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Abstract. The topology of complex brain networks allows efficient dynamic  
interactions between spatially distinct regions. Neuroimaging studies have pro-
vided consistent evidence of dysfunctional connectivity among the cortical cir-
cuitry in Parkinson’s disease; however, little is known about the topological 
properties of brain networks underlying these alterations. This paper introduces 
a methodology to explore aberrant changes in hierarchical patterns of nodal 
centrality through cortical networks, combining graph theoretical analysis and 
morphometric connectivity. The edges in graph were estimated by correlation 
analysis and thresholding between 148 nodes defined by cortical regions. Our 
findings demonstrated that the networks organization was disrupted in the pa-
tients with PD. We found a reconfiguration in hierarchical weighting of high 
degree hubs in structural networks associated with levels of cognitive decline, 
probably related to a system-wide compensatory mechanism. Simulated tar-
geted attack on the network’s nodes as measures of network resilience showed 
greater effects on information flow in advanced stages of disease. 
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1 Introduction 

The human brain is considered to be one of the most complex systems in nature, 
structurally and functionally organized into complex and sparse networks. The topol-
ogy of networks allows efficient dynamic interactions between spatially distinct brain 
regions, which are thought to provide the physiological basis for high-level informa-
tion processing [1]. Efforts to understand its intricate wiring patterns and the way 
these give rise to normal functioning and connectivity abnormalities in neurological 
and psychiatric disorders, is one of the most challenging areas in modern science. 

The mathematical framework of Graph Theory provides powerful tools to deal 
with intrinsic complexity of brain systems, allowing the extraction of global metrics 
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that capture various aspects of the network’s topological organization. However, 
graph theoretical approaches in neurosciences deals with large and complex neural 
systems that have revealed non-random but small-world architectures, providing re-
gional specialization with more efficient rates of information transfer [1-3]. This hy-
pothesis has been supported in structural and functional human brain networks stu-
dies, over a wide range of scales in space and time.  

Small-world networks are characterized by the existence of a small number of 
nodes with higher connectivity degree, referred to as hub-nodes. Hubs are suggested 
to play an important role in the overall network organization and can be defined sev-
eral possible measures of centrality, including degree (number of edges) and bet-
weenness centrality [1]. Detecting hub-regions in a network helps to identify relevant 
structures subserving specific roles such as motor and cognitive processing, thus pro-
viding a link between structure and function [4]. Progress in Graph Theory, combined 
with advanced neuroimaging techniques like Magnetic Resonance Imaging (MRI), 
allow us to quantify topological properties of brain systems like basal ganglia – tha-
lamus – cortical circuitry and disturbed functioning that give rise to movement dis-
orders such as Parkinson’s disease (PD). Previous functional brain network studies 
have demonstrated disruption of several large scale brain systems in PD [5-7]. Up to 
know remains unclear how the affected modular organization of brain network under-
lies motor and cognitive impairment in PD. 

Morphometric-based connectivity has been recently introduced as a measure of 
structural association between brain regions [8-10]. This concept is defined as the 
covariance between two anatomical brain areas. Structural networks can then be con-
structed from morphometric correlations of anatomical metrics like cortical volume, 
thickness, and surface area. In the present study, we constructed structural networks 
using average cortical thickness of atlas-based regions, to explore the characteristics 
of the cortical networks in PD across subgroups at different stages of cognitive im-
pairment, compared to healthy subjects. For the first time we applied graph theoretical 
approaches to investigate alterations in large-scale morphological brain networks, 
nodal centrality and network robustness in this neurological pathology. 

2 Methods 

2.1 Patients and Controls 

This research was approved by the Ethics Committee for Medical Research at the 
Clinica Universidad de Navarra in Spain. All patients provided their written informed 
consent. All the participants underwent a neuro-psychological assessment, including 
the Mini-Mental State Examination (MMSE) for global cognitive functions and 
UPDRS-III scale for motor disabilities. Demographic and clinical data for the study 
groups are given in Table 1. PD patients were classified in three groups according to 
cognitive performance: cognitively normal (PDCN); PD with mild cognitive impair-
ment (PDMCI), based on MCI criteria [11]; and with dementia (PDD), based on the 
DSM-IV-TR manual of mental disorders [12]. 
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Table 1. Demographic and clinical characteristics of the study participants 

 HC PDMCI PDCN PDD test 
No. 20 22 28 18  
Sex (M/F) 11/9 15/7 15/13 7/11 N.Sa 
UPDRS III N.A 32.3±8.5 35.0±12.2 50.0±10.0 P < 0.01b 
MMSE 29.2±1.1 29.0±1.4 26.4±2.6 18.3±3.8 P < 0.001b 

N.S: no significant; aChi-square test; bOneway analysis of variance 

2.2 MRI Acquisition and Cortical Thickness Measurement 

MRI examinations were performed on a 1.5 T Magnetom Symphony scanner (Sie-
mens, Erlangen, Germany). All subjects were investigated with a whole brain T1-
weighted coronal oriented Magnetization Prepared Rapid Gradient Echo (MPRAGE) 
sequence (repetition time TR = 13 ms; echo time TE = 10 ms; inversion time TI= 
1100 ms; flip angle =15; 1 mm isotropic resolution; slice gap = 0 mm). Head motion 
was minimized with restraining foam pads provided by the manufacturer.  

Reformatted T1-weighted MR images were processed using Freesurfer 5.0.0 soft-
ware package (Massachusetts General Hospital, Harvard Medical School; freely 
available at http://surfer.nmr.mgh.harvard.edu). Figure 1 (1 to 4) summarizes Freesur-
fer pipeline, whose technical details have been previously described [13]. After seg-
mentation into gray and white matter, the gray/white and the gray/pial interfaces were 
tessellated and labelled according to Destrieux sulcogyral-based atlas, which includes 
74 regions per brain hemisphere [14]. Cortical thickness, defined as the shortest dis-
tance between white and corresponding pial surfaces, was computed for every region. 
A linear regression was performed at every region to remove the effects of age, gend-
er, age–gender interaction, and mean cortical thickness. The residuals of this regres-
sion were then substituted for the raw cortical thickness values. 

2.3 Graph Theoretical Approaches 

The morphometric network is modeled as an undirected graph, Gbrain = [N, W] (figure 
1.5). N is a set of n=148 nodes determined by the anatomical parcellation and 
represents the voxels having a non-zero probability of belonging to the cortical tissue. 
W is the set of wij edges between each pair of regions i and j. We computed wij values 
as the Pearson's product-moment correlation coefficient in corrected thickness values 
across subjects, removing the influence of all other regions n ≠ (i, j). This resulted in a 
pair of {74 x 74} correlation matrices. Pearson’s correlation was adopted instead of 
partial correlation analysis because the number of nodes exceeds the number of pa-
tients. Unweighted binary graphs were generated by thresholding the wij values based 
upon the significance of the correlations. Bootstrapping samples (Nboot = 300 sam-
ples) of the connectivity matrix were obtained by selecting a random subset of the 
total number of subjects with replacement to compute the correlation coefficient. 
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Fig. 1. Pipeline for morphometric-based graph analysis. 1. Acquisition of T1-weighted high 
resolution MRI; 2. Surface-based segmentation; 3. Atlas-based tessellation and labeling; 4. 
Calculation of corrected cortical thickness; 5. Schematic representation of the brain network in 
the form of a graph; 6 Definition of higher-degree connector hubs. 

2.4 Nodal Centrality and Network Robustness 

The shortest path dij between any two vertices i and j is defined as the number of 
edges along the geodesic length connecting them [3]. Degree centrality of a given 
node n(i) is defined as the number of edges incident to the node. The ‘betweenness 
centrality’ B(i) of a n(i) is a global centrality measure of the influence of a node over 
information flow between other nodes in the network [3]. We measured the norma-
lized betweenness as: 

 B(i) = Σj≠k { njk(i)/ njk }  (1) 

where njk is the number of shortest paths connecting j and k, and njk(i) is the number 
of these paths passing through i. The hubs are the regions with higher values of B(i) as 
seen in figure 1.6. To test differences between groups a nonparametric Kruskal Wallis 
(KW) statistical test was used, with Bonferroni correction for multiple comparisons. 

Small-world networks show a high robustness to random failure of nodes, but are 
known to be vulnerable to target attack on the hubs [1]. A fault in the system is the 
removal of any n nodes and all edges connected to these nodes from Gbrain. To eva-
luate the attack tolerance of each of the four networks, we removed the nodes and 
edges from the graph in decreasing order of their betweenness and then measured the 
changes in the size of the largest connected component. 
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3 Results 

3.1 Nodal Characteristics 

Figure 2 shows the strongest hubs in the four sets of undirected graphs, corresponded 
to healthy volunteers and patients with different levels of cognitive decline. In the 
control group, regions with B(i) > 2 (meaning that these hub regions have at least 2 
times the network’s average betweenness centrality) included right primary sensori-
motor and posterior cingulate areas, and associative temporal regions. Compared with 
controls, the PD patients showed significant centrality decreases in primary motor 
cortex, while increases in associative and limbic frontal and occipito-temporal areas 
are observed (KW test, p<0.01). PDD’s hubs were predominant in the occipital and 
parietal regions, with tendency to lose involvement of fronto-temporal areas. Nomen-
clature of human cortical gyri and sulci can be found in Destrieux et al [14]. Full list 
of anatomical regions with respective betweenness centrality values are available 
under request. 
 

 

Fig. 2. The structural network cores for each group. Size of spheres indicates normalized bet-
weenness centrality values of each region. 

3.2 Reduced Network Robustness in PD 

We find that the deletion of connector hubs have distinctly effects on the small-world 
attributes as a consequence of pathological stages. Figure 3 shows the networks ro-
bustness in response to the targeted attack. PDD group was considerably more vulner-
able to hubs deletion, with reduction of the largest connected component when at least 
15% of the most central nodes and links were removed, and remains noticeably re-
duced for all thresholds. The structural networks of patients without dementia (PDCN 
and PDMCI) were as robust as that of controls until the 57% of the most central nodes 
were attacked. In the range when 57 to approximately 70% of nodes are deleted, these 
three networks show a cross-linked behavior against attacks. Since that sparsity  
threshold, resilience to targeted failures are consistent with cognitive decline  
(HC > PDCN > PDMCI > PDD). 
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Fig. 3. The graph shows the largest component size of the networks for every group as a func-
tion of sparsity threshold. As the proportion of removed nodes increases, the largest component 
sizes of all groups tend to decrease. The arrow indicates the lowest sparsity threshold (15%) in 
which all the networks included all connected nodes. 

4 Discussion 

To our knowledge, this is the first time that graph theory is used to explore the mor-
phological networks in PD and its relation with cognitive decline. We have consi-
dered the hypothesis that these covariation patterns reveal information about the  
dynamics of the brain networks in response to degenerative processes in PD. We have 
also modeled the vulnerability to targeted attack on the network’s hubs in relation to 
cortical thinning and cognitive impairment. 

4.1 Altered Nodal Centrality 

Our results point out the degree and distribution of network’s hubs as possible biolog-
ical markers of deficits in cognitive and behavioral functions in PD. The loss of inte-
grative capacities of the precentral regions may reflect altered output through basal 
ganglia-thalamo-cortical loops, which is consubstantial with PD [15]. The selective 
damage to high-degree hubs in structural networks should have an outsized impact on 
the capacity of the network for efficient high-level processing. This could explain the 
early emergence of motor and cognitive symptoms in the course of PD. During the 
course to more advanced phases of cognitive impairment, clustering of connector 
hubs shift to posterior parietal, temporal and occipital regions, including visual and 
auditory cortices, and to associative and limbic frontal areas (figure 2). This observa-
tion fits with the heavy reliance of PD patients on sensory modalities to guide their 
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actions. Such reconfiguration leads us to speculate that alteration in degree centrality 
across the brain circuitry may be indicative of system wide compensatory mechanism, 
in response to the basal ganglia altered output arising from imbalances of dopamine.  

In terms of network dynamics, the shift in B(i) suggests a reordering in the control 
of flow of information. However, it is difficult to differentiate between changes re-
sulting from the disease itself as opposed to those that arise as part of a compensatory 
response. On the other hand, betweenness only takes into account shortest edges, 
while long range network connections also contribute to global communication pat-
terns. Future studies are necessary to address network-wide integration and its effect 
over network’s efficiency. Our results are in line with recent studies suggesting re-
duced sensorimotor connectivity and increased functional connectivity in associative 
and limbic circuits in PD [5-7, 16].  

4.2 Topological Vulnerability in PD 

Measures of network resilience may be computationally simulated by targeted attack 
on the network highest-degree nodes. The vulnerability of the network in different 
stages of disease may then be quantified by comparing its topological or dynamical 
behavior after the “lesioning”. Our observations suggest that pathological attacks on 
high-centrality nodes have greater effects on information flow in advanced stages of 
PD than attacks on early phases and healthy controls. These results are consistent with 
recent inferences about the association between disease stages and thinning of core 
prefrontal, cingulate, temporal and parieto-occipital regions in PD [17]. More impor-
tantly, graphs corresponding to normal or middle cognitive impairment show a ten-
dency to recover resilience capacity after an attack to a high percent of connector 
hubs, similar to healthy controls. Therefore, this PD related changes in centrality pa-
rameters may reflect a less optimal reconfiguration in hierarchical network topology 
in response to alteration of primary motor and cognitive circuits. Thus, topological 
organization of network’s hubs could provide associations for the understanding of 
the relationship between network topology and neuropathological state of disease. 

5 Conclusions 

In the present paper we have shown that combining graph theory and MRI data allows 
studying the organizational properties of the morphological networks in Parkinson 
Disease at different stages of cognitive decline. This approach should yield more 
comprehensive understanding of how structural disruptions in the brain network ar-
chitecture are associated with functional deficits in PD. Our findings are compatible 
with the notion that cognitive impairment in PD is associated with disruptions in the 
integrity of large-scale interconnected brain systems. The graph theory analysis also 
provides a new way to understand the pathophysiology of specific functional deficits 
and, possibly, to evaluate disease progression. In a near future, the combination of 
functional and morphometric-based connectivity in a graph theory framework could 
explain the nature of dynamical processes taking place on the parkinsonian networks, 
as well as the causality between network topology and network dynamics. 



 Using Graph Theory to Identify Aberrant Hierarchical Patterns 141 

 

References 

1. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neuros-
ci. 13, 336–349 (2013) 

2. He, Y., Evans, A.: Graph theoretical modeling of brain connectivity. Curr. Opin. Neu-
rol. 23, 341–350 (2010) 

3. Stam, C., Reijneveld, J.: Graph theoretical analysis of complex networks in the brain. Non-
linear Biomedical Physics 1, 3 (2007) 

4. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. 
Sci. USA 104, 36–41 (2007) 

5. Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., 
Cirillo, G., Barone, P., Tedeschi, G.: Default-mode network connectivity in cognitively un-
impaired patients with Parkinson disease. Neurology 79, 2226–2232 (2012) 

6. Wu, T., Long, X., Wang, L., Hallett, M., Zang, Y., Li, K., Chan, P.: Functional connectivi-
ty of cortical motor areas in the resting state in Parkinson’s disease. Hum. Brain Mapp. 32, 
1443–1457 (2011) 

7. Stoffers, D., Bosboom, J.L., Deijen, J.B., Wolters, E.C., Stam, C.J., Berendse, H.W.: In-
creased cortico-cortical functional connectivity in early-stage Parkinson’s disease: An 
MEG study. Neuroimage 41, 212–222 (2008) 

8. He, Y., Chen, Z., Evans, A.: Small-world anatomical networks in the human brain revealed 
by cortical thickness from MRI. Cerebral Cortex 17, 2407–2419 (2007) 

9. Sanabria-Diaz, G., Melie-Garcia, L., Iturria, Y., Aleman, Y., Hernandez, G., Valdes, L., 
Galan, L., Valdes-Sosa, P.: Surface area and cortical thickness descriptors reveal different 
attributes of the structural human brain networks. Neuroimage 50, 1497–1510 (2010) 

10. Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T.: Abnormal cortical networks in 
mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6, e1001006 
(2013) 

11. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.: Mild cogni-
tive impairment- beyond controversies, towards a consensus: report of the International 
Working Group on Mild Cognitive Impairment. J. Intern. Med. 256, 240–246 (2004) 

12. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. 
American Psychiatric Association, Washington, DC (1994) 

13. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.: Automat-
ically parcellating the human cerebral cortex. Cereb Cortex 14, 11–22 (2004) 

14. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical 
gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010) 

15. Obeso, J.A., Rodriguez-Oroz, M.C., Benitez-Temino, B., Blesa, F.J., Guridi, J., Marin, C., 
Rodriguez, M.: Functional organization of the basal ganglia: therapeutic implications for 
Parkinson’s disease. Mov. Disord. 23, S548–S559 (2008) 

16. Sharman, M., Valabregue, R., Perlbarg, V., Marrakchi-Kacem, L., Vidailhet, M., Benali, 
H., Brice, A., Lehericy, S.: Parkinson’s Disease Patients Show Reduced Cortical-
Subcortical Sensorimotor Connectivity. Movement Disorders 28, 447–454 (2013) 

17. Zarei, M., Ibarretxe, N., Compta, Y., Hough, M., Junque, C., Bargallo, N., Tolosa, E., 
Martí, M.J.: Cortical thinning is associated with disease stages and dementia in Parkin-
son’s disease. J. Neurol. Neurosurg. Psychiatry 84, 875–881 (2013) 

 
 


	Using Graph Theory to Identify Aberrant Hierarchical Patterns in Parkinsonian Brain Networks
	1 Introduction
	2 Methods
	2.1 Patients and Controls
	2.2 MRI Acquisition and Cortical Thickness Measurement
	2.3 Graph Theoretical Approaches
	2.4 Nodal Centrality and Network Robustness

	3 Results
	3.1 Nodal Characteristics
	3.2 Reduced Network Robustness in PD

	4 Discussion
	4.1 Altered Nodal Centrality
	4.2 Topological Vulnerability in PD

	5 Conclusions
	References




