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Abstract. This paper focuses on the analysis of the i-vector paradigm,
a compact representation of spoken utterances that is used by most of
the state of the art speaker verification systems. This work was mainly
motivated by the need to quantify the impact of their steps on the final
performance, especially their ability to model data according to a theo-
retical Gaussian framework. These investigations allow to highlight the
key points of the approach, in particular a core conditioning procedure,
that lead to the success of the i-vector paradigm.

1 Introduction

Recent advances in speaker verification have revealed the discriminant power of
a new representation of spoken utterances, referred as i-vector[1]. Easy to work
with and bringing back the speaker recognition problem to a more traditional
biometric pattern recognition problem, i-vectors are now largely used in the most
recent speaker verification systems. A classical i-vector system can be briefly
decomposed in three stages. First, the acoustic space is structured using the
GMM-UBM approach [2] and each speech utterance is represented by a high-
dimensional representation denoted ”‘supervector”’. Then, a low-dimensional
representation of this supervector is extracted thanks to a factor decomposition
approach. Lastly, a scoring module obtains the final score for a given test, tak-
ing advantages of the compact speech utterance representation. Quite often, an
additional data conditioning procedure is applied before the scoring step.

The goal of this paper is to assess the impact of each of these stages in terms
of global performance. This is important as i-vector approach allows in the past
years a drastic progress in terms of performance. A better understanding of
the origins of these progresses should allow further improvements and/or some
simplification in the quite complex chain of processing. More precisely, we wish
to quantify the role of the optional conditioning procedure as we suspect that
this module plays a more important role than expected in the performance of
i-vector systems.

At all three stages, data modelings have been designed to meet the con-
straints of a parametric approach, based on Gaussian probabilistic assumptions.
The conditioning procedure is also known to help achieve these modeling goals.
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To examine independently each of the stages, we proceed by replacing one by one
these modules by methods based on deterministic or non-parametric approaches.
The gaps of performance are compared with that involved by the conditioning
procedure, then summarized in order to assess the impact of the different ap-
proaches. Moreover, replacing methods by others measures the robustness of
concepts on which they rely. Results of these investigations can thus highlight
the key points in the chain of processing that lead to the success of the i-vector
paradigm.

The paper is organized as follows: Sections 2, 3, 4 describe the i-vector based
speaker verification system on which we focus. Section 5 presents the alternative
methods used at each stage of the system. The experimental results are presented
and commented in Sections 6, 7 and conclusions are drawn in Section 8.

2 GMM Framework and i-Vector Extraction

Speaker information is modeled by using the Gaussian Mixture Model/Universal
Background model (GMM/UBM) paradigm [2] where a weighted sum of Gaus-
sian distributions performs a direct acoustic modeling of the acoustic space. A
model of a given speech segment is represented by the Baum-Welch zero and
first order statistics of its feature vectors, according to UBM prior distribution.
This model is denoted ”‘supervector”’. The i–vector model [3] constrains the
supervector s of a given speech segment to live in a single subspace following the
linear model of a Factor Analysis:

s = m+Tw (1)

where m is the supervector corresponding to the UBM, T is a low-rank rect-
angular matrix with G × F rows and r columns, G and F are the number of
GMM components and feature dimension, respectively. The r columns of T are
vectors spanning the “total variability” space, and w is a random vector of size
r having a standard normal prior distribution. Determination of T by using
EM-ML procedure and explicit formula of the extracted i-vector w can be found
in [1].

3 I-Vector Models and Scorings

The first i-vector based speaker verification systems were based on the LDA–
WCCN approach [1], which performs intersession compensation thanks to Linear
Discriminant Analysis (LDA) [1], where all the i-vectors belonging to the same
speaker are associated with the same class. This technique projects the input
data into a much lower dimensional space with minimal loss of discriminative
ability, as the ratio of between-speaker and within-speaker variations is maxi-
mized. These speaker features are finally normalized by a Within Class Covari-
ance Normalization (WCCN) [4]. The final scores are then computed using a
cosine distance scoring [3].
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A key evolution of i-vector approach was introduced in [5], using the Proba-
bilistic Linear Discriminant Analysis (PLDA) [6]. Two assumptions on the prior
probability distributions of the PLDA variables (speaker, session and residual
factors of eq. 7 in [7]) have been proposed:

– Gaussian PLDA (G-PLDA) assumes that all latent variables are statistically
independent. Standard normal priors are assumed for speaker and session
factors. The residual term is assumed to be Gaussian with zero mean and
diagonal covariance matrix.

– Student’s t-distribution is proposed in [5] as an alternative to the Gaussian
to model the speaker and channel subspaces in the i-vector space. Heavy-
tailed PLDA (HT-PLDA) assumes that all the factors follow an heavy-tailed
distribution, scaled by gamma distribution scalars.

The ML point estimates of the model parameters are obtained from a large
collection of development data using an EM algorithm as in [6].

4 Pre-conditioning

A pre-processing before any i-vector modeling has been introduced in [8][9]. I-
vectors are whitened and length-normalized, in order to make them more Gaus-
sian. The most commonly used whitening technique is a standardization, and
the transformation applied to an i-vector w can be resumed as follows:

w← A− 1
2 (w− µ)

∥
∥
∥A− 1

2 (w− µ)
∥
∥
∥

(2)

where µ andA are the mean and a variability matrix of a training corpus. Data
are standardized according to a variability matrix A then length-normalized,
confining the i-vectors to the hypersphere of unit radius. Parameters are com-
puted for the i-vectors present in the training corpus and applied to the test
i-vectors. The matrix A can be the total covariance matrix or, as we proposed
in [7], the within-class covariance matrix W defined in eq. 4 of [7].

In [9], it is shown that this technique improves the gaussianity of the i-vectors.
It reduces the gap between the underlying assumptions on the data distribution
and the real distribution and also reduces the dataset shift between development
and trial i-vectors. Moreover, it is shown in [9] that performance of a G-PLDA
system with this pre-conditioning is competitive versus the HT-PLDA, when the
latter is much more complicated. As proposed in [8][7], these two-steps can be
iterated. As a result, i-vectors tend to be simultaneously A-standardized and
length-normalized (magnitude 1), involving a number of properties related to
intersession compensation. Some of them are detailed in [8][7]. Also in [7], we
propose, after W-standardization, a deterministic initialization of PLDA matri-
cial metaparameters Φ and Γ of eq. 7 in [7]. It allows a faster convergence of the
PLDA EM-ML procedure.
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5 Alternative Methods

The state of the art i-vector-based system described below is composed of three
stages: representation of segments by Baum-Welch zero and first order UBM-
statistics, i-vector extraction using Factor Analysis total-variability (FA-total-
var), Gaussian-PLDA modeling and scoring with an optional pre-conditioning.
We present here the alternative methods that we have implemented for each of
these three stages.

5.1 Models and Scorings

To analyze the efficiency of Gaussian-PLDA, we compare this probabilistic mod-
eling with two simplified and deterministic versions. First, the LDA-two-
covariance model [10] reduces the dimensionality by using LDA, then full rank
matrices Φ and Γ of eq.7 in [7] are deterministically estimated (no EM-ML

procedure is performed) by Φ = B
1
2 and Γ = W

1
2 where B and W are the

between- and within-class covariance matrices defined in eq. 3, 4 of [7]. Com-
paring Gaussian-PLDA and LDA-two-covariance model measures the gain of
the probabilistic ML-approach in a generative i-vector modeling. Second, the
LDA-Mahalanobis model, introduced in [8] is a particular case of the previous
two-covariance model which makes no assumption about the speaker factor dis-
tribution (speaker precision matrix B−1 is null). The deterministic Mahalanobis
model is useful to estimate the relevance of a between-speaker modeling.

5.2 I-Vector Extraction

Factor analysis total variability (FA-total-var) is the state of the art factor de-
composition technique used to extract i-vectors. To assess the pertinence of its
probabilistic approach, we compare it with the well-known deterministic prin-
cipal component analysis (PCA). But FA-total-var is based on zero and first
order statistics and applying PCA to extract low dimensional vectors (that we
will also call i-vectors) needs to determine the unique high-dimensional vectorial
representation to compress. Some solutions have been suggested [11]. In order to
fairly compare probabilistic FA-total-var and deterministic PCA, we introduce
an adapted version ŝ of a supervector s, equal to:

ŝ = NX (Σ+NX )
−1

(s− µ) (3)

NX is the GF × GF diagonal matrix composed of F blocks of N
(g)
X I (g =

1, ..., G) where N
(g)
X are the zero–order statistics estimated on the g-th Gaussian

component of the UBM observing the set of feature vectors in the sequence X ,
and µ and Σ are the UBM mean and diagonal covariance matrix.

In the extreme case of a square and full rank identity matrix T (no dimen-
sionality reduction applied), eq. 6 of [1] shows that FA-extraction provides an
i-vector w equal to ŝ.
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The supervector ŝ is an adapted version of s, centered and weighted by
the amount of informations per Gaussian-component and by the variance per
dimension.

5.3 UBM-Based Representation

In [12][13] a new approach for speaker recognition, denoted “Speaker Binary
Key”, was presented. Contrary to classical speaker recognition based on sta-
tistical modeling of the speaker information, this approach proposes to handle
directly each piece of speaker specific information in a binary space. Each co-
efficient of this binary space corresponds to a targeted piece of speaker-specific
information which could be present (the coefficient is equal to 1) or non present
(the coefficient is equal to 0) in a given acoustic frame or acoustic segment. This
new approach allows to exploit temporal or sequential information as a binary
vector is extracted for each acoustic frame. It also focuses on speaker specific in-
formation in a non-parametric way as each coefficient of the binary space models
speaker-specific information. As the binary key representation first ties each in-
put frames with one or several GMM-UBM components (before non-parametric
transformation to a binary space), it constitutes a GMM-UBM-based alternative
to the zero and first order statistics. High-dimensional binary keys provided by
this model are projected onto a PCA subspace (by the lack of a specific Factor
Analysis), and handled as i-vectors for modeling and scoring.

6 Experimental Setup

The feature extraction and the 512-components GMM-UBM functionalities used
in our experiments are described in [8]. For i-vector extraction, the total vari-
ability matrix T is trained using 15660 speech utterances from 1147 speakers
(NIST 2004-05-06, Switchboard II part 1, 2 & 3; Switchboard cellular part 1 &
2, about 14 sessions per speaker). The results are reported with 400-dimensional
i-vectors. The same database is used to estimate the parameters of the i-vector
models and scorings. In PLDA, channel factor is kept full and speaker factor
is varied, as proposed in [5]. Evaluation was performed on the NIST SRE 2008
DET conditions 6 and 7, male only, corresponding to telephone-telephone (all
and English-only respectively) enrollment-verification trials, and on the NIST
SRE 2010 DET extended condition 5, male only, corresponding to telephone-
telephone. A global measurement of performance of a system is given by the
average of the three Equal Error Rates (EER). These three conditions are the
most currently used in the domain and their average EER is a robust perfor-
mance measure of a system.

7 Results

Table 1 shows comparison result of systems applying the different representa-
tions, extractors, models and scorings listed above. The first eight systems use
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Table 1. Comparison of performance, in terms of EER (%), between systems based
on different representations, extractors, models and scorings (without and with pre-
conditioning)

repr. extract. conditioning model and scoring det 7 det 6 det 5 ext average

1 sv FA no LDA-Maha 5.70 9.5 9.73 8.31

2 sv FA no LDA-two-cov 3.23 6.83 5.97 5.34

3 sv FA no G-PLDA 3.39 6.37 6.38 5.38

4 sv FA WCCN-cosine LDA-WCCN-cosine 3.26 6.29 3.69 4.41

5 sv FA LΣ LDA-Maha 1.86 5.06 2.62 3.18

6 sv FA LΣ LDA-two-cov 1.53 4.93 2.36 2.94

7 sv FA LΣ G-PLDA 1.63 4.80 2.45 2.96

8 sv FA LW G-PLDA 1.58 4.80 2.28 2.89

9 BK PCA no G-PLDA 2.84 5.82 4.42 4.36

10 sv PCA no G-PLDA 3.17 6.59 5.80 5.19

11 BK PCA LW G-PLDA 2.16 5.26 2.87 3.43

12 sv PCA LW G-PLDA 1.99 5.24 2.47 3.23

high-dimensional representation by zero and first order UBM statistics (sv for
supervector) and Factor Analysis on total variability (FA) as i-vector extractor.
Performance are given without (no) and with pre-conditioning: LΣ, LW for
standardization according to total Σ or within-class W covariance matrix, or
WCCN-cosine as implicit normalization of LDA-WCCN-cosine scoring. HT-
PLDA scoring has not been carried out, as pre-conditioning and Gaussian-PLDA
are able to match its performance.

The state of the art system (line 8) yields the best result: average EER of
2.89 and best EERs for all the individual conditions. But, first, the gap between
ML (lines 7 and 8) and deterministic approach (line 6) for i-vector modeling
is slight or null (average EER of 2.89 and 2.96 vs 2.94). This observation is
strengthened by the fact that the best system (line 8) deterministically initializes
PLDA metaparameters then requires only 10 EM-ML iterations to converge,
against 100 using the randomly initialized system (line 7). Second, comparison
of systems without and with pre-conditioning shows that the quality of the
modeling is, in a major proportion, the consequence of the conditioning: 5.34
to 2.94 for the best deterministic approach, 5.38 to 2.89 for the probabilistic
approach. It is worth noting that the gap between the less efficient system (LDA-
Mahalanobis) and the others is particularly significant in the absence of pre-
conditioning (8.31 vs 5.34 without, 3.18 vs 2.94 with). This shows that the initial
lack of gaussianity in the extracted i-vectors is mainly due to the within-speaker
distribution.

The four last lines give comparison result between systems using represen-
tation by speaker binary key (BK) or by zero and first order UBM statistics,
all using i-vector extraction techniques by PCA (PCA), each time without and
with pre-conditioning (LW only, since it gives the better performance in the pre-
vious experiments). Comparing the extraction techniques (lines 8 and 12), FA
brings a relative improvement of 10.5% of average EER: 2.89 vs 3.23 with PCA.
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This slight gain recalls that i-vector extraction falls into the family of compres-
sion techniques rather than factor decompositions. Comparing representations
for PCA-based systems (lines 11 and 12), the binary key representation yields a
performance close to that of zero and first order UBM statistics (3.43 vs 3.23)
with, which must be taken into account, a 32 times lower amount of informa-
tion1. But once again, the improvement of performance is mainly due to the
conditioning step. Systems based on different representations and dimensional-
ity reductions are able to provide interesting performance but only if they include
a pre-conditioning procedure.

8 Conclusion

The aim of this work was to assess the benefits of the different steps in a classical
i-vector based speaker verification system. In particular, we quantify the role of
the optional conditioning procedure in the good probabilistic modeling of data.
As all stages of the system try to take into account the constraints of a Gaussian
framework, we replace one by one these modules by a deterministic or non-
parametric method and compare the gap of performance with that involved
by the conditioning procedure. These comparisons also allow to measure the
robustness of concepts involved in the i-vector approach. The results of this
analysis can be summarized by the following key points:

– All the systems presented here rely on the GMM-UBM. Their good perfor-
mance, following however various ways, show the robustness of the GMM-
UBM to structure the acoustic feature space.

– High-dimensional UBM-based representations are stacking a fixed-length set
of vectors from the feature space. The low gaps between systems with various
representations and extractors show that any dimensionality reduction of
stacked vectors built by using UBM, according to the total variability, is able
to capture and summarize correlated behaviors between UBM-components.
As remarked in the introduction of [14], the i-vector random variables can
be viewed as principal components of utterances. The coordinates represent
physical quantities, which are constant for a given utterance but which differ
from one utterance to another.

– Resulting low-dimensional vectors do not match the assumptions of an usual
probabilistic framework. More than FA-total-var or PLDA decompositions,
the conditioning procedure mainly contributes to make vectors compati-
ble with a linear-Gaussian modeling and scoring. WCCN-cosine-scoring can
be decomposed into an inner-product applied to standardized and length-
normalized vectors, as done in eq. 2. A core procedure, composed of standard-
ization according to a target variability, followed by length-normalization

1 In our configuration of 512-components GMM-UBM, 50-dimensional feature space
and, for binary modeling, 100 specificities per component, the size of a binary key is
6.4 KB and the size of double precision zero and first order UBM-statistics is 208.9
KB.
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(which ignores the magnitude to focus on the directional information), turns
out to be decisive in the final performance.

Works about the properties of the conditioning and dimensionality reduction
procedures are presented in [1][9][8][7]. But we are now continuing a thorough
study of their properties, in order to better explain their impact in the perfor-
mance and improve further i-vector based speaker verification systems.
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