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Abstract. Induction motors are the most common engine used worldwide. When 
they are summited to extensive working journals, e.g. in industry, faults may 
appear, generating a performance reduction on them. Several works have been 
focused on detecting early mechanical and electrical faults before damage appears 
in the motor. However, the main drawback of them is the complexity on the 
motor’s signal mathematical processing. In this paper, a new methodology is 
proposed for detecting misalignment faults in induction motors. Through signal 
vibration and orbital analysis, misalignment faults are studied, generating 
characteristically patterns that are used for fault identification. Artificial Neural 
Networks are evolved with an evolutionary algorithm for misalignment pattern 
recognition, using two databases (training and recovering respectively). The 
results obtained, indicate a good performance of Artificial Neural Networks with 
low confusion rates, using experimental patterns obtained from real situations 
where motors present a certain level of misalignment.   
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1 Introduction 

Motor fault analysis is a common industrial practice where machinery is summited to 
extensive working journals. Induction motors are based on different electrical and 
mechanical components that can suffer some kind of wearing down with prolonged 
use [1]. This work has been oriented to electrical induction motors, since they are 
most used in industry worldwide. Historically, some works have been focused to 
detect some faults (most of them commonly identified) avoiding future problems and 
damages if correctly maintenance is early provided [1-3]. Induction motors can be 
mainly classified by size, power, number of phases, etc. However, misalignment in 
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rotor bars is a common fault in all kinds of motors that generates different levels of 
external vibrations [4].   

Several techniques can be used in fault motor analysis such as support vector 
machine [5], Fourier spectrum [6], wavelet filtering [7], among others as [8-11]. 
However, the complexity of the mathematical processing in the motor signal is a 
drawback on them, where the implementation in real systems may be a difficult task. 
Thus, a new technic using orbital analysis is proposed, offering a practical and easy 
way to recognize misalignment faults in induction motors. Orbital analysis in motor 
faults has been used for modeling normal operation [12, 13], and they represent a 
basis of this research. Different motor misalignments levels present a particular 
characteristic vibration orbit, which can be used to determine when a motor presents a 
fault, before a serious damage appears in the machine. The main contribution of this 
work is the development of a new computational model for induction motors fault 
recognition, using artificial intelligence technics as Artificial Neural Networks 
(ANNs). They are evolved with an evolutionary algorithm called FS-EPNet to 
optimize the networks architectures for orbital analysis.  

The rest of the paper is organized as follows: firstly, section 2 presents how 
electrical signals are measured and preprocessed using sensors, and how an orbit is 
created. Section 3 explains the representation of different misalignment faults in 
orbital patterns and the main characteristics over normal and bad orbits. In section 4, 
ANNs and the FS-EPNet algorithm are shown for the recognition of orbital patterns. 
Thus, section 5 shows experimental results using two databases from real measured 
patterns: learning and recalling phases respectively. Finally, section 6 presents the 
conclusions reached about the advantages and disadvantages of the proposed model. 

2 Signal Acquisition and Preprocessing 

This section is aimed to present the procedure of obtaining a characteristic orbit, i.e. 
sampling, positioning and signal preprocessing to extract and separate it from a 
measured signal.  

 
Sampling 
Vibration is a common symptom derived from mechanical faults in induction motors. 
Such vibrations can be measured using a piezoelectric accelerometer sensor, which 
generates an electrical signal that is proportional to the acceleration vibration of a 
seismic mass [14]. As each motor have a different rotation speed, standards as [15] 
and [16] have established sampling frequency rates for motor measuring. According 
to them, this work used a sampling frequency of 50 kHz, being large enough to obtain 
a good quality signal, over tested induction motors. 
 
Positioning  
Orbital patterns are built using two signals that are plotted together. In order to obtain 
those signals, two piezoelectric accelerometers are placed orthogonally and radial to 
the motor chassis bearing (Fig. 1).  
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Fig. 1. Accelerometer placement at 90° over the engine 

Signal Preprocessing 
Accelerometer signals are measured in acceleration units and must be converted to 
displacement units, using a double integration process as follows [14]: 

ሻݐሺݒ ൌ න ܽሺݐሻ݀ݐ௧
଴ ൅ ଴ (1)ݒ

݀ሺݐሻ ൌ න ௧ݐሻ݀ݐሺݒ
଴ ൅ ݀଴ (2)

where a(t) is acceleration, v(t) is velocity, d(t) is displacement, v0 and d0 are the initial 
velocity and displacement conditions respectively. 

Vibration signals in displacement units are compounded by several harmonics; 
each of them can be related with the normal operation of the engine or with a motor 
fault. Undesirable harmonics can distort the shape of the orbit, changing notably the 
main characteristics of a fault shape. In this sense, those harmonics must be avoided 
in order to have a good quality orbit. A Butterworth passband filter was implemented 
for removing those spurious harmonics according to the following magnitude 
response [17]: |ܪሺ߱ሻ|ଶ ൌ 11 ൅ ቀܿ െ cos ߱Ω଴ sin ߱ ቁଶே (3) 

where ߱ ൌ ݂ߨ2 ௦݂⁄ , ௦݂ is the sampling frequency,  Ω଴ ൌ tan ሺ߱଴ 2⁄ ሻ and c can be 
expressed as follows: ܿ ൌ sin ൫߱௣௔ ൅ ߱௣௕൯sin ߱௣௔ ൅ sin ߱௣௕ (4) 

where  ߱ܽ݌ ൌ ܽ݌݂ߨ2 ⁄ݏ݂ ܾ݌߱  , ൌ ܾ݌݂ߨ2 ⁄ݏ݂  and ൣ ௣݂௔, ௣݂௕൧ is the passband. 

An unfiltered orbit has an irregular form, making no possible fault discovery; 
however, a remarkable shape may be clearly seen in a filtered orbit (Fig. 2). 

Each filtered signal generates continuous orbits with the same shape (Fig. 2); 
nevertheless, just one orbit is required in this work for analyzing its characteristics  
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Fig. 2. Example of the orbital filtering using the Butterworth passband filter, which removes 
spurious harmonics allowing clear orbits 

and detecting whether a misalignment is present.  In this case, we search two points 
into a filtered signal (starting and ending), with a low distance defined by a tolerance. 
This tolerance was obtained computing the average of the distance of all points into 
the signal. There is not a rule for establishing the tolerance; however, this value was 
enough for obtaining good shape orbits. The distance criteria were obtained using the 
Euclidian equation as follows [17]: ݀ ൌ ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  ଵሻଶ (5)ݕ

Where d is the distance between points, and (x, y) are the orbit points coordinates 
respectively. Finally, extracted orbits should be normalized due to differences in their 
size. Therefore, all orbits are resized in a [-1, 1] range according with the following 
equation:  ݏଵ,ଶሺ݊ሻ ൌ ݀ଵ,ଶሺ݊ሻ݉ܽݔሼ|݀ଵሺ݊ሻ|, |݀ଶሺ݊ሻ|ሽ , ׊ ݊ ൌ 0, 1, 2, … , ܰ െ 1 (6) 

3 Orbital Analysis 

There is a correspondence between orbit shapes and motor faults, i.e. when an 
induction motor is in good condition (no faults are present), the corresponding orbit is 
a circumference; on the other hand, when a misalignment fault is present in the motor, 
the orbit shape suffers a deformation in one part of the circumference. A 
misalignment may appear in different intensities: a slight misalignment almost 
deforms the circumference; by contrast, a strong misalignment deforms considerably 
the orbit shape, generating a kind of “8” in the circumference. Fig. 3 shows the 
motor’s orbit shapes of different misalignment intensities. 

 

-1

1

-1 1

y 

x 

Unfiltered Orbits 

-1

1

-1 1

y 

x 

Filtered Orbits 



54 J.J. Carbajal-Hernández et al. 

 

 

Fig. 3. Examples of orbit shapes: a) good motor conditions have perfect circumferences, b) a 
slight misalignment fault is present in the motor and c) an extreme misalignment have a shape 
of an “8” number.  

4 Pattern Recognition 

There are several technics for pattern recognition that can be used for orbits shape 
identification [1–11]. In this work, Artificial Neural Networks (ANN) are used as 
classifiers, because they have proved being a very effective learning model with high 
rates of effectiveness. However, the construction of an ANN is not an easy task; for 
this reason, evolutionary algorithms are used for building ANN architectures, 
establishing criteria for a better selection of the ANN’s parameters. In this sense, the 
final ANN topology chosen by the evolutionary algorithm guarantees the best 
performance of the ANN. Also, connectivity reduction tests help to avoid 
computational burden with a high efficiency of the ANN. This process is known as 
Evolutionary Artificial Neural Networks (EANNs) or Neuroevolution. 
 
Artificial Neural Network  
Evolution of Artificial Neural Networks have been remarkably useful at optimizing 
networks’ parameters during evolution [18-21], also local minima may be avoided 
than using traditional gradient-based search algorithms [18]. 

The Feature Selection EPNet algorithm (FS-EPNet) [19, 21] allows the ANNs’ 
parameter evolution, including the input adaptation of the networks (Feature Selection 
Evolution). The FS-EPNet is a steady-state algorithm based in Lamarkian inheritance, 
where information learned by parents is passed to children; also, no crossover 
operator is used to avoid the permutation problems [18]. In this way, nine different 
mutations are used to carry out the evolution of individuals (ANNs): (1) hybrid 
training, composed of training with the Modified Back Propagation (MBP) algorithm 
and Simulated Annealing (SA); (2) node deletion; (3) connection deletion; (4) input 
deletion; (5) delay deletion; (6) connection addition; (7) node addition; (8) input 
addition; and (9) delay addition. Only one such mutation is performed on the selected 
individual in each generation. The hierarchical order of the mutations permit to 
maintain networks sizes to the minimum; however, if the problem cannot be solved 
more accurately, it will start to add nodes and connections, increasing the average  
 

-1.0

1.0

-1 1

y

x

a) Good Condition

-1

1

-1 1

y

x

b) Misalignment

-1

1

-1 1

y

x

c) Extreme misalignment 



 Misalignment Identification in Induction Motors Using Orbital Pattern Analysis 55 

 

networks sizes over the population. A detailed description of FS-EPNet algorithm 
may be seen in [20, 21]. 
 
Pattern Building 
According with the orbital signal analysis, orbit shapes where used for creating motor 
fault patterns. However, resulting signal orbits are not practical to be used in a neural 
network due to they have different lengths. In order to have uniform patterns, all 
orbits signals were resampled for having 100 points of length, where each one is a 
bidimensional pattern (x, y). A database of 386 patterns was created to be used in the 
learning phase of the ANN (from here, an inside test set is obtained to evolve the 
networks with the FS-EPNet algorithm). Orbit shapes of this database were measured 
from different induction motors, which had different misalignment levels: 275 regular 
misalignment patterns, 106 extreme misalignments patterns and 5 patterns of good 
condition motors. 

5 Experimental Results 

An experimental database was used for validating the performance of the proposed 
system as part of a recovering process. This database was built using different kind of 
motors and with different levels of misalignments. It is important to remark that this 
database was compounded by different motor measurements than those used in the 
database of the learning process. In this case, the size of the database was of 118 
motor fault patterns as follows: 73 regular misalignment patterns, 35 extreme 
misalignments patterns and 10 patterns of good condition motors. From those 
patterns, the final test set was obtained, applied after the evolutionary process has 
finished. Preliminary experiments allow setting up some common parameters in this 
study: population size 30, generations of evolution 100 (stopping criteria), initial 
connection density 100% and 30%. Initial learning rate 0.15, minimum learning rate 
0.01, epochs for learning rate adaptation 5, number of mutated hidden nodes 1, 
number of mutated connections 1-3. The inputs are fixed at 200, where the first half is 
for x-axis and the other half for y-axis. The hidden nodes are initialized between 2 and 
10 nodes randomly. Partial training settle at 100 epochs, whereas 1000 epochs of 
further training at the end of the algorithm. 30 independent runs were performed to 
ensure statistical validity of the results. It was used two test sets to evaluate the 
performance of the algorithm, one inside of the evolutionary algorithm (100 partners 
from the available data to train) and one final test set (experimental database) to 
evaluate the final performance of the algorithm. 

Figure 4 presents the Average Classification error (Fig. 4a), the average error in 
terms of the Normalize Root Mean Squared Error (NRMSE, Fig. 4b), the Average 
connections (Fig. 4c) and the Average hidden nodes (Fig. 4d) for the orbit motor fault 
recognition process over 100 generations of evolution with 100% and 30% of 
connectivity at network initialization. It can be seen in Fig. 4a, that initializing the 
networks with 100% of connectivity allows a perfect classification error in the test set 
inside the FS-EPNet algorithm, using the winner takes all method from the first  
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Fig. 4. Evolved parameters with the FS-EPNet over 100 generations of evolution for initial 
connectivity of 100% and 30% for the orbit motor fault recognition process: a) average 
classification error (winner takes all); b) average error in terms of the NRMSE; c) average 
connections and d) average hidden nodes.  

generation. These results indicate that at the random initialization and initial partial 
training, the networks in the population can solve the problem without any effort; 
however, that is not maintained for the final test set (see final line in Table 1, for the 
final test set). On the other hand, a considerable reduction in the connectivity (30%) 
produces average errors over 0.01 during the first 10 generations (Fig. 4a). Thereafter, 
the networks can solve the problem with the same accuracy, and with fewer numbers 
of connections (Fig. 4c). A similar behaviour is presented using the NRMSE over the 
test set inside the evolutionary algorithm, where both errors started to converge as the 
generation advance. Finally, as it can be seen in Fig. 4d, networks that are initialized 
with a reduce number of connections, started to increase the number of hidden nodes, 
as more resources continue to solve the problems accurately (also connections are 
slightly increased, Fig. 4c). It is clear that in both cases, 100 generations of evolutions 
is enough to achieve perfect classification errors on the test set inside the algorithm.  

Table 1. Orbit motor fault recognition results with 100% and 30% of connectivity with the  
FS-EPNet 

Parameter 100% Connectivity 30% Connectivity 
 Mean Std Dev Min Max Mean Std Dev Min Max 
Number of Inputs 200 0 200 200 200 0 200 200 
Number of Hidden Nodes 5.966 0.999 4 8 6.633 1.325 4 9 
Number of Connections 1830.4 208.01 1419 2256 656.26 93.657 463 822 
Error Test Set EPNet 0.034 0.01 0.018 0.061 0.168 0.084 0.023 0.333 
Classification Error inside  0 0 0 0 0 0 0 0 
Error Final Test Set 4.054 0.207 3.753 4.405 4.281 0.427 3.297 5.054 
Classification Error Final Test Set 6.371 0.987 5.128 8.158 6.736 1.028 4.895 8.624 
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Table 1 presents the results of evolving ANNs with both values of connectivity. 
There is appreciated that classification errors tested during the evolution of the 
networks is perfect, as commented before (over the classification error inside the 
evolutionary algorithm); nevertheless, that is not maintained for the final test set, last 
line of Table 1.  

6 Discussion and Conclusions 

In this work, the use of orbital analysis and evolved Artificial Neural Networks 
(ANNs) for fault recognition in induction motor were proposed. Although several 
methodologies for detecting mechanical faults in induction motor have been 
developed, the proposed model represents a feasible and alternative way for motor 
misalignment fault detection. One disadvantage of this model is the number of 
preprocessing steps implemented before the ANN classification step.  However, a 
misalignment was clearly shown to distort considerably an orbit, having a 
characteristic shape, which can be perfectly identified by classifiers as ANNs 
(designed with the FS-EPNet algorithm). On the other hand, the evolution of 
Artificial Neural Network provides a good topology optimization, avoiding 
computational burden for recovering phase, and giving an accurate assessment in the 
classification of misalignment orbits. It may be worth to say that this paper provides a 
preliminary study of misalignment identification in induction motors using orbital 
pattern analysis, and future works is needed, e.g. including additional patterns from 
different mechanical faults in order to expand the capacities of the system, or use 
lower connectivity values to initialize ANNs (before evolution starts) to generate 
smaller architectures. Anyhow, this model can be used as an important tool for 
preliminaries motor analysis, when the good functioning of the machine is essential in 
critical time production industry.  
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