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Abstract. We assess the feasibility of unseen appliance recognition
through the analysis of their electrical signatures recorded using low-
cost smart plugs. By unseen, we stress that our approach focuses on the
identification of appliances that are of different brands or models than
the one in training phase. We follow a strictly defined protocol in order
to provide comparable results to the scientific community. We first evalu-
ate the drop of performance when going from seen to unseen appliances.
We then analyze the results of different machine learning algorithms, as
the k-Nearest Neighbor (k-NN) and Gaussian Mixture Models (GMMs).
Several tunings allow us to achieve 74% correct accuracy using GMMs
which is our current best system.

Keywords: Intrusive Load Monitoring (ILM), appliance recognition,
electric signatures, load identification.

1 Introduction

The automatic recognition of appliances from their electric signatures has several
applications such as energy consumption understanding and appliance manage-
ment for energy consumption optimization [1]. Other applications can also be
envisioned such as an indirect activity detection in houses or monitoring of el-
derly people [2].

Due to the rising price of energy and an increased sensitivity from people to
environmental matters, the field of energy consumption understanding and man-
agement is nowadays rising interests. In US, 51% of the electricity consumption
in homes is due to appliances and lighting [3]. In this context, a system able
to recognize appliance would allow to know which appliance is consuming how
much, giving an explanation on their contribution to the electricity bill. This
will allow householders to optimize their energy consumption. Appliance iden-
tification could also be very useful for Building Management Systems (BMS),
allowing to implement smarter rules and optimizing the local production and
consumption of electric energy.

An electric signature represents the time evolution of the electricity consump-
tion which is summarized by the active and reactive power on AC networks.
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Appliances can be categorized into 4 classes [4]: two-states on/off appliances
(e.g. lamps, toasters); multi-states appliances, when a finite number of operat-
ing states exist (e.g. fridges, dishwashers); continuously variable devices, when
the consumption varies continuously (e.g. battery chargers); permanent con-
sumer devices, when the consumption is constant over a long period of time (e.g.
telephone sets, smoke detectors). According to this, a more complex task than
appliance identification could consist of recognizing in which state a given appli-
ance is at a given time, allowing for example to automatically detect stand-by.
Recent studies are estimating this consumption at about 10% of the residential
electricity use [5, 6].

Appliance identification can be done using two approaches: Non-Intrusive
Load Monitoring (NILM) and Intrusive Load Monitoring (ILM) [7]. NILM mon-
itors the total house electricity consumption at the smart meter, while the ILM
refers to a distributed sensing approach, using one or more sensor per appliance.
In the first case, the signals have to be decomposed to identify single appliance,
i.e. performing a disaggregation [4]. NILM approaches are less expensive but
more difficult while ILM approaches are more expensive but more precise [7].
We focus in this paper on ILM approaches.

As detailed in Section 2, several modeling approaches have been proposed for
appliance identification, often based on machine learning principles. Given the
differences among brands and models, a challenge for such approaches is in the
necessity to have large training databases that represent all types of appliances
for a given type, including as many brands and models as possible. In this paper
we address the problem of identification systems that are tested with unseen ap-
pliance, i.e. appliance brands that are not available in the training set. In other
words, we evaluate the generalization capacity of such machine learning systems
when dealing with new appliances that are not yet observed in the training set. In
this direction, the availability of large databases is important (Section 3). System
description, results and discussions are presented in Section 4 and 5.

2 Related Works

Several ILM approaches have been proposed. In the work of F. K. Adeel Ab-
bas Zaidi and P. Palensky [8], machine learning approaches such as Dynamic
Time Warping (DTW) and Hidden Markov Models (HMMs) are presented. Ob-
servations are sampled at 10−1 Hz on different appliances spread into 6 cat-
egories including fridges, microwaves, dishwashers, coffee machines, computers
and printers. From the raw observations, features are extracted such as average
energy consumption, edge counts, percentage energy consumption and discrete
Fourier transform coefficients. The best feature sets are showing results up to
90% for five categories.

In the work of Reinhardt et al. [9], 33 appliance categories are used to build
an identification system showing promising performance up to 95.5% accuracy.
The system samples the current consumption at 1.6 kHz which brings much finer
information on the time evolution. Their approach extracts numerous features
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from the signal leading to 517 feature vector representing the electricity trace.
Different classification algorithms were also analyzed showing the best results
with random committee approaches. Due to a pretty large database of signals,
they could analyze the impact of using different features and types of classifiers.

In the work of Zufferey et al. [10], the objective was to categorize appliances
into 6 categories. The system is based on low-cost smart plugs measuring the
electricity consumption parameters at low frequency every 10 seconds. k-Nearest
Neighbors and Gaussian Mixture Models were compared, showing similar accu-
racies up to 85%. Interestingly, the raw observations were simply normalized and
used directly as features. A continuation of this work was presented by Ridi et
al. in [11] where the signature database ACS-F1 was used, increasing the number
of categories to 10 and showing a tuned up system performance of 93.8%. In the
next Section this database will be presented.

To the best of our knowledge, all these related works have been evaluated on
appliance types and brands that were also seen in the training database, i.e.,
according to so-called intersession protocols where the same appliances are pro-
ducing the training and testing signature materials. In this paper, we investigate
the recognition of categories using unseen appliance protocols, i.e., where the
testing signatures come from new appliances that are not observed in the train-
ing set. The task is expected to be more complex due to the extra inter-brand
and inter-model appliance variability.

3 ACS-F1 Database

We based our work on the Appliance Consumption Signature Fribourg 1 (ACS-
F1) database [12]. This database contains appliance signatures acquired using
low-cost smart plugs capturing the electricity parameters at low frequency with
a sampling rate of 10−1 Hz. A signature is a sequence of raw measurements
O = {o1, . . . , oN} where on is a vector of 6 coefficients including real power
(W), reactive power (var), RMS current (A), RMS voltage (V), frequency (Hz)
and phase of voltage relative to current (ϕ). The database contains for each
appliance two acquisition sessions of one hour. 100 appliances are recorded and
spread uniformly into 10 categories: mobile phone chargers, coffee machines,
computer workstations with monitor, fridges and freezers, Hi-Fi systems, lamp
(CFL), laptops chargers, microwave ovens, printers, and televisions (LCD or
LED).

Two protocols are proposed with the database: the intersession and unseen
instances protocols. In the first protocol all the instances of the first session
constitute the train set, whereas those of second session are used for testing.
With this protocol, all the testing signatures come from appliances already seen
in the training phase. At the time of writing this article, the best performances
on the intersession protocol are reported in [11]. In this work, two classifiers
are compared, namely k-NN and GMM systems showing respectively 88% and
93.8% correct category identification.

The second protocol aims at evaluating unseen instances configurations as
illustrated in Figure 1. The goal is here to classify instances that are not seen
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Fig. 1. Unseen instances protocol of the ACS-F1 database

before by the classifiers. This protocol also proposes to use a 10-cross fold pro-
cedure to smooth the evaluation results. The fold partitions are made available
by the providers of the database. This protocol evaluates the system capability
of generalizing to new brands or models of appliances.

4 System Description

4.1 Feature Extraction

In our procedure and as proposed in [10, 11], we use as baseline coefficients the
raw observation O as part of the features. We analyze here the impact of includ-
ing information about the dynamics of the signal through the computation of
the so-called delta and delta-delta or acceleration coefficients. These coefficients
have been mainly used in speech recognition and have already been successfully
used for appliance identification [11]. As explained in [13], the delta coefficients
are computed with:

Δon =

W∑

w=−W

w × on−w (1)

where K represents the window length. The value W = 2 has been retained
after some tests, which corresponds to a window of 50 seconds. We then perform
a z-normalization of the features, after which the mean is equal to zero and
the variance is equal to one. The normalization is mainly useful for classifiers
based on distance computation such as k-NN with a side effect of balancing
each feature contribution. Our feature sequence X = {x1, . . . , xN} is therefore
constituted of vectors composed of normalized observations and delta coefficients
with xn = [c1n, . . . , c6n, Δc1n, . . . , Δc6n] and with cin the normalized value of the
corresponding oik observation. In a similar way, we also analyzed the extension
of the features including the acceleration coefficients that are computed from the
delta coefficients with:

ΔΔon = Δon+1 −Δon−1 (2)
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In this work, we also evaluate the effect of applying power thresholding, elimi-
nating from the sequence the observations where the value of the active power is
below a given threshold TP . Intuitively, this is related to the fact that appliances
are difficult to discriminate when they are consuming a small quantity of energy,
e.g. when they are off or in stand-by. After some pre-tests, the threshold TP is
set to 0.5W .

4.2 Classification

Two machine learning algorithms are analyzed in this work: k-NN and Gaus-
sian Mixture Models (GMM). A k-NN classifier computes the k closest features
from the train set and then uses the labels of these features to perform the clas-
sification. In our case, we choose the winning class through a simple majority
voting on the labels. In case of a tie, the class having the closest points is elected
as winner. The normalized observation, delta and acceleration coefficients are
representing different type of information. We then propose here to weight the
distance computation with

dist(xts, xtr) = α× d(cts, ctr) + (1− α)× d(Δcts, Δctr) (3)

where d is the euclidean distance, xts a test feature vector and xtr a train feature
vector. The coefficient α is tuned between 0 and 1 to give more or less weight to
the delta versus the plain coefficients.

A GMM is a parametric probability density function estimating the likeli-
hood p(xn|Mj) of a feature vector xn given a category Mj as a weighted sum
of Gaussian component densities. The model can be configured with the num-
ber of mixtures I. In our configuration, we used GMM with diagonal covariance
matrices making the hypothesis of uncorrelated coefficient. This hypothesis is
not true in practice but allows to reduce the number of parameters to estimate
and to speed up the computations. The model is computed using the classical
Expectation-Maximization (EM) algorithm [14]. The initial values of the Gaus-
sian distributions are computed using the k-means algorithm. For testing, the
likelihood p(X |Mj) of an observation sequence X given a model Mj is com-
puted by multiplying the local likelihoods p(xn|Mj) by making the observation
independence hypothesis.

5 Result and Discussion

Influence of the Delta Coefficients. We observe that the inclusion of delta
coefficients is beneficial for both k-NN and GMMmodels. Accuracy rates increase
from 45% to 52.5% for the k-NN model when including the deltas. Similarly,
accuracy rates increase from 62% to 69% for the GMM when including the
deltas1. The dynamic information is bringing significant improvement to both
systems.

1 An optimization of k, the number of neighbors and I the number of Gaussian is
systematically performed in all reported results.
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Fig. 2. Accuracy rate trend for a) k-NN varying the number of neighbors (α = 0.1, with
thresholding), B) GMMs varying the number of Gaussians (using delta and delta-delta
coefficients, without thresholding)

Influence of the Thresholding. We observe that eliminating the feature
vectors that show an active power below the threshold TP is beneficial for the
k-NN system. Accuracy rates increase from 52.5% to 54.5% when applying the
thresholding. This can be intuitively explained considering that close-to-zero
power features are present in most signatures, corresponding to stret-ches of time
where the appliances are not used. The training features corresponding to these
stretches are independent to the categories and lead to noisy neighbors in the k-
NN procedure. Also, as expected, we do not observe a benefit of the thresholding
for the GMM models where the zero power stretches bring equivalent score
contributions in all categories.

Influence of Weighted Distance Computation. We observe the benefit
of applying a weighted distance computation as explained in Eq. 3. The perfor-
mance improved from 54.5% to 57% with the k-NN system using thresholding
and a value of α = 0.1. As illustrated in the top part of Figure 2, we obtain this
performance for an optimal value of k = 11.

Influence of the Delta-Delta Coefficients. Including further the acceler-
ation coefficients, we could achieve an improvement of the GMM system from
69% to 74%. As illustrated on the bottom part of Figure 2, we also observe the
effect of tuning the number of mixtures I, with the best performance obtained
with I = 9 mixtures in the model. A slight improvement of 1.5% is also observed
for the k-NN system by including the delta-delta coefficients.

Table 1 provides more details with the confusion matrix for our best GMM
system. The categories printer, hifi and lamp are showing the largest error rates.
Categories fridge and battery charger are showing the best performances.
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Table 1. GMM Confusion Matrix with I = 9, without thresholding, using delta and
delta-delta coefficients
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Hifi .6 .05 0 0 0 .15 .2 0 0 0
Television 0 .7 0 0 .05 .05 .05 .05 0 .1
Battery C. 0 0 .9 0 0 .05 .05 0 0 0
Coffee M. 0 0 0 .75 0 0 0 0 .25 0
Computer 0 .15 0 0 .7 0 0 .15 0 0
Fridge 0 0 0 0 0 .9 0 .05 0 .05
Lamp 0 .1 .1 0 .15 .05 .55 0 .05 0
Laptop 0 .05 0 0 0 0 .05 .85 0 .05

Microwave 0 0 0 .15 0 0 0 0 .85 0
Printer .05 .05 0 0 0 0 .3 0 0 .6

6 Conclusions

A first objective of this paper was to evaluate the feasibility of equipment identifi-
cation using simple machine learning algorithms fed by low-frequency electricity
consumption measurements. The answer to this question seems positive. We an-
alyzed the performance of different algorithms for the task of identifying unseen
appliance. A large database of electrical signatures was used with a total of 200
appliances. Our first conclusion is about the complexity of recognizing unseen
appliances. When going from a seen appliance protocol to an unseen appliance
protocol using the same database, we observe a drop of performance from 93.8%
to 74% correct classification using the best GMM system for both protocols.
The unseen task still shows acceptable performance but is much more difficult.
Improving the performance could probably be reached by increasing the training
data set which is still limited in the case of the experiments carried on here. A
second conclusion is about the benefit to include dynamic coefficient that are,
in our proposal, computed through simple delta and delta-delta coefficients. A
third conclusion is about the tuning of some parameters including the weight
α used to emphasize the information brought by the delta coefficient in k-NN
systems and the number of Gaussians in the GMM model. Finally, as observed
in previous works, we can also conclude on the superiority of the GMM over
k-NN for signature modeling. Overall, our best accuracy has been raised up to
74% obtained with a GMM model using 9 Gaussians.

As future work, we plan to evaluate the use of state-based models such as
HMMs, which should be particularly suitable for electrical signatures that in-
trinsically show a state nature. HMMs can also be seen as a generalization of
GMMs. Comparison with discriminant approaches such as SVM and ANN will
also be analyzed.
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