35

equivalent to match both the values MR(L1) = R1 and MR(L2) = R2. For
the second differential path between m2 and m3, we only need to match
another state MR(L3) = R3, since MR(L2) = R2 is already fulfilled. We come
to an observation that the size of the matching point (filter size) is actu-
ally (1 + 3) × 64 × (m + n − 8) bits, i.e., one from the key, three from
the 3-near-collision. The expected number of matches (suggested keys) is
264m+128n+64−256(m+n−8) = 22112−192m−128n.

The overall complexity to recover Kout is

264m + 2128n+64 + 22112−192m−128n.

When m = 7 and n = 3, the complexity is 2448 time and memory.
Note that the above procedure will be applied by 8 times. Thus the time

complexity is 2451. By setting y = 451, we get x = 363, and thus the data
complexity is dominated by the recovery of an intermediate chaining variable of
the inner hash function [17], namely 2384.

Universal Forgery and Key Recovery. After Kout is recovered, almost the
same procedure can be applied to recover Kin. So we get universal forgery on
HMAC and full-key recovery on NMAC. Note that for recovering Kin, it is easy to
verify whether a obtained 3-near-collision is our target. Thus the total complexity
is dominated by recovering Kout, and we get (data, time, memory)=(2384, 2451,
2448). Moreover, we apply the splice-and-cut preimage attack to recover K from
Kout according to [27], which takes a time complexity of 2496 and a memory
requirement of 264. Thus the total complexity of recovering K is (data, time,
memory)=(2384, 2496, 2448).

5 Distinguishing-H Attack on Full HMAC/NMAC-Whirlpool

In this section, we present a distinguishing-H attack on HMAC-Whirlpool, which
is also applicable to NMAC-Whirlpool in a straightforward way. First, recall the
definition of distinguishing-H [14]. A distinguisher D is to identify an oracle being
either HMAC-Whirlpool or another primitive built by replacing the compression
function F of HMAC-Whirlpool to a random function R with the same domain
and range. For a hash function with n-bit digests, it is believed that a generic
distinguishing-H attack requires 2n complexity if the hash function is ideal.

We observe that during the computation of the outer Whirlpool in HMAC-
Whirlpool, the last message block is always a constant denoted as P , more
precisely P = 105001010 where 0l means l consecutive 0s. This is because of the
equal size of message block and hash digest and the padding rule of Whirlpool.
The input messages to the outer Whirlpool consist of one block of K ⊕ opad

and one block of the inner Whirlpool digest, and thus are always two full blocks
long (namely 1024 bits), which are padded with one more block. Note that the
padded block P , which is the last message block of the outer Whirlpool, is

36 J. Guo et al.

Fig. 5. Distinguishing-H attack on HMAC-Whirlpool

solely determined by the bit length of the input messages, and thus is always a
constant. Based on the observation, we launch a distinguishing-H attack.

We first explain the overview of the attack. In the online phase, query random
messages M to the oracle, and receive tag values T . In the offline phase, choose
random values X (this simulates the value of T ′′′), and compute Y = F (X,P).
As depicted in Fig. 5, if the compression function of the oracle is F , two events
lead to the occurrence of Y = T : one is X = T ′′′; and the other is F (X,P) =
F (T ′′′, P) under X
= T ′′′. If the compression function of the oracle is R, only
one event leads to the occurrence of Y = T : F (X,P) = R(T ′′′, P). Therefore, the
probability of the event Y = T in the former case is (roughly) twice higher than
that in the latter case. Thus, by counting the number of occurrence of Y = T ,
the compression function being either F or R can be distinguished. A detailed
attack procedure is described below.

Online Phase. Send 2256 different messages M , which are one block long after
padding, to the oracle. Receive the responses T and store them.

Offline Phase. Choose a random value as X , and compute Y = F (X,P).
Match Y to the set of T s stored in the online phase. If a match is found, terminate
the procedure, and output 1. Otherwise, choose another random value of X
and repeat the procedure. After 2256 trials, if no match is found, terminate the
procedure and output 0.

The complexity is 2256 online queries and 2256 offline computations. The mem-
ory cost is 2256 tag values. Next we evaluate the advantage of the distinguisher.
Denote by DF the case D interacts with HMAC-Whirlpool, and by DR the other
case. The advantage of the distinguisher AdvInd−H

D is defined as

AdvInd−H

D := |Pr[DF = 1]− Pr[DR = 1]|.

In the case of DF , the probability ofX = T ′′′ is 1−(1−2−512)2
512 ≈ 1−1/e ≈ 0.63

since there are 2512 pairs of (X,T ′′′). The probability of Y = T and X
= T ′′′

is (1 − 1/e)× 1/e ≈ 0.23. Therefore, Pr[DF = 1] is 0.86 (= 0.63 + 0.23). In the

Cryptanalysis of HMAC/NMAC-Whirlpool 37

other case, Pr[DR = 1] is 0.63 by a similar evaluation. Overall, the advantage of
the distinguisher is 0.23 (= 0.86− 0.63).

Note that a trivial Data-Time tradeoff exists with the same advantage, Data×
Time = 2512.

Remarks on Applications. We emphasize that the above distinguishing-H at-
tack has wide applications besides Whirlpool. For example, there are 11 out of 12
collision resistance PGV modes [21] including well-known Matyas-Meyer-Oseas
mode and Miyaguchi-Preneel mode such that the chaining variable and the mes-
sage block have equal bit size due to either the feed-forward or the feed-backward
operations. If a hash function HF is built by iterating one of those PGV compres-
sion function schemes in the popular (strengthened) Merkle-Damg̊ard domain
extension scheme, the last message block of the input messages to the outer HF in
HMAC or NMAC setting is always a constant, and thus the above distinguishing-H
attack is applicable.

6 Conclusion and Open Discussions

In conclusion, we presented the first forgery and key recovery attacks against
HMAC and NMAC based on the Whirlpool hash function reduced to 5 out of
10 rounds in single key setting, and 6 rounds in related-key setting. In ad-
dition to HMAC and NMAC, our attacks apply to other MACs based on reduced
Whirlpool, such as LPMAC, secret-suffix MAC and Envelop MAC. We also gave
a distinguishing-H attack against the full HMAC- and NMAC-Whirlpool.

As open discussion, it is interesting to see if the techniques presented in this
paper are useful to analysis of other AES-like hash functions in hash-based MAC

setting. First let us have a closer look at our analysis of the underlying AES-like
block cipher in a hash function. One main and crucial strategy is restricting
the differences to appear only in the encryption process and thus keep the key
schedule process identical between the pair messages. For example, Whirlpool
uses Miyaguchi-Preneel scheme EC(M)⊕M ⊕ C (notations follows Section 2),
and the differences is introduced only by M . Recall through our analysis, C
is kept the same during finding target message pairs. The main reason of this
strategy is that a difference introduced from the keys propagates in both the
key schedule and the encryption process, which usually makes it harder to an-
alyze. For example, in our analysis on HMAC-Whirlpool, we need to derive the
differential path in the encryption process, which becomes much harder when
differences also propagate in the key schedule. Moreover, as briefly explained in
Section 1, differently from that in CBC MAC setting, one cannot derive a difference
on intermediate hash variable ΔC except ΔC = 0. Thus the difference has to be
introduced from M . After an investigation on proven secure PGV schemes [21],
we find that our analysis approach is applicable to other three schemes besides
Miyaguchi-Preneel scheme: EC(M) ⊕ M (well known as Matyas-Meyer-Oseas
scheme), EC(C ⊕M)⊕M and EC(C ⊕M)⊕ C ⊕M .

38 J. Guo et al.

It is also interesting to see if the strategies proposed to analyze MD4-like hash
functions (designed in a framework differently from AES) can be applied to AES-
like hash functions from a high-spirit level, in hash-based MAC setting. There are
two strategies to analyze MD4-family hash function in hash-based MAC setting
to the best of our knowledge. The first one was proposed by Contini and Yin [5].
Their strategy heavily relies on one design character of MD4-like hash function:
a message block is splitted into words, and these words are injected into the
hash process sequentially. More precisely, an attacker can fix the beginning mes-
sage words that have been ensured to satisfy the first steps of differential path,
and randomize the other message words. Unfortunately, this strategy seems not
promising to be applied to AES-like hash functions, because the latter injects
the whole message block into the hash process at the same time, and moreover
a byte difference propagates to the whole state very quickly due to the wide
trail design of AES. The other strategy was proposed by Wang et al. [30]. Their
strategy uses two message blocks and each block have differences. Firstly they
generate a high-probability differential path on the second compression function
(ΔC,ΔM)→ ΔC′ = 0, where C′ is the output of the second compression func-
tion. Secondly they randomize the first message block to generate pairs of the
compression function outputs that can satisfy ΔC, and each such pair can be
obtained by a birthday bound complexity. Finally these pairs will be filtered out
using the high-probability differential path on the second compression function,
and exploited to amount further attacks. Interestingly, this strategy seems appli-
cable to AES-like hash functions in MAC setting. One may build a high-probability
related-key differential path on an AES-like compression function, e.g., using the
local collisions between the key schedule and the encryption process functions
which has been found on AES [3] and on Whirlpool [27]. If it is achieved, then
Wang et al.’s strategy seems to be applicable. Note that previous constraint
ΔC = 0 is now removed, and thus this strategy has a potentiality to be applied
to more PGV schemes such as EM (C)⊕C (well known as Davies-Meyer scheme).

As our result is the first step in this research topic, we expect that future works
will provide deeper understanding of the security of AES-like hash functions in
MAC setting.

Acknowledgements. We would like to thank Jiqiang Lu, and anonymous re-
viewers for their helpful comments. This research was initially started from a dis-
cussion at the second Asian Workshop on Symmetric Key Cryptography (ASK
2012). We would like to thank the organizers of ASK12. Jian Guo, Lei Wang
and Shuang Wu are supported by the Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06).

References

1. ISO/IEC 9797-1. Information Technology-security techniques-data integrity mech-
anism using a cryptographic check function employing a block cipher algorithm.
International Organizatoin for Standards

Cryptanalysis of HMAC/NMAC-Whirlpool 39

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

3. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key At-
tack on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 231–249. Springer, Heidelberg (2009)

4. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

5. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

7. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific In-
stance ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 1–17. Springer, Heidelberg (2005)

8. Daemen, J., Rijmen, V.: The Pelican MAC Function. IACR Cryptology ePrint
Archive, 2005:88 (2005)

9. Dunkelman, O., Keller, N., Shamir, A.: ALRED Blues: New Attacks on AES-Based
MAC’s. IACR Cryptology ePrint Archive, 2011:95 (2011)

10. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. 1. Wiley, New York (1967)

11. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

12. Huang, J., Seberry, J., Susilo, W.: On the Internal Structure of Alpha-MAC. In:
Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 271–285. Springer,
Heidelberg (2006)

13. Huang, J., Seberry, J., Susilo, W.: A five-round algebraic property of AES and its
application to the ALPHA-MAC. IJACT 1(4), 264–289 (2009)

14. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

15. Krawczyk, H.: RFC: HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) (May 2010), https://tools.ietf.org/html/rfc5869.txt

16. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

17. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks Against Hash-based
MACs. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270,
pp. 1–20. Springer, Heidelberg (2013)

18. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

19. Minematsu, K., Tsunoo, Y.: Provably Secure MACs from Differentially-Uniform
Permutations and AES-Based Implementations. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006)

https://tools.ietf.org/html/rfc5869.txt

40 J. Guo et al.

20. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. IST-
1999-12324, http://cryptonessie.org/

21. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 368–378. Springer, Heidelberg (1994)

22. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-random
Properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 119–133. Springer, Heidelberg (2007)

23. Rechberger, C., Rijmen, V.: New Results on NMAC/HMAC when Instantiated
with Popular Hash Functions. J. UCS 14(3), 347–376 (2008)

24. Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL Hashing Function. Submitted
to NISSIE (September 2000)

25. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes
and an Application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733,
pp. 378–396. Springer, Heidelberg (2011)

26. Sasaki, Y.: Cryptanalyses on a Merkle-Damg̊ard Based MAC — Almost Universal
Forgery and Distinguishing-H Attacks. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 411–427. Springer, Heidelberg (2012)

27. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Re-
quirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer,
Heidelberg (2012)

28. Song, J.H., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC Algorithm (June
2006)

29. Wang, L., Ohta, K., Kunihiro, N.: New Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

30. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)

31. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J. (Pseudo) Preimage Attack
on Round-Reduced Grøstl Hash Function and Others. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

32. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on
Some MACs Based on Block Ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 209–230. Springer, Heidelberg (2009)

33. Zhang, F., Shi, Z.J.: Differential and Correlation Power Analysis Attacks on
HMAC-Whirlpool. In: ITNG, pp. 359–365. IEEE Computer Society (2011)

http://cryptonessie.org/

	Cryptanalysis of HMAC/NMAC-Whirlpool
	1 Introduction
	2 Specifications
	2.1 Whirlpool Hash Function [24]
	2.2 HMAC and NMAC [2]

	3 Attacks of HMAC and NMAC Based on 5-Round Whirlpool
	3.1 How to Recover (Equivalent)
	3.2 Time-Memory-Data Tradeoff for
	3.3 How to Recover
	3.4 Key Recovery for
	3.5 Summary

	4 Analysis of HMAC and NMAC Based on 6-Round Whirlpool
	5 Distinguishing-H Attack on Full
	6 Conclusion and Open Discussions
	References

