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Abstract. A critical element in multi-biometrics systems, is the rule to fuse the 
information from the different sources. The component sub-systems are often 
designed to further produce indices of input image quality and/or of system re-
liability. These indices can be used as weights assigned to scores (weighted fu-
sion) or as a selection criterion to identify the subset of systems that actually 
take part in a single fusion operation. Many solutions rely on the estimation of 
the joint distributions of conditional probabilities of the scores from the single 
subsystems. The negative counterpart is that such very effective solutions re-
quire training and a high number of training samples, and also assume that 
score distributions are stable over time. In this paper we propose a unified re-
presentation of the score and of the quality/reliability index that simplifies the 
process of fusion, provides performance comparable to those currently offered 
by top performing schemes, yet does not require a prior estimation of score dis-
tributions. This is an interesting feature in highly dynamic systems, where the 
set of relevant subjects may undergo significant variations across time. 
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1 Introduction 

Multi-biometric systems [16] are considered as one of the best viable solutions to over-
come limitations of classical single biometrics, since flaws of one sub-system may be 
balanced by strengths of a companion one. Among the most relevant issues raised by 
the combined approach, we mention the need for an effective fusion strategy of the 
results. Information fusion in a biometric system can be performed at feature, score, or 
decision level [6], but most schemes in literature opt for score level fusion [5]. Score 
normalization is one of the important aspects to consider during fusion. Fusion schemes 
may also rely on treating scores as a unified feature vector, which requires a further 
classifier, or on transforming the scores in a posteriori probabilities [10]. A further issue 
is represented by the introduction of quality measures computed for the input samples 
[7][8] and of confidence margins [10]. The former (e.g. sharpness, lighting) allows to 
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possibly discard problematic samples, but can also be exploited after classification, as a 
weight on the final obtained score. The latter can be used after classification to decide 
whether to trust in the system response. Two trends are currently developing, to take 
them into account. In the first one, all subsystems always participate in the fusion, and 
the quality is used to weight their responses. In the second one, only a subset of subsys-
tems takes part from time to time in the fusion, which are selected according to reliabili-
ty of their responses. In both cases, reliability measure is an additional information, and 
mostly handled as a separate value. 

Among the many simple score fusion rules (e.g. sum, weighted sum, product, min, 
max) [10], a number of authors claim that simple sum is the best compromise between 
simplicity and performance. On the other hand, significantly better results can be 
obtained through more complex techniques [1]. Likelihood Ratio (LR) is one of the 
most interesting ones. The authors of [17] discuss how product of Likelihood Ratios 
represents an optimal rule to get the highest Genuine Accept Rate (GAR) for a fixed 
False Accept Rate (FAR) in a multi-biometric system. The main disadvantage of this 
rule of fusion is that it assumes an accurate estimate of the joint distribution (across 
all the subsystems) of the conditional probabilities of the scores achieved by genuine 
and impostors users. This requires a complex modeling phase (in [12] finite Gaussian 
Mixture Model - GMM is used to model the genuine and impostor score densities), 
and a significant number of training samples. Despite such complexity, performance 
of systems whose operational parameters are based on a preliminary estimation of 
score distributions, may degrade if these significantly change along time. Neverthe-
less, given the optimality of LR, it can be considered as an asymptotic limit for which 
to strive when devising a new rule of fusion, while trying to overcome its limitations. 

This work proposes a novel way of assembling the recognition score and the re-
sponse reliability measure into a single complex number, facilitating the fusion in 
identification operations. The technique used in [18] maps the feature vectors from 
two biometric systems into the real and imaginary part of a complex vector. We rather 
use the score and the reliability, associated with an identification result by a single 
subsystem, to derive the module and the anomaly in the exponential representation of 
a complex number. The fusion of results related to the same identity relies on a mod-
ified operation of complex product among the responses from the single subsystems 
returning such identity. Further processing detailed in Section 2 allows to obtain a 
single real value as the final score assigned to a given identity by the global system. 
We use the System Response Reliability (SRR) measure [4], which does not require 
training, and is able to provide reliability information for each single recognition op-
eration, differently from aggregate values like Recognition Rate. 

2 Merging Scores and Reliability Values by Complex Numbers 

There is a major difference between a quality measure for an input sample and a re-
liability measure for the response of a biometric system. The former is generally 
bound to a specific biometrics and to a specific classifier: for instance, a measure 
based on the quality of minutiae only applies to fingerprint recognition, which specif-
ically uses minutiae for classification. Reliability measures devised without any  
reference to a specific biometric trait and/or algorithm can be generally used for any 
recognition system. The biometrics-independent reliability measure that we exploit 
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takes into account the composition of the gallery of the recognition system. From now 
on, we will use the System Response Reliability (SRR) [4] as a measure of reliability. The 
SRR relies on different versions of function ϕ defined in [4], which respectively ex-
ploit the relative distance and the density ratio, as well as a combination of them. All 
three functions measure the amount of “confusion” among possible candidates. We 
assume that the result of an identification operation is the whole gallery ordered by 
distance from the probe. Given a probe p and a system A with gallery G, the first 
function is: 
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where d is a distance function with codomain [0, 1], ݃௜ೖ  is the k-th identity in the 
returned gallery ordering, and |G| is the size of the gallery; distance values falling in a 
different codomain can be suitably normalized. Here we use the Quasi Linear Sig-
moidal (QLS) [4]. It better preserves the original distribution of data, and is robust to a 
missing reliable evaluation for the maximum value. With relative distance if a person 
is genuine, there is a great difference between the distance from the first retrieved 
identity and the immediately closest one. Density ratio is instead defined as: 
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The formula considers the distinct identities returned during identification as a 
cloud centred in p; the higher the density of this cloud, the more unreliable is the an-
swer, as there are many individuals as potential candidates. In this paper we also 
adopt a variation of the density ratio. As one can observe in the definition of Nb in (2), 
the radius of the considered cloud depends on the distance from the probe of the first 
returned identity and from a constant. This function is less sensible to outliers, than 
ϕ1, but it considers narrower clouds when the first retrieved identity is closer to the 
probe. On the contrary, a large distance takes to a wider cloud, which can be expected 
to be more crowded anyway. To further improve ϕ, we define here the term Nc such 
that the cloud radius depends on the difference between the first two distances:  

( ) GNp c /13 −=ϕ ,  
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The new radius increases with the second distance, and with the difference be-
tween the first and the second ones. In practice, the farthest the second returned sub-
ject from the probe, also with respect to the first one, the wider the cloud we inspect. 
However, being all distances in [0,1], we add 1 to both terms to maintain direct pro-
portionality. We also use the appropriate normalization factor since the value of d is 
in [0,1], and the maximum value for the numerator in (3) is 4. 

Once chosen the function ϕ to use, some more steps are required to compute the 

value of SRR for the probe at hand. For each ϕ(p), we identify a value ϕ  fostering a 
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correct separation between genuine and impostor subjects. We also define 

)),(( ϕϕ pS  as the width of the subinterval from ϕ  to the proper extreme of the 

overall [0,1) interval of possible values, depending on the comparison between the 

current ϕ(p) and ϕ : 
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SRR index can finally be defined as: 

)())(( ϕϕϕ SpSRR −= . (5) 

In detail, we measure the distance between ϕ(p) and the “critical” point ϕ , which 

gets higher values for ϕ(p) much higher than ϕ  (genuine), or for ϕ(p) much lower 

than ϕ  (impostors). However, it is also important to take into account how much it is 

significant with respect to the subinterval over which it is measured. SRR gets values 
in [-1, 1]. More details on computation and its motivations can be found in [4]. 

Numbers in the complex field can be represented as a+ib ,or by the exponential re-
presentation z=ρ⋅eiθ, where ρ is the modulus and θ is the anomaly. In our fusion, the 
score and the reliability measure are used to derive the ρ and the θ of this latter repre-
sentation, respectively. We chose this representation because it better adapts to the 
kind of processing for fusion. In fact, the product operation with the real/imaginary 
form, would suffer from misleading cross-influence between heterogeneous parts. 
Given a score s and a reliability value srr, ρ=(1+s)⋅and θ=srr. Since s is in the inter-
val [0,1], and  srr ranges between -1 and 1, then ρ is in the interval [1, 2] and θ is in 
[-1,1]. We take the set of the complex numbers obtained in this way from the values 
returned by the different subsystems voting for the same identity in a multibiometric 
identification. We define a new operation over them that we denote with ⊗, such that: 

k
i

k

j
j

j

k

j

k

j
j

e
k

zz



=⊗=
=∏

=

=

1

1

1

θρ
 (6)

Thanks to the denominators, the final ρ⊗ and θ⊗  are still in the same intervals as 
the initial values. The final composed score will be s⊗ = (ρ⊗ /2) and the final reliability 
will be srr⊗ = θ⊗, and will be respectively in the interval [0,1] and [-1,1]. In the ab-
sence of a reliability measure, its value can be set to 1 for any response. The two val-
ues after fusion can again be used to obtain the exponential form of a complex num-
ber. This can be done for each group of subsystems voting for a same identity, so that 
at the end we will have a complex numbers for each candidate identity. However, we 
have to choose a winning identity, so we would prefer single and easier to compare 
values. To this aim, we first pass to the representation of the complex numbers in real 
and imaginary part z=a+ib, with a,b∈R. The (a, b) pair can be interpreted as a couple 
of coordinates in a two-dimensional space, and as such can be represented in the Ar-
gand-Gauss plane (especially devised to represent complex numbers in this form). 
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Fig. 1 presents an example of the effects of the approach using SRR defined above 
with ϕ1. The values a+ib in the plots refer to the half-plane with positive x-axis (real 
part a, derived from scores). The first three plots represent pairs of points for the same 
classifier on three different biometrics (face, ear and iris). Section 4 reports details on 
datasets and classifiers. We see that genuine scores (red/light circles) are mainly con-
centrated in the first quadrant, while impostor scores (blue/dark squares) mainly lie in 
the fourth quadrant, with some overlap. The last plot is the result of the introduced 
operations over these values. Notice that the values for genuine users are distributed 
in the positive quadrant, while those for the impostors are concentrated in the negative 
one, but the interesting feature to notice is that values are much more sharply divided. 

 

Fig. 1. First three plots: distribution of pairs real/imaginary parts obtained from the responses 
of a correlation based classifier (see below) over face, ear and iris datasets (left-right and top-
bottom); last plot: the distribution after the product. Red/light circles are genuine scores, 
blue/dark squares are impostor scores. 

As coordinates in a 2D space, (a, b) pairs can be further transformed in single val-
ues using Peano keys. Peano rule maps a 2D onto a 1D space such that two close 
points in the starting space, tend to be close also in the final one. However, the rule 
requires integer values, so that it is necessary to consistently map a and b onto integ-
ers with a finite number n of bits. In our implementation the new integers aP and bP 
have n = 16 bits. The associated Peano key KP is obtained by interleaving bits from aP 
and bP, from the least significant to the most significant one, so to obtain a final value 
of 32 bits. Values for different identities can be straightforwardly compared. 

3 Experimental Framework 

The presented framework was tested in a multi-biometric setting (face, ear and iris) 
and compared with the LR discussed in [12], using the same implementation for the 
estimation of the GMM model. The multi-biometric database consists of Chimeric 
users whose biometric traits were taken from three different datasets. It is worth notic-
ing that  it is presently accepted that results obtained in this way are worthy of full 
reliability [9]. The number of subjects in the database is constrained by the size of the 
database of ears, namely 100 subjects in the Notre Dame Ear Database [13]. In order 
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to consider an open set identification setting, i.e. a situation where not all users are 
enrolled and impostors can also occur, the gallery consists of 75 enrolled subjects, for 
which there is a single image, while the probe is made up of 100 subjects, each ac-
companied by a single image. The faces are from a subset of AR-Faces database [14] 
(50 males and 50 females), for which 4 different datasets were considered: gallery 
(normal), Face-2 (smile), Face-5 (left-light) and Face-11 (scarf). The irises were from 
the first 100 subjects in UBIRISv1s1 database [15]. Performance were measured in 
terms of Recognition Rate (RR) and Equal Error Rate (EER) [2]. 

In order to understand the relation between the behavior of the presented frame-
work and the classifier used, we tested it with Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA) and the local correlation-based classifier which 
is part of FACE system [3], indicated from now on as FACE for short. Table 1 shows 
the performance on each dataset, which appear quite heterogeneous, as expected. This 
is interesting to understand later how the fusion technique works, not only when all 
classifiers provide optimal results, but also when one or more of them fail. 

Table 1. Performance of single classifiers on each dataset, in terms of RR and EER 

Dataset PCA LDA FACE 
RR EER RR EER RR EER 

Face-2 0.97 0.039 0.94 0.027 0.97 0.052 
Face-5  0.21 0.144 0.61 0.124 0.98 0.013 
Face-11 0.04 0.441 0.05 0.354 0.93 0.053 
Ear  0.65 0.207 0.76 0.091 0.85 0.120 
Iris 0.69 0.092 0.74 0.093 0.62 0.185 

Results in Table 1 show that PCA and LDA are much more sensible to local varia-
tions within a face image. In particular on the Face 11 set, where the lower part is 
completely occluded by a scarf. In combinating with other biometrics, this condition 
may be particularly stressing for the fusion process, making this case very interesting. 
In the first experiment, we tested the best function ϕ. The same classifier was applied 
to the different biometrics and the reliability was measured from time to time by a 
different ϕ. Given the score sj (as an inverse of distance from the probe) from biome-
trics j (F=face, where F2, F5 and F11 indicate the datasets from AR-Faces, E=ear and 
I=iris), and given srrj its reliability value, according to the chosen ϕ, Complex Fusion 
(CF) computes the presented operation for the three (1+sj)ei·srrj. Simple sum rule was 
also tested, and results were comparable to those of complex values with no reliabili-
ty, i.e. with the imaginary part set to 1 (CF none). For sake of space, Table 2 only 
reports the results of FACE, which resulted better than PCA and LDA classifiers. 

Table 2. RR and EER, when different ϕ functions are used in fusion of FACE results 

Method 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simp. sum 1.00 0.026 1.00 0.001 1.00 0.067 
Simp. prod 1.00 0.026 1.00 0.001 1.00 0.060 
CF none 1.00 0.046 1.00 0.033 0.97 0.039 
CF ϕ1 1.00 0.020 1.00 0.006 1.00 0.033 
CF ϕ2 1.00 0.246 1.00 0.153 0.99 0.342 
CF ϕ3 0.98 0.039 1.00 0.033 0.94 0.061 
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Table 2 shows that ϕ1 and ϕ3 give the best results and will be used to compare per-
formance of Simple product, Complex fusion e Likelihood ratio. Values in Table 2 
highlight that the simple sum provides acceptable results, when the classifier offers 
good performance for every fused biometrics. However, it was observed that, having 
all biometrics the same weight, if one of them provides poor results this significantly 
influences the overall system performance, as confirmed by the results in Table 3, 
where each fusion technique is evaluated with all classifiers.  

Table 3. Performance when different techniques are used for fusion, in terms of RR and EER 

PCA 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.073 1.00 0.112 1.00 0.278 
Complex Fusion (ϕ1) 0.99 0.420 0.72 0.329 0.65 0.560 
Complex Fusion (ϕ3) 1.00 0.326 0.74 0.333 0.64 0.470 
Likelihood Ratio 1.00 0.033 0.95 0.140 0.85 0.214 

LDA 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.040 0.96 0.120 0.84 0.171 
Complex Fusion (ϕ1) 0.99 0.427 0.86 0.170 0.73 0.359 
Complex Fusion (ϕ3) 0.99 0.118 0.84 0.160 0.77 0.181 
Likelihood Ratio 1.00 0.040 0.99 0.112 0.95 0.171 

FACE 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.026 1.00 0.001 1.00 0.067 
Complex Fusion (ϕ1) 1.00 0.020 1.00 0.006 1.00 0.033 
Complex Fusion (ϕ3) 0.99 0.039 1.00 0.033 0.93 0.061 
Likelihood Ratio 1.00 0.010 1.00 0.000 1.00 0.013 

In Table 2 and Table 3 ϕ1 provides the best results with a classifier robust to varia-
tions, like FACE. On the contrary, e.g., with PCA and partly with LDA, ϕ3 sometimes 
provides better results. Table 3 shows that, in many cases for PCA and LDA, com-
plex fusion performance is below simple sum. This is because these two algorithms 
are both poorly robust to distortions, and provide poorly reliable responses. In fact, 
we would observe a wide overlap between genuine and impostor distributions. With 
FACE classifier we achieve both higher robustness, and higher reliability. The latter 
makes the fusion results with complex numbers better than those with simple sum, 
especially with function ϕ1. The overall interesting aspect is that, using a robust clas-
sifier aligned with the state of the art, the proposed fusion technique is able to provide 
better results that simple sum and only slightly lower that the optimum LR. This is 
very important if we consider that it is simple like the sum, yet does not require any 
preliminary estimation of genuine and impostor score distributions. In other words, at 
the expense of a slightly lower performance, we are able to adopt a strategy which is 
stable over time and delivers results which are congruous for each single probe, we 
avoid an expensive training phase, and save computation even in operational phases. 

4 Conclusions 

This paper has presented a multi-biometric fusion framework based on the joint repre-
sentation in the complex field of score values and reliability measures. The experimental 
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results show that in the case of robust classifiers the performance of the proposed 
framework are comparable to those of LR, which proves to be the best criterion for 
fusion. The product of complex values, however, has the further advantage of not need-
ing an accurate approximation of the distributions of the scores. Future studies will fo-
cus on even better criteria to use the complex representation. 
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