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Abstract. Fusion of several biometric traits has traditionally been re-
garded as more secure than unimodal recognition systems. However, re-
cent research works have proven that this is not always the case. In
the present article we analyse the performance and robustness of several
fusion schemes to indirect attacks. Experiments are carried out on a mul-
timodal system based on face and iris, a user-friendly trait combination,
over the publicly available multimodal Biosecure DB. The tested system
proves to have a high vulnerability to the attack regardless of the fusion
rule considered. However, the experiments prove that not necessarily the
best fusion rule in terms of performance is the most robust to the type
of attack considered.
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1 Introduction

Being able to automatically recognise people is of the utmost importance for
many applications, such as regulating international border crossings or perform-
ing financial transactions on-line. Traditional security technologies required the
use of PINs or tokens. Biometrics proposes a change of paradigm, from “what
you know” or “what you have” to “who you are”: forget about passwords, you
are your own key [1].

However, as any other security technology, biometrics are exposed to external
attacks which could compromise their integrity [2]. It is therefore essential to
understand the threats to which they are subjected and to analyse their vul-
nerabilities in order to prevent possible attacks and increase their benefits for
the users. External attacks to biometric systems are commonly divided into:
direct attacks (also known as spoofing attacks), carried out against the sensor,
and indirect attacks, directed to some of the inner modules of the system. In the
last recent years important research efforts have been conducted to study the
vulnerabilities of biometric systems to both direct and indirect attacks [3–5].

This new concern which has arisen in the biometric community regarding the
security of biometric systems has led to the appearance of several international
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projects, like the European TABULA RASA [6] and BEAT [7], which base their
research on the security through transparency principle: in order to make bio-
metric systems more secure and reliable, their vulnerabilities need to be analysed
and useful countermeasures need to be developed.

In this scenario, biometric multimodality has been regarded as an effective
way of increasing the robustness of biometric-based security systems against
external attacks. Combining the information offered by several traits would force
an eventual intruder to successfully break several unimodal modules instead of
just one. However, it has already been proven that this is not necessarily true
for the case of spoofing attacks [8–10].

But are all fusion schemes equally robust to indirect attacks? If not, are the
system performance and the robustness somehow correlated? In the present work
we try to answer those questions using several score-level fusion schemes and a
multimodal indirect attack already proven to be very successful in [11].

The paper is structured as follows: the attacking algorithm is summarized in
Sect. 2. The system attacked, with the different fusion rules considered, is pre-
sented in Sect. 3, while the experimental protocol followed and the performance
evaluation of the system are described in Sect. 4. The results obtained are shown
in Sect. 5. Finally conclusions are drawn in Sect. 6.

2 Hll-Climbing Attack to Multimodal Recognition
Systems

In order to attack the multimodal verification system using the different fusion
schemes considered, the algorithm detailed in [11] will be used, which may be
summarized as follows. Consider the problem of finding a (K + L)-dimensional
vector x of real (size K) and binary (size L) values which, compared to an un-
known template C (in our case related to a specific client), produces a similarity
score higher than a certain threshold δ, according to some matching function J ,
i.e., J(C,x) > δ.

The problem stated above may be solved by dividing the vector x into its
real-valued (xreal) and binary parts (xbin) and alternately optimizing each of
them. In order to optimize each of the parts, two different sub-algorithms will
be used: i) a hill-climbing based on the uphill simplex to attack the real-valued
segment; and ii) a hill-climbing attack based on a genetic algorithm to break
the binary segment. Thus, the steps followed by the multimodal attack are:

1. Generate a synthetic template (x) randomly initializing the real-valued
(xreal) and binary (xbin) segments, of lengths K and L, respectively. Then
compute the similarity score s = J(C,x), which will be iteratively maximised.

2. Leaving one of the segments unaltered, optimize the other segment of the
template using the appropriate sub-algorithm until one of the stopping cri-
teria of the sub-algorithm is fulfilled.

3. Change the optimization target to the segment which was previously left
unaltered and go back to step 2.
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The algorithm stops when: i) the verification threshold is reached (i.e., ac-
cess to the system is granted), or ii) the total number of iterations exceeds a
previously fixed value (i.e., the attack has failed).

It should be noted that the number of executions of each sub-algorithm is not
fixed, and may vary depending on the user account at hand. That number can
even be zero for one of the sub-algorithms, meaning that optimizing the other
part of the template is enough to break the account.

For further details on the multimodal attack and on each of the two sub-
algoritms, the reader is referred to [11].

Notation. Since the multimodal attack will be tested against a face- and
iris-based multimodal system, we will henceforth denote the number of times
the real-valued hill-climbing is executed as Nface, and the number of times that
the binary-valued hill-climbing is executed as Niris. Similarly, the real-valued
segment of the template x will be denoted as xface, and the binary part as xiris.

3 Multimodal Verification System

The multimodal verification system evaluated in this work is the fusion of two
unimodal systems, namely: i) the iris recognition system developed by L. Masek1

[12], which is widely used in related publications; and ii) an Eigenface-based face
verification system, used, for instance, to present initial face verification results
for the Face Recognition Grand Challenge [13].

Given an input vector x, the multimodal system performs the following tasks
in order to obtain the final score, s:

1. Compute the similarity scores obtained by the face (sface) and iris (siris)
traits, as given by the unimodal matchers.

2. Normalize the scores sk, with k = {face, iris}, using hyperbolic tangent esti-
mators (its robustness and high efficiency are proven in [14]). This way, the
normalised scores s′k lie in the interval [0, 1].

3. Finally, both normalised scores are fused. Several fusion schemes have been
considered [15, 16]:

Sum rule : s = s′face + s′iris Product rule : s = s′face × s′iris
Max rule : s = max{s′face, s′iris} Min rule : s = min{s′face, s′iris}

4 Database and Experimental Protocol

The experiments are carried out on the face and iris subcorpora included in the
Desktop Dataset of the Multimodal Biosecure Database [17], which comprises
voice, fingerprints, face, iris, signature and hand of 210 users, captured in two
time-spaced acquisition sessions. This database was acquired thanks to the joint

1 www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html

www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html
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Fig. 1. Typical samples of the face and iris images available in the Desktop Dataset of
the multimodal BioSecure database
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Fig. 2. DET curves for the unimodal systems and the fusion rule with the best per-
formance (left) and for all the fusion rules considered (right), with their corresponding
EER

effort of 11 European institutions and has become one of the standard bench-
marks for biometric performance and security evaluations. It is publicly available
through the BioSecure Association2.

The face subset used in this work includes four frontal images (two per session)
with an homogeneous grey background, and captured with a reflex digital camera
without flash (210 × 4 = 840 face samples), while the iris subset includes four
grey-scale images (two per session as well) per eye, all captured with the Iris
Access EOU3000 sensor from LG. In the experiments only the right eye of each
user has been considered, leading this way as in the face case to 210× 4 = 840
iris samples. Typical samples may be seen in Fig. 1.

4.1 Performance Evaluation

The database is divided into: i) a training set comprising the first three samples
of 170 clients, used as enrolment templates for each sub-system; and ii) an
evaluation set formed by the fourth image of the previous 170 users (used to

2 http://biosecure.it-sudparis.eu/AB

http://biosecure.it-sudparis.eu/AB
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Fig. 3. Genuine and impostor distributions for the face (y axis) and iris (x axis) recog-
nition systems

compute the genuine scores), and all the 4 images of the remaining 40 users
(used to compute the impostor scores). The final score given by the multimodal
system is the average of the scores obtained after matching the input template
x to the three face and iris templates of the client model C.

The attacking algorithm is evaluated at three operating points with FAR =
0.1%, FAR = 0.05%, and FAR = 0.01%, which correspond to a low, medium,
and high security application according to [18].

As described in Sect. 3, several fusion rules are considered in the present
study. The verification performance of the unimodal and multimodal combina-
tions considered are shown in Fig. 2, where the Detection Error Tradeoff (DET)
curves are depicted. As may be observed, the best performance is achieved for
the sum rule (EER = 0.83%), while the worst one is shown for the min rule
(EER = 5.41%).

In Fig. 3, the genuine and impostor distributions are shown.

4.2 Experimental Protocol for the Attacks

The performance of the attack will be evaluated in terms of: i) Success Rate
(SR) which is the expected probability of breaking a given account, indicating
how dangerous the attack is (the higher the SR, the bigger the threat); and ii)
Efficiency (Eff) defined as the inverse of the average number of matchings needed
to break an account, thus giving an estimation of how easy it is for the attack to
break into the system in terms of speed (the higher the Eff, the faster the attack).
The SR is computed as the ratio between the number of broken accounts (AB)
and the total number of accounts attacked (AT = 170): SR = AB/AT , and the



Multimodal Biometric Fusion: A Study on Vulnerabilities to Indirect Attacks 363

Table 1. Eff and SR for the different fusion rules considered

FAR
Sum Prod Max Min

SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4)

0.10% 100% 1.9372 100% 1.9144 100% 1.3231 100% 2.3134
0.05% 100% 1.8218 100% 1.7863 100% 1.2060 100% 2.0602
0.01% 100% 1.3702 100% 1.3616 100% 1.0220 100% 1.7657

Table 2. Number of user accounts broken after attacking each part of the template a
fixed number of times specified by Nface and Niris (see Sect. 2)

FAR
Sum (Nface +Niris) Prod (Nface +Niris)

1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3 1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3

0.10% 0 153 9 7 0 1 0 161 5 4 0 0
0.05% 0 155 8 7 0 0 0 158 6 6 0 0
0.01% 0 117 27 21 2 3 0 118 27 19 3 3

FAR
Max (Nface +Niris) Min (Nface +Niris)

1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3 1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3

0.10% 5 118 14 30 1 2 0 127 19 4 13 0
0.05% 2 102 15 36 4 9 0 101 37 7 20 0
0.01% 0 90 5 54 8 10 0 58 53 8 38 0

Eff is computed as Eff = 1/
(∑AB

i=1 ni/AB

)
, where ni is the number of matchings

needed to bypass each of the broken accounts.

5 Results

The experiments have two different goals, namely: i) analyse the robustness
against indirect attacks of different fusion rules, and ii) study to what extent
the vulnerabilities of a multimodal recognition system based on face and iris are
correlated to the verification performance.

5.1 Vulnerabilities Evaluation

In Table 1, the performance of the attack in terms of the SR and the Eff is shown.
Asmay be observed, the SR is 100% in all cases: all accounts are broken, regardless
of the fusion scheme considered. However, not all the fusion schemes are equally
robust in terms of speed: the Eff for the min rule is the highest one, being therefore
the least robust fusion scheme. On the other hand, while the Eff for the sum and
product rules is very similar, for the max rule it is considerably lower. Therefore,
for applications where the robustness to this kind of attacks is more important
than having an optimal performance (EER rises from 0.83% with the sum rule, to
1.17% with the max rule), the max rule should be considered.
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For all the user accounts attacked, each sub-algorithm was executed between
0 and 3 times. Therefore, there are six possible cases regarding the number of
those executions (Nface+Niris). In the particular case whenNiris = 0, the account
was broken after the first execution of the real-valued hill-climbing, therefore not
needing to attack the binary part. The number of accounts that fall into each
category is shown in Table 2. As may be observed, most accounts are broken
after optimizing each part of the template only once.

In Sect. 4.2, Eff was defined as the inverse of the average number of compar-
isons needed to break an account. Therefore, the lower the Eff, the higher the
number of comparisons needed. As could be expected, the lower the FAR at the
operating point tested, the higher the number of users for which more executions
of each sub-algorithm were needed.

However, when we compare the results shown in Table 2, we observe two
different behaviours:

– For the sum, product and max rules, as expected, the lower the Eff, the
higher the number of users for which two or even three executions of each
sub-algorithm were needed.

– For the min rule, which presented the highest Eff for the attack (see Ta-
ble 1), the number of users requiring three executions of the real-valued
sub-algorithm is the highest. This means that the genetic sub-algorithm sat-
urates quickly, and therefore the general attacking scheme starts attacking
the face part of the template: as stated in [11], the genetic sub-algorithm
needs considerably more comparisons than the hill-climbing based on the
uphill simplex, leading this quick change to a higher Eff.

6 Conclusions

In the present article we have analysed the robustness of different multimodal
score-level fusion rules (sum, product, max and min) to indirect attacks. We have
then explored to what extent there is a correlation between the vulnerabilitiy
level and the performance of the multimodal system. A multimodal system based
on face and iris, a trait combination commonly regarded as user-friendly, working
on a publicly available multimodal database, was used in the experiments.

The experiments showed that the multimodal attack achieves a Success Rate
of 100% in all cases, regardless of the operating point or the fusion rule consid-
ered. However, the Efficiency of the algorithm varies, and from that variation
some criteria for choosing a fusion rule for the multimodal system were inferred.

Even though the results presented here are based on simple fusion rules, the
experimental framework can be easily extended to more complex architectures.
Future work considering other biometric modalities and fusion schemes will be
carried out in order to reach a deeper understanding of the behaviour of multi-
modal biometric systems under indirect attacks.

Works such as the one presented here emphasize the importance of developing
appropriate template protection countermeasures that minimize the effects of
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the studied attacks. Some countermeasures have been proposed to counterfeit
spoofing attacks, such as [19]. However, the application of those measures against
indirect attacks is not straightforward, since they work on raw biometric traits
instead of preprocessed templates.
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